Skip to main content
. 2017 Jun 21;11:324. doi: 10.3389/fnins.2017.00324

Table 2.

Parameters used for the continuous-time spiking neural network simulation implementing eRBP.

Nd Number of data neurons All networks 784
Nh Number of hidden neurons All networks 100,200,400,1000
Nl Number of label neurons All networks 10
NE+ Number of positive error neurons All networks 10
NE Number of negative error neurons All networks 10
Np Number of prediction neurons All networks 10
σ Poisson noise weight eRBP+ 50· 10−3 nA
eRBP× 0· 10−3 nA
p Blank-out probability eRBP+ 1.0 
eRBP× 0.45 
τrefr Refractory period Prediction and hidden neurons 3.9 ms
Data neurons 4.0 ms
τsyn Synaptic Time Constant All synapses ms
gV Leak conductance state V Prediction and hidden neurons nS
gU Leak conductance state U Prediction and hidden neurons nS
C Membrane capacitance All neurons pF
VT Firing threshold Prediction and Hidden neurons 100 mV
VTE Error neurons 100 mV
Ntrain Number of training samples used All figures 50000 
Ntest Number of training samples used Table 1 eRBP+, eRBP× 10000 
Table 2 eRBP+, eRBP× 1000 
Table 2 RBP, BP 10000 
Ttrain Training sample duration All models 100 mV
Ttest Testing sample duration Table 1, Figure 4 500 ms
Table 2 250 ms
wh, wd, wp, g Initial weight matrix RBP, BP U(6#rows+#cols)nA
eRBP+ U(6#rows+#cols)nA
eRBP× U(7#rows+#cols)nA
wE eRBP+, eRBP× 90· 10−3nA
wL+ eRBP+, eRBP× 90· 10−3nA
wL eRBP+, eRBP× −90· 10−3nA
bmin,bmax eRBP+, eRBP× −1.15, 1.15 nA
2nd hidden layer eRBP+, eRBP× -25, 25 nA
Figure 6 eRBP+, eRBP× −0.6, 0.6 nA
β Data neuron input scale eRBP+, eRBP× 0.5
γ Data neuron input threshold eRBP+, eRBP× −0.215
η Learning Rate eRBP+ 6· 10−4nS
eRBP× 10· 10−4nS
RBP, BP 0.4/nbatch
nbatch Minibatch size RBP(100), BP(100) 100
RBP(1), BP(1) 1