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ABSTRACT
Glacier retreat as a consequence of climate change influences freshwater ecosystems in manifold 
ways, yet the physical and chemical bases of these effects are poorly studied. Here, we characterize 
how water temperature differs between alpine lakes with and without direct glacier influence on 
seasonal and diurnal timescales. Using high temporal resolution monitoring of temperature in 4 
lakes located in a catchment influenced by glacier retreat, we reported unexpectedly high surface 
temperatures, even in proglacial lakes located 2600 m a.s.l. Cold glacier meltwater and low nighttime 
air temperatures caused a distinct diurnal pattern of water temperature in the water column of 
glacier-influenced lakes. Precipitation onto glacier surfaces apparently leads to rapid cooling of 
the glacier-fed lakes and disrupts the thermal stratification with several mixing events during the 
summer. Taken together, these mechanisms contribute to the unique seasonal and diurnal dynamics 
of glacier-influenced lakes that contrast with the typical dimictic pattern of clear alpine lakes and 
represent an example of discontinuous cold polymictic lake type. This work contributes to the 
basic description of how climate and meteorology affect the physical properties of an increasingly 
common lake type.

Introduction

The global retreat of glaciers is a prime example of the con-
sequences of climate change (Vaughan et al. 2013) and has 
been mechanistically linked to anthropogenic activities 
(Marzeion et al. 2014). Glaciers will continue to shrink, 
and low-lying glaciers are likely to completely disappear 
within the next decades. Vanishing glaciers affect the ecol-
ogy of glacier-influenced freshwater ecosystems in man-
ifold ways (Sommaruga 2015). In addition to the loss of 
freshwater storage and alterations to the hydrological cycle 
(Immerzeel et al. 2010), glacier retreat causes bedrock ero-
sion, liberates ions and pollutants into meltwater (Rogora 
et al. 2013, Pavlova et al. 2014), and threatens the biodi-
versity of specialized communities (Jacobsen et al. 2012, 
Wilhelm et al. 2013, Peter and Sommaruga 2016). Glacier 
retreat, however, also leads to the creation of numerous 
new lakes in previously ice-covered terrain (Linsbauer  
et al. 2012). In fact, most lakes on Earth are of glacial ori-
gin (Wetzel 2001a) and have formed as a consequence of 
the retreat of glaciers at the end of the last glacial period.

One outstanding characteristic of glacier-influenced 
lakes is the brown/gray to turquoise hue of the water, a 
consequence of the high loads of mineral suspensoids, 
so called “glacier or rock flour,” which is formed by rock 
erosion at the glacier base and transported by proglacial 
streams and runoff. These highly abundant particles are 
typically small, ranging in size between clay and fine silt, 
whereas their mineralogical characteristic depends on the 
lithography of the local bedrock (Sommaruga and Kandolf 
2014). Turbidity by mineral particles reduces photosyn-
thetically active radiation (PAR) and ultraviolet radiation 
(UVR) in proglacial freshwater ecosystems (Donohue and 
Garcia Molinos 2009, Rose et al. 2014).

Although we have begun to understand the effects of 
turbid glacier meltwater on the ecology of recipient lakes 
(Koenings et al. 1990, Hylander et al. 2011, Sommaruga 
and Kandolf 2014, Sommaruga 2015, Drewes et al. 2016, 
Peter and Sommaruga 2016), the physicochemical effects 
of this kind of input to lakes have received less attention. 
Despite early recognition that turbidity of river water 
affects intrusion depth (Forel 1885), resulting in complex 
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overflow in glacier-fed lakes (Irwin and Pickrill 1982, 
Chanudet and Filella 2008). More recently, the effects of 
hydropower operations on turbidity and thermal stratifi-
cation in lakes connected by pump-storage schemes have 
been explored (Finger et al. 2006, Bonalumi et al. 2012).

Here, we contrast temperature records of 4 lakes influ-
enced by glacier retreat over the course of the ice-free 
season. One lake has already lost its hydrological connec-
tivity to the glacier and is transparent, thus reflecting the 
final stage of a glacier-retreat chronosequence. The other 
lakes are located along an altitudinal gradient below the 
glacier and represent a gradient in turbidity. We expected 
that cold glacier meltwaters decrease water temperature 
in proglacial lakes and that turbidity increases light atten-
uation, thereby reducing temperature in deep layers of 
glacier-influenced lakes. The interplay between surface 
warming and cooling of lake water by glacier meltwater 
discharge may represent an atypical form of lake mixing 
pattern for temperate alpine lakes, which are characterized 
by a weak thermocline (Catalan et al. 2002).

Study site

We monitored temperature in 4 alpine lakes (i.e., located 
above treeline) influenced by glacier retreat. The study 

patterns of overflow and underflow in glacier-fed lakes 
(Smith 1978, Irwin and Pickrill 1982, Weirich 1986) and 
the absence of summer stratification in shallow turbid 
lakes in the Arctic (Brewer 1958, Livingstone et al. 1958), 
how the thermal structure of the water column is influ-
enced by the current melting of glaciers in proglacial 
lakes has not been addressed. This lack of information is 
also reflected in the absence of proglacial lakes in recent 
meta-analysis and data-collection efforts (Blenckner et al. 
2007, Sharma et al. 2015, Woolway et al. 2016).

Discharge of glacier meltwaters is typically cold, with 
large longitudinal dynamics driven by topography and 
highly variable flow in glacier forefields (Magnusson  
et al. 2012). Given the rapid surface flow over imperme-
able bedrock or thin alpine soils, temperature variability 
in proglacial streams also rapidly responds to precipita-
tion events (Brown and Hannah 2007). These dynamics 
directly affect temperature in both ice-contact and distal 
glacier-fed lakes, the distance to the glacier being impor-
tant in the latter case (Smith and Ashley 1985). Comparing 
50 lakes in Alaska, Koenings et al. (1990) reported a 1.1 °C 
lower mean water temperature in turbid than in clear  
lakes. Temperature and turbidity of glacier meltwaters 
can vary considerably on seasonal and diurnal timescales, 
resulting in complex patterns of underflow, interflow and 

Figure 1.  Orthophoto showing the Faselfad catchment comprising the 3 turbid lakes, Fas 1 (2600 m a.s.l.), Fas 3 (2400 m a.s.l), and Fas 6 
(2200 m a.s.l.), and the clear lake, Fas 4 (2400 m a.s.l.). Fas 1 and Fas 3 are connected by a stream that, depending on time of year, flows 
partially below surface. Fas 4 and Fas 6 are also connected by a partially subsurface stream. Orthophoto source: http://www.tirol.gv.at/
tiris.

http://www.tirol.gv.at/tiris
http://www.tirol.gv.at/tiris
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area comprises the Faselfad lakes (FAS; Fig. 1), a group 
of 6 lakes situated between 2263 and 2620 m a.s.l in the 
western Austrian Alps (47°4′N, 10°13′E). All lakes origi-
nated from a rapidly retreating glacier, the Faselfadferner 
(Drewes et al. 2016), a small glacier located on a steep 
slope. The Faselfad lakes differ in connectivity to the gla-
cier. Thus, FAS 1 (4 m deep) is the youngest (~40–50 years 
old) and most turbid lake, located directly beneath the 
glacier terminus (i.e., proglacial). FAS 2 and FAS 3 (2400 
m a.s.l) are located 200 m below FAS 1 and are also fed by 
glacial meltwater. Depending on water level, these 2 turbid 
lakes are at certain times connected, and we selected the 
larger and deeper basin lake, FAS 3 (16 m). Two clear 
lakes, FAS 4 and FAS 5 (2400 m a.s.l.), are mainly fed 
by seepage. They became clear after the glacier receded 
below 2 different rock outcrops, which, judged from the 
position of moraines, last occurred at the end of the Little 
Ice Age ca. 1850 (Dr. Jerzy Zasadni, University of Science 
and Technology in Kraków, pers. comm.). FAS 4 is deep 
(15 m), but FAS 5 is shallow (~2 m) and potentially freezes 
completely during winter; therefore, we monitored water 
temperature only in FAS 4. In the lowest lake, FAS 6 (2260 
m a.s.l., maximum depth 10 m), water mainly from FAS 
3, but also from FAS 4 and FAS 5, is pooled, resulting in 
intermediate turbidity values. All lakes have low conduc-
tivity (<55 μS cm−1) and show no significant gradients in 
the water column (<3 μS cm−1).

Methods

Lake water temperature

Lake water temperatures were monitored at 15-minute 
intervals during the ice-free season in 2012 (18 Jul to 2 
Oct) using TidbiT 2 loggers (HOBO, Onset Computer 
Corporation, Bourne, MA, USA) with ±0.2 °C accuracy, 
moored to a buoy above the deepest point of each lake. Six 
to 7 sensors were distributed along the water column of 
each lake (Supplemental Table S1). In the deep lakes FAS 
3 and FAS 4, thermistors were installed at the surface, 1 m, 
2 m, 8 m, 12 m, and close to the bottom (16 and 15 m in 
each lake, respectively). Turbid FAS 3 had one additional 
thermistor fixed at 4 m depth. In shallow proglacial FAS 
1, the sensors were installed at the surface and at 1, 1.5, 
2.5, 3, and 4 m depth. In FAS 6, temperature was moni-
tored at the surface and at 1, 2, 6, 8, and 10 m depth. The 
surface thermistors were deployed ~15–20 cm from the 
lake surface.

Turbidity and auxiliary data

We conducted 4 field campaigns during the ice-free sea-
sons using helicopter flights. During these expeditions, 
nephelometric turbidity (NTU) was characterized across 

the water column using a portable instrument (Turb 430 
T, WTW, Germany) that measures 90° scattered “white” 
light (Tungsten lamp) tailored to measure turbidity 
caused by small particles, following EPA method 180.1. 
In addition, a turbidity sensor (YSI 6136, Yellow Springs 
Instruments, OH, USA) installed on a YSI 6600V2-4 
probe was deployed at 1 m depth in turbid lake FAS 3 
between 17 July and 1 August. The probe monitored tur-
bidity with an accuracy of ±0.3 NTU and temperature 
with an accuracy of ±0.15 °C at 30 min intervals. The YSI 
probe includes a self-cleaning turbidity sensor that meas-
ures scattered light emitted by an LED in the near infra-
red detected at an angle of 90°. The probe was fixed to a 
buoy (MB-100, NexSens Technology, Fairborn, OH, USA) 
anchored above the deepest point of FAS 3 and equipped 
with a solar-powered data logger (SDL500).

Downwelling irradiance was measured using a PUV-
501B profiler radiometer (Biospherical Instruments, San 
Diego, CA, USA). Profiles were taken during clear sky 
conditions from a boat anchored above the deepest point. 
Meteorological data, including precipitation (mm), air 
temperature 2 m above ground (°C), relative humidity 2 
m above ground (%), air pressure (hPa), wind direction 
(°), wind speed (m s−1), and global irradiance (mV), were 
obtained from the nearest weather station (linear distance 
6.7 km; Station Galzig, ZAMG) located at 2081 m a.s.l. In 
mountainous areas, weather conditions, including wind 
speed and direction, irradiance, and precipitation, can 
be localized and dependent on terrain slopes. Thus, we 
did not include the meteorological data in our statistical 
modeling, but we assumed that precipitation measured 
at the weather station reflects the situation at the Faselfad 
lakes and limited our analysis to visual representations of 
these patterns. Conclusions drawn from these data must 
be regarded with caution, however.

Statistical analyses, modeling of thermocline depth, and 
figures were prepared using R (R Development Core Team 
2008) and the package rLakeAnalyzer (Read et al. 2011). 
The thermocline depth model is tailored to interpolate 
between discrete data points typical for thermistor buoy 
measurements. This interpolation is achieved by adding 
weighting to adjacent measurements, which improves the 
depth resolution (Read et al. 2011). The distance between 
thermistors in our study increased with increasing depth 
(Supplemental Table S1), which potentially affects the 
accuracy of the modeled thermocline depth at larger 
depths. Moreover, comparison of 3 temperature profiles 
recorded by the PUV radiometer casts with thermistor 
data revealed only poor accordance between the measure-
ments and indicated that the model did not capture the 
thermocline well when water temperatures were low in 
early October (e.g., 5.8 °C; Supplemental Fig. S1. During 
the other 2 sampling occasions, the profile did not show a 
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0.6–1.66 °C in the uppermost 2 m of the clear lake. At 
the lake bottom (i.e., at 16 and 15 m depth, respectively), 
however, this pattern was reversed. Although the diurnal 
temperature range was much smaller than at the surface, 
it was larger in the clear lake (0.38 °C) than in the turbid 
lake (0.28 °C; Table 1).

Heat energy in lakes is driven primarily by solar 
radiation, diffusive exchange with the atmosphere, and 
inflowing water. Profiles of PAR and UVR showed a deep 
penetration in the clear lake, whereas both types of radi-
ation were attenuated rapidly in the turbid lakes (Fig. 3).  
Solar heating contributes to the warming of deep water 
layers in wind-protected and transparent alpine lakes 
(Wetzel 2001b). The rapid attenuation of solar radia-
tion caused mainly by mineral particles seems to reduce 
the warming of deep water layers in the turbid lake and 
to exacerbate the heat gain in upper water layers. This 
observation is plausible considering that both turbid and 
clear lakes reach similar water temperatures at the surface 
(Fig. 2). Suspended sediments in the water column (e.g., 
through sediment resuspension or river discharge) can 
positively contribute to the heat budget of lakes and coastal  
oceans, but this is mainly found in systems dominated  
by organic particles (Donohue and Garcia Molinos 
 2009).

By contrast, in the Faselfad lakes, rock or glacial flour 
is characterized by low organic coating (Sommaruga and 
Kandolf 2014). Nevertheless, turbidity by mineral parti-
cles attenuates blue light more rapidly than red light and 
increases the scattering of sunlight (Donohue and Garcia 
Molinos 2009). Spectral absorption by mineral particles 
depends on the elemental composition (mainly the pres-
ence of iron), as well as the size and shape of particles 
(Babin and Stramski 2004). The glacial flour released by 
the Faselfad glacier is mainly composed of muscovite/illite 
(57%), chlorite (31%), and quartz (12%; Sommaruga and 
Kandolf 2014), of which illite contains iron, supporting 
the notion that suspended particles may contribute to 
the heating of turbid lake surface layers in this catch-
ment, particularly at times of low meltwater discharge. 
Density-dependent feedback between water temperature 
and mineral particle loads may affect particle sinking 
velocities, however, and thereby also surface temperature 
in glacier-fed lakes.

We monitored turbidity across the water column during 
4 time points but found little vertical variation compared 
to the large seasonal dynamics (Supplemental Fig. S2). 
Although we do not have continuous and depth-resolved 
turbidity data as we do for temperature, we calculated that 
at the maximum turbidity found (49.02 NTU), which is 
equivalent to ~0.2 g L−1 of glacial particles (Sommaruga 
and Kandolf 2014), the additional density (assuming a 
particle density of 2.65 kg L−1 and using the formula given 

clear stratification pattern, but rather a sharp initial drop 
in the uppermost water layer followed by a continuous 
decrease in temperature for several meters. This pattern is 
also reflected in the thermistor measurements. The model 
seems to identify the lower bound of the sharp initial drop 
as the thermocline depth.

Results and discussion

Considering all data, average temperature was signifi-
cantly lower in the proglacial lake FAS 1 (4.50 ± 1.66 °C) 
than in the other lakes (FAS 3: 6.93 ± 2.01°C; FAS 4: 8.40 
± 1.72 °C; FAS 6: 8.12 ± 2.03 °C; ANOVA, Tukeys HSD: 
p < 0.01); however, similar maximum temperatures were 
recorded at the surface of all lakes (Supplemental Table 
S1). The uppermost proglacial lake FAS 1 reached 16.65 °C 
on 20 August 2012 at 1530 h, and comparable temperature 
maxima were reached at the surface of the lower lying tur-
bid lakes FAS 3 (15.34 °C) and FAS 6 (16.01 °C), as well as 
in the clear lake FAS 4 (15.29 °C) in the afternoon between 
20 and 22 August. In 1 m depth, however, temperature 
maxima were already considerably lower in the progla-
cial lake FAS 1 (12.69 °C) compared to temperatures the 
other turbid lakes (FAS 3: 15.28 °C; FAS 6: 15.38 °C) and 
the clear lake (FAS 4: 14.80 °C). Maximum temperature 
at the lake bottom did not exceed 9.90 °C in the shallow 
(4 m deep) proglacial lake FAS 1, 6.66 °C in FAS 3 (16 m 
deep), 10.81 °C in FAS 6 (10 m deep), and 8.67 °C in the 
clear lake FAS 4 (15 m deep).

Water temperature over the entire ice-free season in the 
4 lakes showed a clear temporal pattern, with the high-
est values found during mid-August (Fig. 2). The peak in 
water temperature coincided with the maximum turbidity 
measured in each lake (FAS 1: 49.02 NTU; FAS 3: 17.6 
NTU; FAS 6: 12.6 NTU). Throughout the season, tem-
perature at the surface and in 1 m depth in the turbid and 
clear lake located at the same altitude (i.e., FAS 3 and FAS 
4, respectively) were strongly correlated (R2

surface= 0.90 and 
R2

1m= 0.83, p < 0.01). Temperature at the lake bottom of 
FAS 3 and FAS 4 was more weakly correlated (R2 = 0.57, 
p < 0.01), reflecting the seasonal change in the clear lake 
from 5.8 °C in July to 8.6 °C in mid-August (23 Aug) and 
6.1 °C in October. In FAS 3, by contrast, temperature at 
the lake bottom showed little seasonal variation, varying 
from 4.2 to 5.8 °C.

All lakes showed a marked diurnal pattern of surface 
temperature variability (Fig. 2). Comparison of tempera-
ture ranges (i.e., maximum–minimum) of the clear (FAS 
4) and turbid (FAS 3) lakes revealed that the diurnal 
ranges in the upper water layers were significantly larger 
in the turbid than in the clear lake (Table 1). Temperature 
ranges varied between 1.36 and 2.33 °C in the uppermost 
2 m of the turbid lake, whereas temperature varied by 
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Figure 2.  temperature heat map showing all recorded data of the Faselfad lakes during summer 2012: (a) Fas 1, (b) Fas 3, (c) Fas 4, and 
(d) Fas 6. the stars overlying the heat maps reflect the trend of mean water column turbidity measured at 4 time points. the line chart on 
top illustrates precipitation (see Figure 5 for details). red arrows highlight 3 occasions of cooling in the turbid lakes, which were absent 
or less pronounced in the clear lake. also note the high temperatures at the surface of the glacier-fed lakes and the diurnal patterns at 
the surface of all lakes. the temperature data are smoothed between depth and over time for visual representation.

Table 1. results of paired t-tests between daily temperature ranges (daily max–min) at different depths of turbid lake Fas 3 and clear 
lake Fas 4. diurnal changes in temperature were significantly larger in upper layers of the turbid lake than in the clear lake, whereas the 
range of diurnal temperature variation at the bottom was significantly larger in the clear lake than in the turbid lake. the largest mean 
difference between the 2 lakes was observed in 1 m depth.

Depth (m) Median range FAS 3 (°C) Median range FAS 4 (°C) Mean difference (°C) t p
0 2.27 1.66 0.61 −11.2 <0.001
1 2.33 1.19 1.15 −15.4 <0.001
2 1.36 0.6 0.76 −15.3 <0.001
8 0.53 0.4 0.14 −3.3 0.002
12 0.47 0.27 0.21 −5.6 <0.001
16/15 0.28 0.38 0.09 3.4 0.001
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decrease the amount of meltwater released from a glacier, 
potentially influencing proglacial lake water temperatures.

In addition to the direct influence of glacier meltwater 
and turbidity by mineral particles, precipitation onto gla-
cier surfaces may be a driver of downstream temperatures 
(Brown and Hannah 2007). The potential for a marked 
cooling of the entire water column is apparent from the 
temperature heat maps (Fig. 2). During several occasions, 
pronounced cooling of all turbid lakes can be observed, 
coinciding with precipitation events. We used meteoro-
logical data recorded at a station almost 7 km away and 
at lower altitude, which limits the explanatory power of 
this data and the possibility to include wind stress in the 
assessment. The clear lake showed no such drastic cooling 
for some of these precipitation events, however, indicat-
ing that in addition to other factors such as wind stress,  
the glacier probably has a pronounced effect on these 
events.

This observation suggests that rain onto glacier surfaces 
is cooled and thus contributes to the cooling of down-
stream lakes. To evaluate the magnitude and frequency of 
cooling events, we modeled the thermocline depth (Fig. 5).  

in Boehrer and Schultze 2008) will be 0.12 kg m−3. This 
value represents a substantial density change, particu-
larly important to consider when temperatures are ~4 °C 
and density changes caused by this variable are less 
 pronounced. Automated sampling at higher temporal 
and vertical resolution of temperature, conductivity, and 
turbidity in combination with particle trapping will be 
required to quantify the effects of particle coagulation and 
sinking, as well as underflow, interflow, and overflow of 
glacial discharge in the future (Smith 1978, Chanudet and 
Filella 2007).

Comparing diurnal patterns of the glacier-influenced 
(FAS 3) and the unconnected (FAS 4) lakes during peak 
summer (1–31 Aug) revealed a striking difference (Fig. 4). 
The maximum rate of change in surface water tempera-
ture was higher in the turbid lake (increase: 0.96 °C h−1, 
decrease: −0.57 °C h−1) than in the clear lake (increase: 
0.64 °C h−1, decrease: −0.45 °C h−1; Fig. 4). These patterns 
may be explained by differential shading by the catchment 
slopes of the 2 lakes, but the temporal dynamics of glacier 
meltwater discharge may also contribute to these dynam-
ics. For instance, dropping air temperatures may rapidly 
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obtained with the turbidity sensor placed at 1 m depth 
in FAS 3 revealed considerable temporal variation (range 
3.1–6.3 NTU; Fig. 6a); however, turbidity showed a diur-
nal trend during this period (Fig. 6b) and was signifi-
cantly and negatively related with water temperature at 1 
m depth (R2 = 0.35, p < 0.01. Diurnal patterns of turbidity 
in the center of the lake were complex, potentially driven 
by many factors we did not account for, including pro-
cesses of erosion in the glacier forefield and proglacial 
stream bed channel stability (Nicholas and Sambrook 
Smith 1998).

Our work reflects the complexity of dynamics of the 
melting glacier overlain by direct effects on lake water 
temperature. In conclusion, our study indicates that gla-
cier-influenced turbid lakes feature complex and so far 
uncharacterized temporal dynamics on diurnal and sea-
sonal scales. Work on proglacial streams has revealed an 
unexpectedly high temporal heterogeneity of water tem-
perature (Uehlinger et al. 2003, Brown and Hannah 2007, 
Magnusson et al. 2012), and proglacial lakes may contrib-
ute to this heterogeneity. The thermal dynamics found in 
the Faselfad lakes are different from those of clear alpine 
lakes (Catalan et al. 2002), differences we attribute to 3 
main mechanisms. First, attenuation of solar radiation 
by mineral particles seems to be an important driver of 
seasonal temperature increases at the surface, whereas 
the deeper water layers receive limited energy. The load of 
mineral particles into the lakes depends on melting of the 
glacier, which reached a maximum in mid-August. In con-
trast to clear Arctic and Antarctic lakes (e.g., Brewer 1958, 
Livingstone et al. 1958), the presence of glacial flour in the 

In most cases, the modeled thermocline depth of the 
clear FAS 4 and turbid FAS 3 lakes was at a similar depth 
(median FAS 3: 1.61 m; FAS 4: 1.48 m; t-test p > 0.05). 
The cooling of the water column by precipitation onto 
the glacier ice may weaken the thermocline, resulting in 
a greater depth of the modeled thermocline. We inter-
preted deviations of the modeled thermocline depth (Fig. 
5) as a sign for weak thermal stratification, which seems 
associated with precipitation events throughout the entire 
ice-free season in turbid lake FAS 3 (Fig. 5). By contrast, 
in the clear lake, a disruption of the thermal stratification 
occurred only toward the end of the ice-free season and 
cannot be associated with precipitation.

Other meteorological factors, such as air tempera-
ture, air pressure, and irradiance also affect the thermo-
cline depth over the course of the season (Supplemental  
Fig. S3). Because weather phenomena can be localized in 
mountainous areas, however, we cannot tease apart the 
relative contribution of these factors to the observed var-
iation in thermocline depth or to assess the effects of wind.

To assess the significance, magnitude, and limnological 
importance of such events, future work should include 
locally measured meteorological data, ideally conducted 
at several glacier-influenced catchments. Furthermore, 
experimental evidence on the effects of mineral particles 
and their sinking on the density distribution will provide 
valuable insight into the stability of glacier-fed lakes. In 
addition, estimates of Schmidt stability (Idso 1973), espe-
cially in relation to locally measured wind speed, could 
further improve our understanding of the temperature 
dynamics in such types of lakes. The high frequency data 
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Figure 6.   High temporal resolution data of turbidity in 1 m depth of Fas 3 between 18 July and 1 august show dynamic conditions 
around a mean turbidity of 4.6 ntU (a, red line). a drop to 3.1 ntU on 25 July seems associated with a precipitation event (black line). 
despite large variation, turbidity at 1 m depth showed a diurnal trend (b). On average, turbidity (red line with open symbols) was lowest 
during night and peaked between 1400 and 1800 h. the diurnal trend in mean turbidity is indicated using a local polynomial regression 
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