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ABSTRACT Adaptive laboratory evolution (ALE) experiments are often designed to
maintain a static culturing environment to minimize confounding variables that
could influence the adaptive process, but dynamic nutrient conditions occur fre-
quently in natural and bioprocessing settings. To study the nature of carbon sub-
strate fitness tradeoffs, we evolved batch cultures of Escherichia coli via serial propa-
gation into tubes alternating between glucose and either xylose, glycerol, or acetate.
Genome sequencing of evolved cultures revealed several genetic changes preferen-
tially selected for under dynamic conditions and different adaptation strategies de-
pending on the substrates being switched between; in some environments, a persis-
tent “generalist” strain developed, while in another, two “specialist” subpopulations
arose that alternated dominance. Diauxic lag phenotype varied across the generalists
and specialists, in one case being completely abolished, while gene expression data
distinguished the transcriptional strategies implemented by strains in pursuit of
growth optimality. Genome-scale metabolic modeling techniques were then used to
help explain the inherent substrate differences giving rise to the observed distinct
adaptive strategies. This study gives insight into the population dynamics of adapta-
tion in an alternating environment and into the underlying metabolic and genetic
mechanisms. Furthermore, ALE-generated optimized strains have phenotypes with
potential industrial bioprocessing applications.

IMPORTANCE Evolution and natural selection inexorably lead to an organism’s im-
proved fitness in a given environment, whether in a laboratory or natural setting.
However, despite the frequent natural occurrence of complex and dynamic growth
environments, laboratory evolution experiments typically maintain simple, static cul-
turing environments so as to reduce selection pressure complexity. In this study, we
investigated the adaptive strategies underlying evolution to fluctuating environ-
ments by evolving Escherichia coli to conditions of frequently switching growth sub-
strate. Characterization of evolved strains via a number of different data types re-
vealed the various genetic and phenotypic changes implemented in pursuit of
growth optimality and how these differed across the different growth substrates and
switching protocols. This work not only helps to establish general principles of adap-
tation to complex environments but also suggests strategies for experimental design
to achieve desired evolutionary outcomes.

KEYWORDS adaptive laboratory evolution, Escherichia coli, adaptive mutations,
phenotypic variation

In heterotrophs such as Escherichia coli, catabolism of carbon substrates is the driving
force behind the energy generation and chemical synthesis necessary for homeosta-

sis and anabolism (1). Although glucose is the most readily metabolized carbohydrate
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(2), the frequent environmental availability of other carbon compounds long ago led
most organisms to evolve the ability to subsist on a range of nutritional sources. These
alternative compounds can vary greatly in energy content, the point at which they
enter into the metabolic network, and their impact on cellular phenotype (3). The ability
of alternative compounds to sustain growth and proliferation in the absence of glucose
makes it almost essential for a robust bacterium to be able to switch between carbon
growth substrates as environmental circumstances dictate. For example, an enteric E.
coli bacterium depends on its ability to switch to metabolizing different carbohy-
drates as it passes through the digestive tract (4). Such switching between carbon
sources has relevance to more than just natural environments; the use of geneti-
cally engineered microbes to produce commercially valuable chemicals frequently
relies on batch growth, which can include a stage at which the cells run out of the
preferred nutrient (e.g., glucose) and have to switch to a less-than-optimal alter-
native (e.g., xylose) (5).

Understanding diauxic shifts has been a long-standing effort of the scientific com-
munity (6). Diauxic lag has traditionally been understood to result from catabolite
repression, wherein the depletion of the preferred substrate relieves the repression on
genes for metabolizing the remaining substrate(s). However, recent work has shown
that cells in a multisubstrate environment can display divergent bet-hedging behaviors,
which can result in subpopulations that grow differently on the substrates (7). More-
over, slightly different microbial strains can have notably different lag-phase durations
and behaviors, which can be targets for natural selection in a competitive environment
(8). Adaptive laboratory evolution, or ALE, serves as a technique that harnesses natural
selection to arrive at genetic and phenotypic outcomes that are difficult to predict a
priori (9). ALE work so far has examined E. coli adaptation to a number of environments
characterized by temporal heterogeneity; fluctuations in temperature (10, 11), pH (12),
UV irradiation (13), and random stressors (14) have all been studied. It is well estab-
lished that homogenous environments tend to develop narrow niche width “special-
ists” while heterogeneous environments usually lead to broader niche width “gener-
alists” (15), to the extent that the failure of a generalist to develop in certain fluctuating
environments is seen as surprising (16). However, evolution of E. coli on a glucose-
acetate mixture (in which the glucose is first depleted before a diauxic shift to acetate
occurs, creating temporal variability) has been shown to lead repeatedly to coexisting
specialists rather than generalists (17), due to competition for limited resources and the
fitness trade-offs of glucose versus acetate specialization (18). While several cases of E.
coli evolution to alternating growth substrates have been studied, few substrates have
been examined (19) and analyses have been limited to fitness assays (20) or in-depth
study of a single operon (21).

In this study, we sought to investigate carbon source switching with different
compounds of industrial relevance, and to examine evolutionary outcomes via a
number of different data types. ALE was used to adapt E. coli cultures for �1,000
generations to a dynamic, nutrient-excess environment in which the available carbon
substrate alternated with every tube of growth and cultures were serially propagated
while still growing exponentially. Although such resource-abundant laboratory envi-
ronments have few natural counterparts, the conditions of excess help to ensure that
selection occurs for growth rate, without the complicating factors of resource compe-
tition or changing growth phases that introduce new stressors (22). Populations
evolved to these switching environments had substrate-specific fitnesses comparable
to those reached by single-substrate-evolved control cultures. The adaptive mechanism
used to achieve this fitness improvement varied based on substrate, and evolved
strains likewise exhibited phenotypic, genetic, and transcriptomic dynamics that varied
across compounds. Genome-scale metabolic models were used to help interpret
substrate-specific results and to explain the propensity for specialist or generalist
development, given different switching setups.

Sandberg et al. Applied and Environmental Microbiology

July 2017 Volume 83 Issue 13 e00410-17 aem.asm.org 2

http://aem.asm.org


RESULTS
Evolved population fitness. Adaptive laboratory evolution (ALE) was employed to

adapt Escherichia coli to an environment with constantly alternating carbon growth
substrates. Wild-type E. coli K-12 MG1655 was used, and substrate switching was
examined on four different carbon compounds, glucose, xylose, glycerol, and acetate
(ac) (E. coli wild-type growth rates at 37°C were 0.73, 0.55, 0.45, and 0.27 h�1,
respectively). ALE replicates were each assigned a substrate in addition to glucose,
and at the end of each growth tube a culture was passed to a fresh tube of M9
minimal medium containing the next carbon source, such that substrate procession
was glucose ¡ [substrate] ¡ glucose ¡ [substrate] ¡, etc. (Fig. 1A). Three tubes
switched between glucose and xylose (1,180 generations of growth; 164 tubes of
growth; 3.1 � 1012 cumulative cell divisions), three between glucose and glycerol
(1,170 generations; 162 tubes; 3.0 � 1012 cumulative cell divisions [CCD]), and three
between glucose and acetate (650 generations; 91 tubes; 1.8 � 1012 CCD). Because
each tube underwent serial passage at the same optical density (at a point at which
nutrients were still in excess and cultures were still growing exponentially), the gen-
erations, tubes, and CCD of growth upon each individual substrate were half that of the
total. As controls, cultures were also evolved to each of the four different compounds
on their own with no switching.

Comparison of evolutionary trajectories between the “dynamic” (switching) and
“static” (nonswitching) populations gives the first indication of consequences of the
substrate switching. As a general trend across all compounds, replicates undergoing
switching adapted at a lower rate, but were still able to reach final fitness values
comparable to those of control populations exposed solely to a single compound
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FIG 1 Experimental setup and evolutionary trajectories. (A) “Static ALE” exposes cultures to a constant
environment, while a “dynamic ALE” introduces temporal variability in carbon growth substrate. (B)
Example plot of fitness trajectories (i.e., growth rates) for statically evolved (pink/purple) and switching
(dark green/light green) cultures on glucose and xylose over the course of the ALE experiment. Similar
fitnesses are reached, although under switching conditions cultures take longer to get there. CCD;
cumulative cell divisions; Glc, glucose; Xyl, xylose; Gly, glycerol; Ac, acetate.
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(Fig. 1B). Although establishing a statistically significant difference between the final
growth rates was made more difficult by the small number of samples, average final
population growth rates on a compound failed to differentiate dynamic and static ALE
setups (one-way ANOVA, P � 0.05). However, cultures under static conditions reached
their half-maximal final growth rates, on average, 43% faster than switching cultures
(see File S1 in the supplemental material). Thus, it seems that adaptation proceeds at
a higher rate when the selection pressure is more sustained (in this case, greater “time
under selection” leads to a greater selective force), but fitness plateaus toward a similar
value since the same objective is still being optimized for (namely, exponential-phase
growth rate on a compound).

Genetic analysis. Population sequencing was performed on the cultures evolved
under dynamic conditions to examine whether specialists (coexisting subpopulations
optimized for the different substrates) or generalists (one main dominant strain capable
of good growth on both substrates) had developed. The endpoint populations for each
dynamic ALE replicate were grown up on each of the different carbon sources they had
been switching between and population sequencing results were compared (see
Materials and Methods). Consider, as an example, a population switching between
glucose and acetate. If specialist subpopulations are present, then growing the culture
on glucose will preferentially enrich for the glucose specialist, and likewise for the
acetate specialist with acetate growth. Population sequencing would then show a
significant change in mutational frequency dependent upon which growth enrichment
was performed. If there were no specialist subpopulations, but instead one dominant
generalist, then the mutational frequencies would be roughly identical regardless of
the substrate used for growth enrichment. Applying this sequencing analysis to all
evolved replicates revealed the propensities of various compounds to elicit subpopu-
lation development (see File S2 in the supplemental material). All three glucose/
glycerol replicates were isogenic, all three glucose/acetate replicates were subpopula-
tions, and two of three glucose/xylose replicates were clearly isogenic, while the third
replicate developed hypermutability, which complicated the genetic analysis. As ex-
amples for each case, the glucose/acetate switcher Glc/Ac 3 developed two distinct
specialist populations (a sapA rpoC mutant for glucose growth and an nrd ptsP rpoC
mutant for acetate growth, in addition to two mutations which swept both subpopu-
lations), while the glucose/glycerol switcher Glc/Gly 2 was a generalist, having the same
population composition regardless of growth substrate (Table 1).

Comparing mutational frequencies across the switching-adapted cultures and
single-substrate-evolved controls revealed key genes under selective pressure under
these conditions (Table 2). Many of the repeatedly mutated genes are seen frequently

TABLE 1 Substrate-induced mutational frequency differences or lack thereof

Mutation Gene

Population frequency (%) when
grown on:

Glucose Acetate Glycerol

Apparent specialists (Glc/Ac 3)
L14R (CTT¡CGT) sapA 85 0
Δ88 bp nrdA-nrdB 0 68
Δ1 bp (708/2,247 nta) ptsP 0 100
R98H (CGC¡CAC) rpoC 95 11
K398 M (AAG¡ATG) rpoC 7 79
IS5 (141–144/144 nt) yobF 100 100
Δ1 bp intergenic (�33/�33) pyrE-rph 100 100

Apparent generalists (Glc/Gly 2)
IS5 (258–261/491 nt) ybbD 35 42
Δ82 bp pyrE-rph 84 90
M272I (ATG¡ATT) glpK 100 100
E672K (GAA¡AAA) rpoB 100 100

ant, nucleotides.

Sandberg et al. Applied and Environmental Microbiology

July 2017 Volume 83 Issue 13 e00410-17 aem.asm.org 4

http://aem.asm.org


in other evolution experiments, with the fitness benefit already either known or
inferred—pyrE-rph mutations for improved minimal medium growth (23), pykF and
hns-tdk mutations for glucose growth (24, 25), glpK mutations for glycerol growth (26),
and rpoB and rpoC mutations to serve as large-scale transcriptional rewirings (27, 28).
In addition to these oft seen mutational targets, several genes stood out as indicators
of differing adaptive strategies between dynamic and static conditions. Most striking
are mutations in the cspC-yobF region, in which a number of distinct mutations were
seen across five out of six glucose/xylose and glucose/acetate populations (with the
sixth having a mutated cspE rather than cspC), but only in a single acetate-evolved
replicate. These dynamically favored mutations may be altering the role of CspC as a
transcript stabilizer in stressful environments, a functionality more relevant as a target
for adaptation when the carbon source is frequently changing (29). Similarly, mutations
in ptsP (3 unique dynamic mutations, with 2 in one lineage), relA (3 unique dynamic
mutations), and sapB (2 unique dynamic mutations) appeared to be dynamically
favored, while mutations in rho (4 unique static mutations) and xylR (2 unique static
mutations) appeared statically favored. Although, as a whole, these data indicate
differing adaptive strategies for dynamic and static growth environments, the explicit
biochemical mechanisms through which such mutations enable fitness improvements
remain unclear without detailed follow-up analyses (26, 28).

Physiological analysis of evolved strains. Representative clones were isolated
from evolved cultures for purposes of physiological characterization. For cultures that
evolved substrate specialists, this involved isolating a clone for each of the observed
subpopulations. Clones were sequenced to ensure that they were representative of the
evolved cultures, containing the same key mutations revealed from population se-
quencing (see File S2). The substrate-switching phenotypes of the clones were char-
acterized via a series of diauxic growth curves. Clones were grown in the presence of
5 mM glucose and 5 mM of an additional carbon substrate, depending on the
environment the clone had been exposed to over the course of the evolution. The 5
mM concentrations were chosen such that sufficiently dense final optical densities
(ODs) could be obtained, but not without utilizing both of the available carbon
compounds.

Unsurprisingly, the different carbon substrates led to different growth phenotypes
for the various evolved strains (Fig. 2). The wild type achieved the highest density on

TABLE 2 Genetic regions mutated repeatedly during selection

Gene
No. of unique
mutations

Dynamic occurrences
(fraction of replicates)

Static occurrences
(fraction of replicates)

rpoC 8 Glc/Xyl (3/3) Glc (1/3)
Glc/Gly (1/3) Xyl (2/4)
Glc/Ac (3/3) Gly (2/2)

cspC-yobF 6 Glc/Xyl (2/3) Ac (1/3)
Glc/Ac (3/3)

rho 5 Glc/Ac (1/3) Xyl (2/4)
Ac (2/3)

glpK 5 Glc/Gly (3/3) Gly (2/2)
Glc/Xyl (1/3)

ptsP 4 Glc/Ac (2/3) Ac (1/3)
rpoB 4 Glc/Gly (2/3) Glc (2/3)

Glc/Ac (1/3)
pyrE-rph 4 Glc/Gly (2/3) Glc (2/3)

Glc/Ac (3/3) Xyl (4/4)
Ac (1/3)

relA 3 Glc/Xyl (3/3) NAa

pykF 3 Glc/Xyl (1/3) NA
Glc/Ac (2/3)

xylR 2 NA Xyl (2/4)
sapB 2 Glc/Xyl (1/3) NA

Glc/Ac (1/3)
hns-tdk 2 NA Glc (2/3)
aNA, not applicable.
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glucose/xylose, an intermediate density on glucose/glycerol, and the lowest density on
glucose/acetate. While xylose and glycerol both caused diauxic lag phases, there was
no such lag when the wild type was grown on glc/ac, likely due to the frequent
presence of acetate as an overflow metabolite in regular batch culturing (30) and
inability to trigger anabolism following glucose exhaustion (31). Nevertheless, overall
growth rate on glc/ac improved in all evolved strains, with the static acetate-evolved
strain growing most robustly. Similarly, the static xylose-evolved strain outperformed
the other strains under conditions of glc/xyl diauxie. The dynamically evolved glc/xyl
generalist’s increased lag phase duration appears counterintuitive, but a simultaneous
multisubstrate environment is not something the cells were ever exposed to during the
ALE; in this case, intertube substrate switching adaptation did not extend to intratube
switching. In contrast, the clone that evolved to an environment switching between
glucose and glycerol was able to completely abolish the lag phase that typically occurs
midway through growth on both substrates. Moreover, this lag phase was not abol-
ished in either of the statically evolved glucose or glycerol controls, leading to much
different performance in the diauxic growth test. Overall, the variable diauxic growth
phenotypes of the evolved strains across substrate conditions highlight the complexity
of adaptation to dynamic environments.

Transcriptomic analysis of evolved strains. Transcriptome sequencing (RNA-seq)
was performed on both statically and dynamically evolved clones to probe the tran-
scriptional states of the strains under relevant substrate growth conditions. For a given
growth environment, principal-component analysis (PCA) was expected to cluster
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statically evolved strains together in a region corresponding to the “optimal” expres-
sion state for fast growth on that substrate. Dynamically evolved strains, however,
would be expected to cluster apart from the static controls, given that their expression
state evolved in response to multisubstrate exposure. This transcriptomic “distance”
serves as an indicator of dissimilarity that should mirror substrate differences; for
example, if [substrate 1] is more similar to glucose than [substrate 2], then a strain
evolved dynamically to glucose/[substrate 1] should fall closer to glucose-evolved
controls than a glucose/[substrate 2] strain. Indeed, PCA reinforced the conclusion
drawn from population sequencing that growth of evolved strains on glycerol and
xylose creates cellular states more similar to glucose than acetate; that is, glc/xyl and
glc/gly generalists clustered closer to glucose optimality than did the glc/ac specialist
strains (Fig. 3A). Similar logic implies that the dynamically evolved strains have moved
closer to transcript optimality, represented by the statically evolved controls, than the
wild-type starting strain, which is what is seen for glycerol (Mahalanobis distance to
static strains � 4.89 for wild type, 2.63 for dynamic) and xylose (1.88 for wild type, 1.35
for dynamic) (Fig. 3B and C). However, in the case of glc/ac switching, the specialist
strains appear to have adopted a different transcriptional strategy than acetate-evolved
controls, falling further away from the optimum expression state of the static strains
than does the wild type (Fig. 3D). This specialist discrepancy may result from the nature
of the strains as coexisting subpopulations and the resultant transcriptional adjust-
ments necessary for alternating dominance between tubes during the ALE experiment.
Although it is possible that the two specialists interact and exhibit different phenotypes
when cultured together versus independently, this appears unlikely given the precip-
itous drop in frequency of acetate-characteristic mutations after glucose enrichment,
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and likewise for glucose-characteristic mutations after acetate enrichment (Table 1; see
also File S2).

Hierarchical clustering of expression data for the statically evolved strains further
highlights the differing transcriptional strategies adopted in pursuit of substrate opti-
mality (Fig. 4A). Glucose and glycerol strains clustered most closely together, followed
by xylose, with acetate adaptation resulting in the most distinct pattern of relative gene
expression levels. For dynamically evolved strains, these substrate-optimal transcrip-
tional patterns cannot be adopted without leaving the cells in a state where wide-
spread expression changes must be made between every growth tube, an adaptation
strategy unlikely to prove optimal, given the time and energy it takes to alter expres-
sion levels (32). It would be expected that for the rapidly switching ALE environment
utilized herein, the transcriptome will adapt, such that shifts in expression level needed

FIG 4 Global transcriptome changes in statically and dynamically evolved strains. (A) Hierarchical clustering of
strains statically evolved to each of the four studied substrates. Strains optimized for glucose and glycerol growth
have the most similarity in expression state, followed by xylose and then acetate. (B and C) Scatter plots of
expression data for the wild-type ancestor and dynamically evolved strains when grown on glucose versus glycerol
(B) or glucose versus acetate (C). Points falling on the diagonal line represent genes whose expression does not
vary, while those falling outside the dashed lines are genes with more than 2-fold changes in expression across the
two substrates. (B) The number and magnitude of transcriptional shifts between glucose and glycerol growth
conditions significantly decreased in the dynamically evolved generalist strain. (C) The number and magnitude of
transcriptional shifts between glucose and acetate growth conditions did not significantly change in the dynam-
ically evolved specialist strains.
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between the two relevant substrates become minimized. To test this, RNA-seq data for
individual strains (wild type or evolved) were compared to determine how expression
levels changed when a strain was grown on glucose versus when it was grown on
[alternative substrate] (Fig. 4B and C). For glucose/glycerol switching, the wild-type
starting strain had 1,689 genes with greater than 2-fold changes in gene expression
across the two substrates and an average gene fold change magnitude of 6.9, while the
evolved glucose/glycerol generalist significantly decreased (paired t test, P � 0.018) to
665 genes and a 2.3-fold average expression change, respectively (Fig. 4B). Similarly, the
wild type on glucose/xylose had 1,676 genes with a |fold change| �2 and an average
fold change of 4.9, which significantly decreased (P � 0.034) in the glucose/xylose
generalist to 842 genes and a 2.9-fold average change. This stands in stark contrast with
the phenotype of the dynamically evolved glucose/acetate specialist strains, which did
not approach any closer to transcriptional parity across the substrates than the wild-
type strain (Fig. 4C). Unlike the generalists, the coexisting glucose and acetate specialist
subpopulations obviated the need for a single genotype capable of reconciling the
dissimilar optimal expression states between the two substrates. Thus, it becomes clear
that global transcriptional analyses across substrates can be used to interpret the
differential development of specialists or generalists under various substrate switching
regimes.

Metabolic modeling. To better understand the mechanisms underlying growth-
substrate-driven adaptive responses, genome-scale metabolic modeling techniques
were applied. By modeling the metabolic reaction network of an organism with a
stoichiometric matrix (33) and applying relevant physiological constraints, predictions
can be made of optimal growth behavior and metabolic flux states in a particular
environment (34). Here, the relevant environments are identical except for the different
carbon growth substrates.

The experimental analyses performed thus far indicate that ALE cultures adapted
differently to different switching schemes, becoming either generalists or specialists in
response to different substrate combinations. Robust growth under glucose/xylose and
glucose/glycerol switching was achieved by versatile generalist strains, whereas glu-
cose/acetate switching failed to select for such strains, instead opting for coexisting
specialist subpopulations as the strategy for growth improvement. One potential
explanation for this discrepancy is that glucose and acetate are too metabolically
dissimilar (requiring conflicting or disparate pathways for metabolism) for a single
strain to easily evolve for robust growth on both, while xylose and glycerol are both
similar enough to glucose to avoid this. To test this, optimal growth of the wild-type
strain was modeled on the four different relevant substrates individually, and the flux
states necessary for optimal growth were inferred from Monte Carlo sampling of a
genome-scale M-Model (35). This sampling yielded flux distributions for each chemical
reaction in the model; the three nonstandard substrates were pairwise compared with
glucose (Fig. 5). As an example case, consider how metabolic fluxes resulting from
growth on xylose compare with glucose-growth fluxes (Fig. 5A). Glucose import and
conversion reactions have lower flux, while xylose import/conversion reactions have
higher flux, and these differences impact the metabolic flux network as a whole, e.g.,
via increased nonoxidative pentose phosphate pathway (PPP) activity from the con-
version of xylose to xylulose 5-phosphate. Expression profiling could be used to
perform such analyses or support modeling-derived results (e.g., RNA-seq data show
that the glucose phosphotransferase system [PTS] permease ptsG decreased 2.4-fold in
expression upon xylose growth, while the xylulokinase xylB increased expression
120-fold), but scalar gene expression values do not give insight into reaction direction-
ality, which can cause important network features to be overlooked. Expression of pgi,
for example, changed by less than 2% in glucose versus xylose growth, but modeling
showed that, although flux magnitude did not appreciably change, the direction did;
increased nonoxidative PPP activity from xylose growth leads to increased fructose
6-phosphate levels, which drive flux “backward” through pgi to glucose 6-phosphate in
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the direction of gluconeogenesis. A 2-sample Kolmogorov-Smirnov test was applied to
the modeling-determined fluxes to quantify a metabolic distance between glucose and
each of the substrates, and this scaled as expected— glycerol and xylose are more
similar to glucose than acetate is (Fig. 5B).

M-Models, although powerful tools for predicting and analyzing physiology, do not
quantitatively predict gene expression, which can in certain circumstances lead to
inaccurate predictions (36). Monte Carlo sampling is one way to skirt this issue, but
genome-scale models of metabolism that factor in gene expression and its concomi-
tant energy costs, dubbed ME-Models, have recently been developed (37). This addi-
tional model content allows for quantitative predictions of the optimal gene expression
and flux state in a given environment without the need for random sampling. Taking
the Euclidean distance between the expression state on glucose and on the other
substrates is another way to quantify the extent of dissimilarity, and the results are in
excellent agreement with M-Model sampling (Fig. 5C). Moreover, ME-Models do not
require physiological data on substrate uptake rates, so many compounds can be
computationally tested. Dynamic ALEs on compounds with a lower glucose distance
than glycerol (from these simulations, mono- and disaccharides) would likely lead to
generalists, and compounds more distant than acetate (other carboxylic acids) would
likely lead to specialists, but it is as of yet unclear at what intermediate substrate
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distance a dynamic evolution would begin to favor specialists over generalists. This
study thus helps to establish the explanatory and predictive power of metabolic
modeling for understanding why and under what circumstances generalists or special-
ists arise, but future experimental work will be needed to determine the extent and
limitations of this efficacy.

DISCUSSION

In this study, E. coli cultures were evolved for upwards of 1,000 generations under
environmental conditions in which the available carbon source alternated repeatedly
between glucose and either glycerol, xylose, or acetate. These dynamically evolved
cultures reached fitnesses comparable to those of statically evolved controls grown
only on a single compound. Genetic analysis revealed that glucose/glycerol and
glucose/xylose switchers adopted a generalist strategy, while glucose/acetate switch-
ing resulted in the development of specialist subpopulations for each of the two carbon
sources. Mutational comparison between static and dynamic strains highlighted genes
important for robust growth on the various substrates, as well as ones targeted
differentially, depending on the static or dynamic nature of the evolutionary environ-
ment. The diauxic phenotype of dynamically evolved strains varied across the sub-
strates, but in one case the lag phase was completely abolished, whereas in statically
evolved controls it was not. Transcriptional analysis further highlighted the divergence
in substrate-optimal expression states and resultant evolved expression shifts, and
genome-scale metabolic modeling provided insight into the metabolic basis underly-
ing substrate differences and generalist versus specialist development.

Several important conclusions can be drawn from this study. Although the genetic
basis for fitness improvement between static and dynamic conditions was mostly
similar, several genetic regions stood out as being differentially targeted based on the
temporal nature of the evolution environment. This is most noticeable in the cspC-yobF
region, which acquired 5 unique mutations across the 6 total replicates of glc/xyl and
glc/ac strains but only 1 mutation in a single acetate static strain. That such mutations
occur disproportionately in dynamic conditions, and are not constrained to a single
substrate pair, implies that this region influences substrate switching in general,
perhaps through the interaction of CspC interactions with RNA polymerase complexes
in response to stress (29). Further analysis could establish the underlying mechanism
for this influence and find ways to leverage this knowledge for genetic engineering to
produce strains with robust growth under dynamic conditions. However, simply look-
ing at genes that mutate repeatedly does not provide the whole picture. Another
striking finding from this study is the evolved diauxic behavior of a glucose/glycerol
generalist, which eliminated its lag phase where glucose and glycerol statically evolved
strains did not. In both the generalist and the glycerol-evolved strain the key mutations
(Table 1) were in glpK and rpoC, genes known to be targeted under glycerol evolution
(26). Despite this genetic similarity, the different evolutionary histories selected for
different mutations within the same genes, with a resultant phenotypic difference that
would not be deduced from genotype alone. Additionally, diauxic lag phase elimina-
tion or duration reduction can significantly increase bioprocess fermentation efficiency
(38). The successful improvement in diauxic phenotype from both dynamic (e.g., glc/gly
generalist, Fig. 2B) and static (e.g., xylose-evolved strain, Fig. 2C) ALE environments
highlights the importance of utilizing both methods. ALE studies such as this one can
thus help to expand the genetic knowledge base and indicate promising directions for
genetic engineering of a desired phenotype, as well as naturally generating strains with
industrially valuable phenotypes.

In addition to phenotypic and genetic analysis, transcriptomics and metabolic
modeling helped to explain the observed evolutionary outcomes. Hierarchical cluster-
ing of static strain transcriptomes established the ordinality of substrate similarity
(glucose ¡ glycerol ¡ xylose ¡ acetate) that had been hinted at by the genetic and
phenotypic ALE results. Generalist strains were found to shift their expression from the
wild-type starting state closer to, but still distinct from, statically evolved strains, while
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specialists adopted a different transcriptional strategy that moved them further from
static strains than from the wild type. Where the generalists evolved to minimize the
number and magnitude of gene expression shifts across two substrates, the specialists
were not subject to this adaptive constraint, given their tactic of coexistence and niche
partitioning. Genome-scale modeling was also performed to examine the metabolic
differences between the relevant substrates, and perfectly recapitulated the experi-
mentally determined substrate similarity hierarchy. These results indicate promising
avenues of investigation for future studies. First, evolving to static conditions can yield
insight into the results of dynamic evolutions. The amount to which expression states
differed among statically evolved strains explained the development of subpopulations
under dynamic environments, and as ALE studies increase in number there are more
and more available data researchers can reference when designing studies of their own
(24, 25). However, when such data are lacking or it is prudent to avoid the time and
resource costs of performing a static ALE, genome-scale metabolic modeling serves as
a way to make these predictions without requiring starting data. The propensity for
specialist subpopulation development can be deduced from the modeling-quantified
substrate distances, and ALE studies can be designed accordingly, depending on the
desired outcome. If a single dominant genotype were desired, such as when optimizing
a genetically engineered strain (39), an environment favoring generalist development
could be selected; if overall culture performance were instead the important factor,
then an environment favoring specialists would not need to be avoided, allowing
naturally evolved specialists to substitute for artificially engineered microbial consortia
that would have the same collective phenotype (40, 41).

Overall, the data presented herein provide insight into adaptive strategies and
evolutionary outcomes in dynamic environments, and demonstrate the efficacy of
various data types for analyzing or designing such studies. Dynamic environments
present a much more complicated selection pressure than static alternatives, with
increased environmental heterogeneity known to lead to greater population hetero-
geneity (20). As dynamic ALE studies increase in number (11, 14) it is essential that
appropriate experimental tools are in place to properly guide analyses and assess
outcomes. Moreover, the dynamically driven development of generalists or specialists
is of clinical importance in regard to antibiotic resistance and treatment regimes (42).
The genome-scale models used in this study to quantify metabolic variation due to
growth on different substrates can also model the network perturbations caused by
antibiotics targeting specific biochemical reactions (43). With modeling-driven predic-
tions and omics data follow-up characterizations after ALE experiments, strides can be
made in both basic evolutionary research and applied clinical and biotechnological
studies.

MATERIALS AND METHODS
Adaptive laboratory evolution and phenotypic profiling. Strains were evolved in an automated

system that tracked growth rates and propagated cultures in constant exponential growth phase, as
described previously (44). Starting with wild-type Escherichia coli K-12 MG1655 (ATCC 4706), cultures
were serially propagated (100 �l passage volume) in 15 ml (working volume) tubes of M9 minimal
medium kept at 37°C and well-mixed for full aeration. Cultures were propagated upon reaching an
optical density at 600 nm (OD600) of 0.3 (Tecan Sunrise plate reader; equivalent to an OD600 of �1 on a
typical instrument with 1 cm path length), a point at which nutrients were still in excess and exponential
growth was still occurring (confirmed with growth curves and high-pressure liquid chromatography
[HPLC] measurements). The M9 medium contained either 4 g/liter glucose, 4 g/liter xylose, 4 g/liter
acetate, or 0.2% (by volume) glycerol. Dynamic cultures were alternately passed between glucose
medium and one of the three alternative medium types, while static cultures were ever grown on only
a single type of medium. For dynamic cultures, average growth period in glucose tubes (time from
inoculation to passage) decreased from 8.2 to 5.3 h over the course of the ALE experiment, while average
xylose growth period decreased from 9.1 to 6.0 h, glycerol growth period decreased from 10.4 to 5.8 h,
and acetate growth period decreased from 22.5 to 12.9 h. Lag phases were not evident when passing
cultures between alternating substrates, likely because lag would occur immediately after passage and
before OD600 values were detectable. Diauxic growth tests were performed under identical conditions to
the ALE experiment, but M9 medium (5 mM glucose plus 5 mM xylose or acetate or glycerol) was used.

DNA and RNA sequencing. Genomic DNA, either clonal or population, was isolated using the
Macherey-Nagel NucleoSpin tissue kit, following the manufacturer’s protocol for use with bacterial cells.
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The quality of isolated genomic DNA was assessed using Nanodrop UV absorbance ratios. DNA was
quantified using the Qubit double-stranded DNA (dsDNA) high-sensitivity assay. Paired-end whole
genome DNA sequencing libraries were generated using Illumina’s Kappa kit and run on an Illumina
MiSeq platform with a PE600v3 kit. The generated DNA sequencing FASTQ files were processed with the
breseq computational pipeline (45) and aligned to the E. coli genome (NCBI accession no. NC_000913.3)
to identify mutations. For population sequencing, evolved endpoint populations were used to inoculate
a tube of medium with the desired carbon source and DNA was then harvested following growth
enrichment overnight. Mean read depth for each population was at least 110 times, and only mutations
with greater than 15% population frequency in at least one growth condition were examined. Mutations
differing by more than 1.5� in frequency across different carbon source growth enrichments were taken
as evidence of subpopulations (see File S2). DNA sequencing data from this study are available from the
Sequence Read Archive database (accession no. SRP103966).

RNA sequencing data were generated under conditions of aerobic, exponential-phase growth on M9
minimal medium plus the relevant carbon substrate at the concentrations used in the ALE experiment.
Cells were harvested using the Qiagen RNAprotect bacterial reagent according to the manufacturer’s
specifications. Prior to RNA extraction, pelleted cells were stored at �80°C, then thawed and incubated
with lysozyme, SuperaseIn, protease K, and 20% sodium dodecyl sulfate for 20 min at 37°C. Total RNA was
isolated and purified using a Qiagen RNeasy minikit column according to the manufacturer’s specifica-
tions. rRNA was removed using Epicentre’s Ribo-Zero rRNA-removal kit for Gram-negative bacteria. A
KAPA Stranded RNA-Seq kit was used to generate paired-end strand-specific RNA sequencing libraries,
which were then run on an Illumina HiSeq sequencer. RNA-seq reads were aligned to the E. coli genome
using Bowtie 2 (46), and values (fragments per kilobase per million [FPKM]) were calculated with cufflinks
(47). Each sample had at least 80� mean read depth coverage. Sample normalization was performed
with cuffnorm, and differential expression levels were quantified via cuffdiff (48). RNA-sequencing data
from this study are available from the Gene Expression Omnibus database (accession no. GSE97944).

In silico modeling. Monte Carlo sampling of M-Model flux distributions under different substrate
growth conditions was performed on the most current genome-scale model of E. coli metabolism,
iJO1366 (49), using the Matlab COBRA Toolbox (50), as described previously (35). Substrate uptake rates
for the different carbon compounds were set to wild-type values (see File S3 in the supplemental
material) and the allowable growth rate to within 10% of model-determined optimum, and Monte Carlo
sampling was performed with the sampleCbModel function using default parameters. A 2-sample
Kolmogorov-Smirnov test statistic was used to pairwise compare, for every reaction in the model, the
difference in flux distribution between xylose- or glycerol- or acetate-growth and glucose-growth. The
cumulative sum of test statistics for every reaction led to a quantitative value of metabolic distance from
glucose, and values were normalized such that the distance of acetate from glucose was 100. Flux
differences were visualized by mapping model outputs to a metabolic pathway map (Fig. 5A) via the
Escher tool (51).

A genome-scale model of E. coli metabolism and gene expression (ME-Model), iLE1678-ME (52), was
used to simulate growth on each of the four carbon substrates used in this study, as well as several other
common growth substrates. To model each condition, the uptake of the growth substrate was uncon-
strained and the uptakes of other carbon substrates were set to 0. The remaining default ME-Model
parameters are optimized to model the growth of a laboratory-evolved E. coli K-12 MG1655 strain, so
they remained set to their default values. The ME-Model was simulated by computing the maximum
feasible growth rate of the model under the imposed in silico conditions via a bisection procedure
(53) that uses a quadruple-precision version of the MINOS optimizer (54). A single ME-Model
simulation provides predictions of the transcriptome, proteome, and metabolic flux state required
for the cell to grow optimally. Using these values, the metabolic distance of a compound from
glucose was quantified by calculating the Euclidean distance between ME-Model-predicted trans-
lation reaction fluxes (proteome), and values were normalized such that the distance of acetate was
100.

Accession number(s). RNA sequencing data from this study are available from the Gene Expression
Omnibus (GEO) database under the accession number GSE97944. DNA sequencing data from this study
are available from the Sequence Read Archive database (accession no. SRP103966).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
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