Table 2.
Parameters used for the continuous-time spiking neural network simulation implementing eRBP.
| Nd | Number of data neurons | All networks | 784 |
| Nh | Number of hidden neurons | All networks | 100,200,400,1000 |
| Nl | Number of label neurons | All networks | 10 |
| NE+ | Number of positive error neurons | All networks | 10 |
| NE− | Number of negative error neurons | All networks | 10 |
| Np | Number of prediction neurons | All networks | 10 |
| σ | Poisson noise weight | eRBP+ | 50· 10−3 nA |
| eRBP× | 0· 10−3 nA | ||
| p | Blank-out probability | eRBP+ | 1.0 |
| eRBP× | 0.45 | ||
| τrefr | Refractory period | Prediction and hidden neurons | 3.9 ms |
| Data neurons | 4.0 ms | ||
| τsyn | Synaptic Time Constant | All synapses | 4 ms |
| gV | Leak conductance state V | Prediction and hidden neurons | 1 nS |
| gU | Leak conductance state U | Prediction and hidden neurons | 5 nS |
| C | Membrane capacitance | All neurons | 1 pF |
| VT | Firing threshold | Prediction and Hidden neurons | 100 mV |
| Error neurons | 100 mV | ||
| Ntrain | Number of training samples used | All figures | 50000 |
| Ntest | Number of training samples used | Table 1 eRBP+, eRBP× | 10000 |
| Table 2 eRBP+, eRBP× | 1000 | ||
| Table 2 RBP, BP | 10000 | ||
| Ttrain | Training sample duration | All models | 100 mV |
| Ttest | Testing sample duration | Table 1, Figure 4 | 500 ms |
| Table 2 | 250 ms | ||
| wh, wd, wp, g | Initial weight matrix | RBP, BP | |
| eRBP+ | |||
| eRBP× | |||
| wE | eRBP+, eRBP× | 90· 10−3nA | |
| wL+ | eRBP+, eRBP× | 90· 10−3nA | |
| wL− | eRBP+, eRBP× | −90· 10−3nA | |
| bmin,bmax | eRBP+, eRBP× | −1.15, 1.15 nA | |
| 2nd hidden layer | eRBP+, eRBP× | -25, 25 nA | |
| Figure 6 | eRBP+, eRBP× | −0.6, 0.6 nA | |
| β | Data neuron input scale | eRBP+, eRBP× | 0.5 |
| γ | Data neuron input threshold | eRBP+, eRBP× | −0.215 |
| η | Learning Rate | eRBP+ | 6· 10−4nS |
| eRBP× | 10· 10−4nS | ||
| RBP, BP | 0.4/nbatch | ||
| nbatch | Minibatch size | RBP(100), BP(100) | 100 |
| RBP(1), BP(1) | 1 |