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ABSTRACT Staphylococcus aureus is a major cause of skin and soft tissue infection.
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mice, which overall showed smaller lesion sizes than the galectin-3*/* animals. In

conclusion, the staphylococcal protease SspB inactivates galectin-3, abrogating its

stimulation of oxygen radical production in human neutrophils and increasing tissue

damage during skin infection.
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taphylococcus aureus is a versatile human pathogen that causes infection in a wide

range of tissues and is a major cause of both superficial and fatal infections (1, 2).
This bacterium modulates immune responses through the expression of an orchestra of
virulence factors (2, 3), including the following four major proteases (Table 1): the
metalloprotease aureolysin (Aur), the cysteine proteases staphopain A (ScpA) and
staphopain B (SspB), and the serine protease V8 protease (SspA) (4, 5). They are
encoded under the three operons aur, scp, and ssp as proenzymes that are partly
activated by each other or by autocatalysis (see Fig. S1 in the supplemental material)
(4, 6-8). Their functions are not fully defined, although many observations suggest
important roles in pathogenesis (5, 9).

Galectin-3 is a member of a family of soluble B-galactoside-binding lectins present
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TABLE 1 Description of S. aureus proteases

Infection and Immunity

Proteases Inhibitors
Acronym Name Protease class Acronym Name Activity
Aur Aureolysin Metalloprotease EDTA lon chelator?
SspA Glutamyl endopeptidase Serine protease Pefabloc SC Serine protease inhibitor®
or V8 protease
SspB Staphopain B Cysteine protease SspC Staphostatin B Specific for SspB®
ScpA Staphopain A Cysteine protease ScpB Staphostatin A Specific for ScpA® (and EcpA9)

aBroad-spectrum inhibitors were used against the metallo- and serine proteases.
bSpecific inhibitors were used against the two cysteine proteases (5, 58).

<Close homology to Staphylococcus epidermidis also allows inhibition of epidermidis cysteine protease (EcpA) (45).

in many species (10). It exhibits significant regulatory functions both in host defense
against infection and in aseptic inflammation (11-13). Several findings suggest that
galectin-3 participates in antimicrobial defense, having opsonizing and bacteriostatic
properties or inducing infection-reducing effects in the host (14-16), but there are also
data showing that galectin-3 can contribute to microbial pathogenesis, e.g., by pro-
moting adhesion to host cells or increasing the tissue-destructive response of inflam-
matory cells (14, 15, 17, 18). Galectin-3 is produced in epithelia and by several immune
cells and is released by monocytes and macrophages in response to bacterial lipopoly-
saccharide (19, 20). The lectin has been proposed to facilitate the transmigration of
neutrophils, the most abundant circulating leukocyte, from blood into tissue during the
initial steps of inflammation (16, 21). Galectin-3 also induces activation of the neutrophil
NADPH oxidase, producing reactive oxygen species (ROS) (22, 23), and can opsonize
apoptotic neutrophils to facilitate their clearance by macrophages (24).

Galectin-3 ligand binding is mediated through the C-terminal carbohydrate recog-
nition domain (CRD), a globular structure that is highly preserved within the galectin
family (10). In addition to the CRD, galectin-3 has a collagen-like N-domain that is
sensitive to proteolytic cleavage (25). This N-domain is essential for oligomerization of
galectin-3 and for many of the galectin-3-induced effects in inflammation (14, 22, 26).
There are proteases known to cleave galectin-3; human neutrophil elastase and matrix
metalloproteinases-2, -7, and -9 can proteolytically process the lectin (25, 27, 28), a
feature shared by proteases from protozoa (29) and bacteria (26, 30, 31). Hence,
N-terminal cleavage of galectin-3 could be suggested as a regulatory mechanism in
infection and inflammation. Whether such galectin-3 processing is achieved by S.
aureus proteases has so far not been investigated.

We found that the S. aureus protease staphopain B (SspB) had the capacity to cleave
galectin-3, thereby inhibiting the neutrophil-activating ability of the lectin. Further-
more, galectin-3-cleaving activity was common among clinical isolates of S. aureus. In
an in vivo murine model of S. aureus skin infection, severe tissue damage was associated
with SspB expression, but only in galectin-3-expressing mice, suggesting that proteo-
lytic processing of galectin-3 may contribute to bacterial virulence.

RESULTS

Neutrophil activation induced by galectin-3 is abrogated by factors secreted
by S. aureus. To investigate whether galectin-3 is a target for S. aureus proteases, we
used galectin-3-induced activation of human neutrophils as a readout (22). Neutrophils
responded to activation by galectin-3 with a significant level of production of reactive
oxygen species (ROS), in the same range as for the well-known neutrophil agonist
phorbol myristate acetate (PMA) (Fig. 1A, inset). Upon preincubation of the lectin with
S. aureus strain 8325-4 supernatant for 48 h, the ability of galectin-3 to trigger ROS
production in neutrophils was abolished (Fig. 1A). Inmunoblotting of the supernatant-
galectin-3 mixture with an anti-CRD antibody showed that the original 32-kDa
galectin-3 had been fully degraded by the supernatant and that the protein was instead
present as a 16-kDa fragment. Thus, the N-terminal domain had been proteolytically
cleaved, and the fragment consisted solely of the CRD (Fig. 1B). This explains the
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FIG 1 Galectin-3-induced ROS production in neutrophils is prevented by secreted factors from S. aureus
strain 8325-4. (A) Galectin-3 (400 wg/ml) was incubated in the presence or absence of 2.5% S. aureus
8325-4 culture supernatant for 48 h. The preincubated galectin-3 was added to TNF-a-primed neutro-
phils at a 1:10 dilution. Production of ROS (y axis; AU, arbitrary units) was followed over time by
isoluminol-amplified chemiluminescence. The results of a representative experiment out of six experi-
ments are shown. The inset shows a comparison of the levels of ROS production upon stimulation with
galectin-3 (40 ug/ml) and with PMA (50 nM), a well-defined and potent NADPH oxidase activator. (B)
Galectin-3 incubated with or without culture supernatant (see above) was subjected to immunoblotting
with an antibody directed toward the CRD. For reference, recombinant galectin-3 (32 kDa) and CRD (16
kDa) are shown. (C) Primed neutrophils were exposed to galectin-3 (40 wg/ml) in the presence or absence
of culture supernatant without prior incubation or to culture supernatant only, and ROS production was
measured as described above.

abrogation of the neutrophil-activating capacity of galectin-3 by the supernatant, as it
is shown that the N-terminal domain is necessary for such activation (22).

To ensure that the culture supernatant did not interfere with the chemilumines-
cence (CL) detection system per se, supernatant was added together with galectin-3 to
neutrophils in the CL mixture without preincubation. The supernatant had no effect on
the galectin-3-induced ROS production (Fig. 1C). Also, preincubation of horseradish
peroxidase (HRP), the included peroxidase, with culture supernatant did not inhibit the
CL response (data not shown).

Galectin-3 cleavage by S. aureus 8325-4 supernatant is inhibited by staphos-
tatin B. Specific protease inhibitors (Table 1) were employed to identify the galectin-
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FIG 2 Specific S. aureus proteases are responsible for cleavage of galectin-3 into lower-mass fragments. (A) Culture supernatants from
S. aureus strain 8325-4 were incubated with galectin-3 (100 wg/ml) in the presence or absence of protease inhibitor ScpB, SspC, EDTA,
or Pefabloc at the given concentrations for 1 h at 37°C. The samples were then analyzed for content of galectin-3 and fragments
thereof by immunoblotting using the anti-CRD antibody. (B) Culture supernatants (diluted 1:40) from strain 8325-4 were incubated
with galectin-3 (400 ug/ml) in the presence or absence of SspC (8 wM). The mixture was added to TNF-a-primed neutrophils at a 1:10
dilution, and ROS production (y axis; AU, arbitrary units) was followed over time by isoluminol-amplified CL. (C) Galectin-3 (2 uM; 640
ng/ml) was incubated at 37°C with or without 0.2 uM isolated S. aureus protease ScpA, SspB, Aur, or SspA in KRG with 1% BSA for
the indicated times. Samples were analyzed as described above. All samples were analyzed on the same blot that was then cut and
reassembled with the lanes in another order, to increase legibility. (D) Galectin-3 (400 wg/ml) was preincubated with SspB (4 uM) for
24 h at 37°C. The proteolytic activity of SspB was then inactivated by the addition of SspC (8 uM; necessary due to cytotoxic effects
of SspB at the given concentrations) before the mixture was added to neutrophils at a 1:10 dilution. ROS production was measured
as described above.

3-cleaving agents in the culture supernatant. S. aureus 8325-4 is a commonly used
laboratory strain that carries a deletion in the rsbU gene, which causes an upregulation
of proteases (4). The cleavage of galectin-3 by strain 8325-4 supernatants was preserved
in the presence of protease inhibitors with one exception: when SspB was inhibited by
SspC, no apparent cleavage could be distinguished, indicating that SspB has galectin-
3-cleaving properties (Fig. 2A). This was supported by the corresponding experiment in
the neutrophil activation system, i.e., the incubation of galectin-3 and culture super-
natant in the presence or absence of SspC; the protease inhibitor totally rescued the
galectin-3-induced response (Fig. 2B).

Staphopain A, staphopain B, and aureolysin from S. aureus cleave galectin-3
into specific fragment patterns. The stand-alone ability of the four proteases to
cleave galectin-3 was tested using SspA, SspB, ScpA, and Aur isolated from S. aureus.
The galectin-3-only sample showed minor but visible fragmentation formed already
during the preparation of the lectin. In the presence of ScpA or SspB, additional midsize
and CRD-only fragments of galectin-3 were produced (Fig. 2C). Aur cleaved galectin-3
into mostly higher-molecular-mass fragments, suggesting that it primarily digested the
more distant parts of the N-terminal collagen-like domain. Thus, ScpA and Aur, aside
from SspB, apparently have galectin-3-processing capacity, despite the fact that their
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TABLE 2 Protease expression of S. aureus strain 8325-4 and mutant strains

Protease expression?

S. aureus strain Aur SspA SspB ScpA
8325-4 ++ ++ ++ ++
Aaur mutant® - + + Tt
AsspA mutant ++ - - ++
AsspB mutant ++ ++ - ++
AscpA mutant ++ ++ ++ -

aActivity or expression of proteases is denoted as active (++), moderately active (+), or inactive/lacking (—).
bThe Aaur mutant has reduced SspA and SspB activities due to incomplete processing of SspA in the
absence of Aur (8).

corresponding inhibitors did not block galectin-3 cleavage in culture supernatants (Fig.
2A). SspA showed little or no degradation of galectin-3.

The ability of galectin-3 to activate neutrophils was totally abrogated after incuba-
tion of the lectin with purified SspB (Fig. 2D), in line with the effect seen for galectin-3
incubated with bacterial supernatant (Fig. 1A). For this experiment, galectin-3 was
incubated with SspB for 24 h, since the galectin-3 incubated with SspB for 40 min still
contained substantial amounts of full-length lectin (32 kDa) (Fig. 2B).

Galectin-3 is cleaved by S. aureus 8325-4 strains expressing staphopain B. We
verified the above-described findings using culture supernatants of S. aureus 8325-4
and 8325-4 Aaur, AsspA, AsspB, and AscpA mutant strains that each lacked one of the
proteases (Table 2). The AsspB and AsspA strains lost all apparent galectin-3-cleaving
activity, while the other mutants were still able to process the lectin (Fig. 3). SspB is
downstream from SspA both in transcription and in activation (see Fig. S1 in the
supplemental material) (4, 8). The other proteases are partly or fully autoactivated (4,
6-8), which supports the idea that SspB is the protease that cleaves galectin-3 in strain
8325-4. The Aaur strain supernatant still had a reduced level of cleavage of galectin-3,
explained by inefficient SspB activation, as full activity of its activator, SspA, requires
processing by Aur (8).

In summary, although isolated ScpA, SspB, and Aur all have proteolytic specificity
toward galectin-3, the above-described data identify SspB as the galectin-3-cleaving
protease of S. aureus 8325-4 and, thereby, also the inhibitor of galectin-3-mediated ROS
production.

Clinical isolates of S. aureus from skin infections and invasive infections show
various levels of galectin-3 cleavage. In culture supernatants from clinical isolates of
S. aureus from invasive infections and superficial skin infections, digestion of galectin-3
was seen in several samples from both groups, with various degrees of efficiency
(Fig. 4A). This indicates that the galectin-3 processing may be part of a virulence-
determining system in vivo. In fact, a closer analysis of the galectin-3 processing by
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FIG 3 Galectin-3 is cleaved by S. aureus strains expressing SspB. Culture supernatants from strain 8325-4
and AscpA, AsspB, AsspAB, and Aaur mutants were incubated with galectin-3 (100 wg/ml) for 1 or 2 h, and
the content of galectin-3 and fragments thereof in each was analyzed by immunoblotting with anti-CRD
antibody.
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FIG 4 Clinical isolates of S. aureus and S. epidermidis but not S. saprophyticus cleave galectin-3. Culture
supernatants of 10 strains of S. aureus isolated from invasive infections and 10 strains from superficial skin
infections (A) or of isolates of two strains each of S. saprophyticus (S. sapro A and S. sapro B) and S.
epidermidis (S. epid A and S. epid B) (B) were incubated with galectin-3 (100 wg/ml) for 16 h (A) or 1, 2,
and 5.5 h (B). Galectin-3 fragmentation was analyzed by immunoblotting using the anti-CRD antibody.

clinical S. aureus strains suggests that ScpA and SspB, and to some extent Aur, also may
cleave galectin-3 when acting cooperatively (Fig. S3).

In the presence of culture supernatants of two coagulase-negative staphylococci,
Staphylococcus saprophyticus and Staphylococcus epidermidis, a clear distinction in
galectin-3 cleavage capacities could be observed (Fig. 4B). S. saprophyticus showed no
tendency to cleave galectin-3, while the more virulent S. epidermidis digested a large
portion of the full-length galectin-3 into CRD and at least one other midsize fragment
(Fig. 4B).

Galectin-3 aggravates skin lesions in an in vivo skin abscess model with S.
aureus strain 8325-4. In order to investigate the influence of galectin-3 and S. aureus
SspB expression in vivo, we used a murine infection model. As galectin-3 is highly
prevalent in epithelium (19), we chose to study subcutaneous skin infection rather than
invasive infection. In the chosen murine model of S. aureus-induced skin infection (32,
33), wild-type (Gal-37/*) and galectin-3 knockout (Gal-37/~) mice were challenged with
the wild-type strain 8325-4 and the AsspB mutant, as illustrated in Fig. S2A.

Immunohistochemical analysis of skin sections collected on the third day of
infection from Gal-3/* mice was performed for healthy and infected skin regions.
In healthy skin (Fig. 5A), galectin-3 staining was strongly positive in the adnexa or
squamous epithelial cells. Dermal macrophages and stromal fibroblasts were pos-
itively stained, while adipocytes, myocytes, and vascular epithelium were negative for
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FIG 5 SspB enhances S. aureus virulence in a skin infection model in the presence of galectin-3. Gal-3*/* or Gal-3~/~ mice were injected
with 1 X 107 CFU of S. aureus 8325-4 or the AsspB mutant on either flank and observed for 3 days, after which they were sacrificed.
(A and B) Skin biopsy specimens of healthy skin (A) and S. aureus 8325-4-infected lesions (B). Histological biopsy specimens were
immunohistochemically analyzed for galectin-3 using an anti-galectin-3 antibody. (A) 1, muscle tissue; 2, fat tissue; 3, squamous epithelial
cells; 4, adnexa epithelial cells; 5, dermal macrophages or dendritic cells. (B) 6, normal tissue; 7, infiltrating macrophages; 8, S. aureus cells;
9, necrotic tissue. (C) Bacterial loads in skin biopsy specimens collected at day 3 were determined by viable count. (D) Lesion sizes caused
by strain 8325-4 and the AsspB mutant, respectively, were recorded, and the sizes at day 3 are shown. Horizontal bars designate median
values. Statistical analysis was performed using the Wilcoxon matched-pairs signed-rank test to compare the two strains inoculated on
the same mouse and the Mann-Whitney test to compare the strains between the two groups of mice. Data from the two experiments
are pooled. *, P < 0.05; **, P < 0.01; ns, no significant difference.

galectin-3 staining. The patterns are consistent with previous studies of galectin-3 in human
epidermal tissue (19).

In the infected skin (Fig. 5B), galectin-3 staining was lost within the necrotic region.
A strong intensity of galectin-3 staining was instead seen lining the outer region of the
lesion, accompanying the presence of inflammatory cells, as well as colocalizing with
the bacteria in the central part of the lesion. Similar patterns of galectin-3 staining were
seen when strain 8325-4 was exchanged for the AsspB mutant, although the lesions
were significantly smaller (see below). Furthermore, staining for CRD (detecting both
full-length galectin-3 and CRD) gave the same patterns as for full-length galectin-3
(data not shown).

The weight loss of the mice was minimal, as expected for such a mild and localized
infection; it did not differ between the Gal-3*/* and Gal=/~ mice (Fig. S2B). The
bacterial-load assessment at day 3 showed significantly higher CFU counts for strain
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8325-4 than for the AsspB mutant (Fig. 5C). The difference, however, was significant
only among the Gal-3*/* mice. In Gal-3*/* mice, the lesion sizes were significantly
larger than the lesions in the mice lacking galectin-3 (Fig. 5D). Furthermore, the lesions
caused by strain 8325-4 were clearly larger than those induced by the AsspB strain, but
again, the difference was only significant in the presence of galectin-3 (Fig. 5D).
Altogether, the data suggest that SspB is in fact a virulence factor and that its function
as such is dependent on the presence of galectin-3.

DISCUSSION

Galectin-3 is emerging as a regulator of inflammation that also has a direct impact
on infection (11-13). We have previously shown that galectin-3 induces ROS production
in tissue neutrophils (22), an effect that may contribute not only to bacterial killing but
also to collateral tissue destruction, and there are numerous examples of galectin-3
regulating inflammatory processes and infections in vivo (14-18, 21, 29). The function
of galectin-3 is dependent on its collagen-like N-terminal domain, and cleavage of this
domain by human or pathogen proteases may attenuate galectin-3 function and
thereby influence inflammatory regulation and bacterial virulence (25-28, 30, 31). This
study was undertaken to investigate whether S. aqureus proteases suggested to be
associated with virulence can modulate the function of galectin-3 and, if so, to
characterize any role that this phenomenon plays in S. aureus pathogenicity.

The four major proteases of S. aureus are well preserved among clinical strains (34)
and are emerging as determinants of S. aureus virulence (5, 9, 35). The proteases have
described targets, but there is no consensus in the literature as to their biological
importance. There are, however, some clues as to their function; in line with cleaving
extracellular matrix and clot-forming proteins, they facilitate tissue destruction and
modulate secreted and surface-associated virulence factors (36, 37). These activities
promote detachment from colonized tissues, dissipation of biofilms, and hiding from
detection by immune cells (5, 37, 38). Many immunomodulating mechanisms of the
proteases have been identified (3), including effects on phagocyte chemotaxis and
phagocytosis of S. aureus (37, 39-42). Furthermore, the proteases have been shown to
inactivate human protease inhibitors (e.g., «;-antitrypsin), to cleave phagocyte “do-
not-eat-me” surface receptors (CD31), to inhibit complement activation (9), and to
induce phagocyte cell death (42, 43). We now add the processing of galectin-3 as a
possible staphylococcal immunomodulating function.

In our first experiments, we used the laboratory strain 8325-4, which carries a
deletion in the control gene rsbU upstream from scp, ssp, and aur, to ensure high
expression of all four proteases (4, 44). In bacterial supernatants, the main galectin-3-
cleaving protease was SspB, shown by using specific protease inhibitors and purified
proteases, as well as mutant S. aureus strains. The ScpA and Aur proteases also had
galectin-3-processing capacity in isolation, but this activity appeared minor within
culture supernatants compared to that of SspB, as neither mutants nor inhibitors had
any obvious impact on the cleavage.

The proteolytic patterns of galectin-3 produced by the clinical isolates indicate that
the in vivo situation is more complex. The degree of cleavage varied between strains,
and it appears that more than one protease may participate in galectin-3 processing in
vivo, as discussed briefly in the legend to Fig. S3 in the supplemental material. Whether
this influences the outcome in vivo can presently only be speculated upon. Our data
indicate that the invasive strains, when grown in vitro, are more likely to cleave
galectin-3 than are noninvasive strains. The clinical strains also appear to produce
additional, larger fragments apart from the 16-kDa CRD fragment. Whether these
intermediate fragments have biological function will be investigated in future studies.

We also investigated the coagulase-negative staphylococci S. epidermidis and S.
saprophyticus for galectin-3-degrading capacity. S. epidermidis, expressing proteases
homologous to S. aureus Aur, SspA, and ScpA (5, 45), exhibited galectin-3-cleaving
capacity that could be inhibited by ScpB (Fig. S3), indicating a close relationship with
ScpA. Thus, the ability to cleave galectin-3 appears to be a preserved function in
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adherent staphylococcal species; both S. epidermidis and S. aureus form biofilms on
medical devices (2, 5), and it may be hypothesized that galectin-3 processing is
associated not only with superficial skin infection but also with graft-related infection.
S. saprophyticus, commonly causing urinary tract infection, lacked galectin-3-processing
capacity even though galectin-3 is present throughout the urinary tract (46), in line with
the lack of any known exoprotease expression in this species (47).

The importance of S. aureus proteases in promoting infection in vivo is supported by
the fact that AsspB or AsspA AsspB mutants show reduced virulence, while augmented
SspB expression results in increased virulence in murine models of systemic or local
infection (4, 48, 49). Our results showing that an AsspB strain displays attenuated
virulence during skin infection are in total accordance with this; the lesions were
smaller and the bacterial counts lower for the SspB-lacking strain than for the SspB-
expressing 8325-4. Interestingly, the difference in virulence between SspB-expressing
and SspB-deficient S. aureus strains was dependent on the presence of galectin-3 in the
host; in the Gal-3*/* mice, the protease-expressing bacteria generated larger lesions
and higher bacterial burdens than the AsspB bacteria, while both strains caused similar,
and minor, tissue destruction in the Gal-37/~ mice. Thus, galectin-3 does not appear to
increase the inflammatory response to infection per se, since the lesion size was
independent of the presence of galectin-3 when SspB was not present. Hence,
galectin-3 expression has to be combined with protease activity to result in the
observed increase in lesion size/inflammation.

The contribution of galectin-3/CRD to the bacterially induced tissue damage in the
skin infection model probably involves several different mechanisms, on which we can
only speculate at this point. The epithelial damage by the bacteria per se, enhanced by
protease expression, induces an augmented inflammatory activation and recruitment
of neutrophils, the most important cell type in fighting S. aureus skin infection (3).
Neutrophil migration into infected tissue has previously been shown to be affected by
galectin-3 (16, 50), which is produced in increased amounts during infectious/inflam-
matory processes (14, 16). Neutrophil activation by galectin-3, enhanced after extrav-
asation of the cells into tissue, may contribute to tissue destruction by the production
of toxic oxygen radicals and cytokines and the release of neutrophil proteases (15, 22,
25). Another mechanism could involve the cleavage of galectin-3 by SspB (as shown
here) and by neutrophil-released metalloproteases and serine proteases (25, 27, 28),
impairing the production of immunomodulatory ROS, as well as galectin-3-dependent
opsonophagocytic processes, possibly resulting in impaired infection control and
aggravated tissue destruction (14, 15, 24). Furthermore, protease-cleaved galectin-3 (CRD)
may possibly have proinflammatory effects per se, contributing to inflammatory tissue
damage, as seen in other disease models (51-54). These suggested mechanisms can
appear to work in opposite directions, but opposing functions are well-known phe-
nomena in the galectin field. For example, systemic Neisseria infection is dampened in
Gal-3 knockout mice, while streptococcal pneumonia is instead significantly enhanced
(14, 15). Furthermore, galectin-3 may have several different functions in one and the
same model (15), and it is not always clear how the combination of different mecha-
nisms ends up giving the result achieved (11).

Whether SspB-processed galectin-3, i.e., CRD, is present in the skin of the infected
mice cannot be stated with certainty. When probing healthy skin with the antibody that
detects full-length galectin-3, intense staining was seen in the epithelium, the initial
point of attack for the bacteria. Galectin-3 was also present at the lesion site, both
around the infecting S. aureus bacteria and in the surrounding tissue lining the necrotic
area, meaning that galectin-3 is available for interaction with secreted bacterial prod-
ucts during all phases of infection. To determine the presence of processed galectin-3
(CRD), a CRD-recognizing antibody was used, detecting both full-length galectin-3 and
processed CRD. This staining was largely similar to that of galectin-3 only (by the N
terminus-directed antibody M3/38). Since the antibodies cannot be compared with
regard to staining intensity, the conclusion that all staining is due to galectin-3 should
not be drawn, but rather, it should be concluded that all processed galectin-3 (CRD), if
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present in the tissue, colocalizes with the full-length galectin-3. The relative levels of
full-length galectin-3 and CRD, however, cannot be determined.

In conclusion, our data imply that galectin-3 processing is an active feature of S.
aureus virulence. The S. aureus protease SspB can cleave the immunomodulatory
protein galectin-3, thereby not only causing inactivation of galectin-3-dependent bio-
logical functions but also resulting in the appearance of a novel protein, the CRD, which
so far has no determined biological effects and is an exciting subject for future studies.

MATERIALS AND METHODS

Chemicals and reagents. Isolated proteases (SspA, SspB, ScpA, and Aur) and recombinant inhibitors
(SspC and ScpB) were from Preparitis (Krakow, Poland). Pefabloc SC was from Boehringer Mannheim
GMBH (Mannheim, Germany). Tumor necrosis factor alpha (TNF-a), EDTA, sodium dodecyl sulfate (SDS),
glycerol, and isoluminol were from Sigma-Aldrich (St. Louis, MO, USA). Bromophenol blue was from
LKB-Produkter AB (Stockholm, Sweden). Formaldehyde, paraffin, eosin, and hematoxylin were from
Histolab Products AB (Gothenburg, Sweden), and H,O, from Acros Organics (Geel, Belgium). Bovine
serum albumin (BSA) was from Roche Diagnostic (Mannheim, Germany), Ficoll-Paque was from Fisher
Scientific GTF AB (Gothenburg, Sweden), and dextran from Pharmacosmos (Holbaek, Denmark). Affinity-
purified polyclonal chicken anti-CRD antibody was produced by Capra Science (Angelholm, Sweden); the
antibody was produced in chickens because of the low immunogenicity between mammal CRDs (10).
Horseradish peroxidase (HRP)-conjugated donkey anti-chicken antibody was from Abcam (Cambridge,
United Kingdom), while HRP-conjugated rabbit anti-rat antibody was from Dako (Stockholm, Sweden).
Mini-Protean TGX polyacrylamide precast gels and the Clarity Western ECL kit were from Bio-Rad
Laboratories (Sundbyberg, Sweden).

Bacterial strains and growth conditions. The S. aureus laboratory strains that were used in this
study were strain 8325-4 and AscpA, AsspA, AsspB, and Aaur mutants thereof (Table 2) (4). Two clinical
isolates each of S. saprophyticus and S. epidermidis were kindly provided by the Department of Clinical
Bacteriology, Sahlgrenska University Hospital, Gothenburg, Sweden. Ten clinical isolates each of S. aureus
from invasive infections and superficial skin infections were a kind gift from Gunnar Jacobsson (32, 55),
Department of Infectious Diseases, Skaraborg Hospital, Skovde, Sweden. All strains were kept in 15%
glycerol at —80°C for long-term storage.

Bacteria grown overnight in 1.5 ml tryptic soy broth (TSB) were diluted 1:1,000 in 15 ml fresh TSB and
incubated overnight. To obtain bacterium-free supernatants, the cultures were centrifuged at 4,000 X g
for 10 min at 4°C and supernatants were filtered through 0.2-um double sterile filters (Acrodisc syringe
filter; VWR, Sweden), aliquoted, and stored at —80°C.

To prepare bacteria for the murine skin infection model, S. aureus 8325-4 and 8325-4 AsspB overnight
cultures were diluted 1:100 in fresh TSB and incubated for another 16 h. The bacteria were harvested by
centrifugation, resuspended in phosphate-buffered saline (PBS; pH 7.2) with 5% BSA and 10% dimethyl
sulfoxide (DMSO), and stored at —80°C. The concentration of bacteria was determined by viable counts.

Production of recombinant galectin-3 and CRD. Recombinant galectin-3 and CRD were produced
in Escherichia coli and purified as previously described (22, 26).

Isolation of neutrophils. Neutrophils from healthy blood donors were separated from buffy coats,
obtained from the Sahlgrenska University Hospital Blood Centre, Gothenburg, as described by Bgyum et
al. (56), and diluted to a concentration of 1 X 107 cells/ml in Krebs-Ringer phosphate buffer (KRG; pH 7.3)
with 1 mM Ca2*.

Neutrophil production of ROS. Neutrophil NADPH oxidase-derived reactive oxygen species (ROS)
were measured using an isoluminol-amplified chemiluminescence system as previously described (57).
Neutrophils (5 X 106 cells/ml) primed with TNF-a (10 ng/ml at 37°C for 20 min) in KRG with 1 mM Ca2*
were stimulated with galectin-3, and ROS release was recorded over time; the results are given in
arbitrary units (AU).

Proteolytic digestion of galectin-3. Galectin-3 was incubated for different times with various
dilutions of isolated S. aureus proteases (SspA, SspB, ScpA, and Aur) or culture supernatants, as stated in
each figure legend. Where indicated, culture supernatants were premixed with protease inhibitors
(Pefabloc, SspC, ScpB, or EDTA) (5, 58) prior to the addition of galectin-3. For experiments where the
readout was activation of neutrophils, the lectin was incubated for a longer time (48 h) with diluted
(0.25%) supernatant in order to avoid cytotoxic effects of undiluted supernatants (data not shown).

SDS-PAGE and Western blotting. Galectin-3 and fragments thereof were analyzed by SDS-PAGE
and immunoblotting, using a chicken anti-human polyclonal CRD antibody (2.2 ug/ml) and a donkey
anti-chicken 1gG HRP-labeled secondary antibody (described in detail in the supplemental material).

In vivo skin abscess model. Galectin-3 knockout mice on the 129/Sv background (59) were
backcrossed for four generations with C57BL/6 mice to generate 97.75% C57BL/6 mice (60). Wild-type
(Gal-3*/*) and galectin-3 deficient (Gal-3/~) mice were bred as heterozygotes, controlled by continuous
genotyping (60). To obtain animals for the present study, homozygote animals were bred for three
generations. The animals were maintained in the animal facility at the Department of Rheumatology and
Inflammation Research, University of Gothenburg. The study was approved by the Gothenburg Ethical
Committee for Animal Research.

A skin infection model modified from previous studies (32, 33) was performed in Gal-3*/* and
Gal-37/~ mice in parallel, using S. aureus strains 8325-4 and 8325-4 AsspB from the premade batches.

July 2017 Volume 85 Issue 7 e00177-17

Infection and Immunity

iai.asm.org 10


http://iai.asm.org

Galectin-3 Cleavage by S. aureus

Infection and Immunity

Mice at the age of 9 to 15 weeks and of both genders were used for experiments. Age and sex were
matched between wild-type and knockout animals.

The bacteria were washed in PBS, and the concentration was adjusted to 2 X 108 CFU/ml. The backs

and both flanks of the mice were shaved, and 50-ul amounts of strains 8325-4 and 8325-4 AsspB were
injected subcutaneously on either flank on the same mouse (see Fig. S2A in the supplemental material).
Two days after injection, the mice were weighed, and the areas of the lesions formed were measured.
In the first experiment, nearly half of the mice from each group were sacrificed at day 3. Skin biopsy
specimens of the infected areas were collected and homogenized, and the bacterial loads were assessed
by viable count. The remaining mice were studied for another 7 days to record the recovery after
infection. No differences in lesion sizes or weight changes were detected between the two mouse strains
during healing up until day 10 (data not shown). In the second experiment, all mice were sacrificed at
day 3. Biopsy specimens from two Gal-3*/* mice were used for histological analysis (described in detail
in the supplemental material), while the remaining biopsy specimens were analyzed for bacterial loads.

Statistical analysis. Differences in lesion sizes and bacterial loads were analyzed using the Wilcoxon

matched-pairs signed-rank test for comparisons of paired samples and the Mann-Whitney test for
comparisons between groups. Statistical analyses were performed in Prism software (version 6.05;
GraphPad, La Jolla, CA, USA).

SUPPLEMENTAL MATERIAL

.00177-17.

SUPPLEMENTAL FILE 1, PDF file, 1.0 MB.
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