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SUMMARY

The drug isoniazid (INH) is a key component of global tuberculosis (TB) control programmes. It 

is estimated, however, that 16.1% of TB disease cases in Former Soviet Union countries and 7.5% 

of cases outside of those settings have non-multidrug resistant (MDR) INH resistance. Resistance 

has been linked to poorer treatment outcomes, post-treatment relapse and death, at least for 

specific sites of disease. Multiple genetic loci are associated with phenotypic resistance, but the 

relationship between genotype and phenotype is complex. This restricts the use of rapid 

sequencing techniques as part of the diagnostic process to determine the most appropriate 

treatment regimens for patients. The burden of resistance also influences the usefulness of INH 

preventative therapy (IPT). Despite seven decades of the use of INH our knowledge in key areas- 

such as the epidemiology of resistant strains, their clinical consequences, and their exact role in 

fuelling the MDR TB epidemic- is limited. The importance of non-MDR INH resistance needs to 

be re-evaluated both globally and by national TB control programmes.
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INTRODUCTION

In 2013 the Director of the World Health Organization’s (WHO) Global Tuberculosis (TB) 

Programme described drug resistant TB as a ‘ticking time bomb’. A need for ‘visionary 
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political leadership’ was identified.1 Research and public health action in this area has been 

dominated by multidrug resistant (MDR; resistance to both rifampicin (RMP) and isoniazid 

(INH)) and extensively drug resistant (XDR; MDR plus resistance to a fluoroquinolone and 

one or more of three second-line injectables) TB.

INH, first synthesised in 1912 in Prague,2 is an effective first-line drug for the treatment of 

active TB disease.3 A prodrug, INH is activated by the catalase-peroxidase KatG of 

Mycobacterium tuberculosis (M. tb). Following this, it binds InhA, an enoyl-acyl carrier 

protein reductase and so blocks fatty (mycolic) acid synthesis, a key component of the 

bacterial cell wall. In rapidly dividing bacteria INH is bactericidal, in slower dividing 

bacteria bacteriostatic. The drug is thought to provide a high initial kill at the start of active 

TB treatment, after which RMP largely takes over in terms of bactericidal activity and RMP 

and pyrazinamide (PZA) act as sterilising drugs.4 From its earliest use as monotherapy for 

TB disease in the 1950s, rapid and frequent development of resistance to INH was reported. 

Such observations regarding INH and other drugs emphasised the need for combination 

regimens. INH, streptomycin (STM) and p-aminosalicylic acid (PAS) thus became the 

standard regimen for many years before the development of the current short course of two 

months of INH, RMP, PZA and ethambutol (EMB), followed by four months of INH and 

RMP.4–6 The 1950s also saw the first studies of INH as a treatment for latent TB infections 

(LTBI),7 for which it is now a standard mono- or combination therapy.8;9

Resistance to INH has been associated with death in TB meningitis patients, where its role 

in treatment is even more crucial as the only bactericidal agent to easily traverse the blood-

brain barrier.10 Additionally, a systematic review and meta-regression of trial data has 

indicated that initial INH resistance increases the incidence rates of treatment failure and 

relapse.11 Given its relatively cheap price and low rates of adverse events,3 it is beneficial to 

both health services and patients to be able to use INH. It is thus important to control the 

spread of primary INH resistance and prevent the acquisition of secondary resistance.

In this paper, we pose ourselves- and our audience- a single question: is non-MDR INH 

resistance of clinical concern? Our answer depends upon a host of considerations- the 

burden of INH resistance globally and regionally, the extent to which INH resistance hinders 

treatment of active disease, the relationship between INH resistance and MDR- which we 

describe in the following sections, before concluding with how resistance can be prevented 

and controlled, our perspectives on the implications of neglecting non-MDR INH resistance, 

and the gaps and opportunities for public health and research.

GLOBAL BURDEN OF INH RESISTANCE

In 2011, Jenkins et al. produced the first analysis of global INH resistance data reported to 

the WHO.12 They found that, from 1994–2009, 131 unique settings (including countries and 

sub-national regions) submitted such data at least once. This covered 56% of the world’s 

population, meaning that for nearly half of the global population data were not reported at 

local or national levels (a key knowledge gap- see Table 1). Of the submitted nationwide 

data, the former Soviet Union countries (FSU) reported the highest percentages of TB cases 

with INH resistance: 44.9% had some form of INH resistance (including mono-resistance 
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and MDR TB) and 16.1% had non-MDR INH resistance without concurrent RMP 

resistance. Across the rest of the world, excluding the FSU, 13.9% of TB cases had some 

form of INH resistance (including mono-resistance and MDR TB) and 7.5% INH resistance 

without RMP resistance. Between 1994 and 2013, the WHO estimated that 9.5% of global 

TB cases had INH resistance without RMP resistance.13 The percentage of paediatric TB 

disease with INH resistance reflects the percentage observed among new adult cases.14 

Around 12% of paediatric TB cases globally are estimated to have some form of INH 

resistance, amounting to 120,000 new child cases annually. Additionally, Dodd et al. have 

estimated that there are 166,000 new INH (without RMP) resistant infections in children per 

year.15 Given that there are specific recommendations for the use of LTBI regimens, 

including INH preventative therapy (IPT), in young children such estimates are significant.9

Time trend data is important to identify changes in the prevalence of INH resistance (Table 

1). Jenkins et al. found that only 51 of the 131 settings above reported three or more 

temporal data points and both upward and downward trends were observed, with no clear 

global pattern.12 Given the relevance of INH resistance for people living with HIV (since 

they are targeted for IPT),16 the authors separately examined countries with estimated adult 

HIV seroprevalences of at least 2%. In those countries, 7.3% of cases had some form of INH 

resistance. Of concern, the only high HIV burden country with data sufficient to analyse 

time trends (Botswana), had seen an increase in INH resistance. New data from the South 

African drug resistance survey of 2012–14 (which are presented nationally and by province) 

also indicate increasing prevalence.17

RESISTANCE MUTATIONS

Phenotypic INH resistance is associated with a number of mutations (at the time of writing 

22 are documented by the TB Drug Resistance Mutation Database),18;19 making creating a 

minimal predictive mutation set for clinical use complex.20 Lack of clarity about the 

association between specific mutations, phenotypic resistance, and treatment outcomes 

hinders genotyping being used to make rapid treatment decisions.21;22 inhA mutations are 

generally associated with lower phenotypic resistance than katG mutations,23;24 but even 

within the same gene different mutations can cause differing levels of phenotypic resistance. 

For example, in vitro katG H270R mutations result in greater resistance levels than 

A162E.24 Beyond the role of single point mutations a strain’s genetic background 

contributes to the relationship between the genotype of resistance loci and phenotypic 

resistance,25 as does the presence of compensatory mutations e.g. those in the ahpC gene.26 

It is important to note that inhA promoter mutations also affect susceptibility to 

ethionamide.27

The distribution of different INH resistance mutations has been less well mapped globally 

than general prevalence data, but estimates from an international collection of over 5,000 

strains (bearing in mind issues due to clustering) suggest that 79% of non-MDR INH 

resistant isolates have the katG S315T mutation (Manson et al., currently under review). 

Information on the distribution of mutations in non-MDR INH resistant TB is also 

individually available from various settings e.g. China (49% of isolates found to have the 

katG S315T mutation),28 Ethiopia (60% katG),29 Switzerland (57% katG S315T),25 plus 
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pan-country studies e.g. Georghiou et al. (although this includes MDR strains).30 Given that 

some mutations are less strongly linked to high level phenotypic resistance (and thus 

theoretically poor treatment outcomes with INH-containing regimens) than others, such data 

are critically important for global planning (Table 1).

THE INFLUENCE OF RESISTANCE ON TREATMENT OUTCOMES

A high burden of non-MDR INH resistance is concerning in terms of TB control if the 

relative and absolute likelihood of negative treatment outcomes is substantially higher for 

INH resistant versus drug sensitive disease.

An early review of British Medical Research Council trials of different active TB treatment 

regimens published in 1986 was optimistic on this front, contrasting ‘the high success rate of 

short-course regimens in the presence of initial resistance to isoniazid and streptomycin’ to 

‘the response of the few patients with initial rifampicin resistance’ (some of whom were 

MDR).31 Results differed in a more recent and expansive systematic review and meta-

regression of trial data.11 The authors found that, after controlling for the different 

components of treatment regimens, initial INH resistance increased incidence rates of 

treatment failure and relapse versus a baseline of pan-sensitive strains (incidence rate ratio 

10.9 [95% confidence interval 5.9–20] and 1.8 [1.2–2.6], respectively). Some observational 

studies from a variety of settings (with and without adjustment for treatment regimen and 

other confounders) have found similar results, including the previously cited study 

examining deaths in TB meningitis patients.10;32;33 Other studies have not found an 

association between resistance and negative outcomes.34;35 A large retrospective cohort of 

patients receiving short course chemotherapy from six countries was also less clear cut, 

showing an association between INH resistance and the risk of treatment failure in 

retreatment cases and weaker statistical evidence among new cases.36

Differing levels of phenotypic resistance might be expected to influence the success of INH-

containing regimen. Indeed, as stated by Van Deun et al. ‘[b]ecause of the large therapeutic 

range of isoniazid, a fraction of patients may still benefit from the drug because the high 

concentration achievable in tuberculosis lesions may overcome low-level resistance’.37 

Many studies comparing treatment outcomes in individuals with high and low level 

phenotypic resistance have not reported differences, although analyses are frequently not 

adequately statistically adjusted and the methodology for determining resistance will also 

have been influential.21;33;38–40 Published data on the influence of genotype are conflicting. 

In Vietnam, an analysis without adjustment for treatment regimen suggested that katG but 

not inhA mutations are associated with unfavourable treatment outcomes, and both 

mutations with relapse in new patients.41 In an Indian cohort where patients were all 

prescribed the same regimen katG, but not inhA mutations, were associated with poor 

treatment outcomes in an unadjusted analysis (and certain inhA mutations were more 

associated with cure than others).42 Other analyses have indicated that there is no difference 

in treatment outcomes by mutation, although again are often not appropriately 

adjusted.29;40;43
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On balance, therefore, the precise link between INH resistance and treatment outcomes is 

unclear, although resistance is likely to be detrimental at least for certain sites of disease and 

without adjusted treatment regimens. Further work is required in this area (Table 1).

TAILORING TREATMENT REGIMENS IN THE PRESENCE OF RESISTANCE

If INH resistant TB has a greater likelihood of negative treatment outcomes than drug 

sensitive disease then specific effective regimens are required. Substituting for INH is 

clearly not ideal, given its low cost and rate of adverse events. Global guidance does, 

however, frequently reflect the need for adjusted regimens, albeit without a common 

consensus on the best approach to take (Table 2). A common theme of guidelines is the 

acknowledgment of knowledge gaps requiring further research (Table 1).

In a recent systematic review and network meta-analysis by Stagg et al. of randomised 

controlled trials (RCTs) of different treatment regimens for non-MDR INH resistant TB, 59 

studies were found for inclusion.44 A regimen category of RMP-containing regimens using 

fewer than three effective drugs at four months, in which RMP was protected by another 

effective drug at six months, and RMP was taken for six months was used as the baseline for 

a network meta-analysis (this included the WHO population level recommendation [Table 

1]). Extending the duration of RMP to more than six months and increasing the number of 

effective drugs at four months to three or more lowered the odds of unfavourable versus 

favourable outcomes in a fixed-effects model (odds ratio 0.31 [95% credibility interval 0.12–

0.81]). This was the only regimen category where the credibility interval did not cross the 

null, however, in a random-effects model all estimates did so. In both models, this regimen 

category (RMP containing, three or more effective drugs at four months, RMP protected by 

another effective drug at six months, RMP taken for more than six months) and two others 

(RMP containing, fewer than three effective drugs at four months, RMP taken for six 

months; RMP containing, fewer than three effective drugs at four months, RMP taken for 

more than six months) consistently ranked in the top three out of the 11 included, albeit with 

much uncertainty.

Menzies et al. also reviewed RCTs for the treatment of INH monoresistant TB in a paper 

published in 2009,45 with the aim of assessing the effectiveness of the 2008 WHO 

‘retreatment’ regimen (two months of STM INH RMP PZA EMB followed by one month of 

INH RMP PZA EMB and then five months of INH RMP EMB) in patients with INH 

resistant disease. Despite the two reviews having very different inclusion and exclusion 

criteria the findings were similar, with the Menzies et al. review concluding that a RMP 

duration of two months or less, having few drugs in the intensive phase, and having therapy 

delivered twice weekly throughout increased both treatment failure and relapse rates, with 

additional factors influencing one or other measure.

High-quality data are lacking on the influence of treatment adherence, setting, the use of 

combination pills, and the presence of different resistance mutations on the efficacy of 

regimen recommendations. Additionally, neither of the two cited reviews specifically looked 

at regimens for children. For drug sensitive TB in children without HIV co-infection the 

WHO recommends a three drug two month intensive phase of INH, RMP and PZA, 
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followed by four months of INH RMP.46 In the presence of INH resistance, or if the child is 

diagnosed where there is a ‘high background prevalence of isoniazid resistance’ WHO state 

that EMB should be added during the intensive phase and that ‘[f]or patients with more 

extensive disease, consideration should be given to the addition of a fluoroquinolone and to 

prolonging treatment to a minimum of 9 months’. Drug doses are also adjusted.

FROM INH RESISTANCE TO MULTIDRUG RESISTANCE

Aside from the implications of INH resistance on treatment, if non-MDR INH resistance is 

the key precursor to MDR (as opposed to non-MDR RMP resistance) and the risk of 

progression from INH resistance to MDR is high enough, then the control of such strains is 

very important. The relative prevalence of different resistance patterns across settings can be 

informative here, as can studies of the particular INH resistance mutations commonly 

observed in MDR strains. At a population level, evidence can also be provided through 

phylogenetic studies calculating the temporal order in which mutations occur. If we are 

convinced that INH resistance precedes RMP resistance then the risk/rate of a strain 

becoming MDR once INH resistant becomes critical. This is calculable through clinical 

trials and prospective observational studies analysed at the individual level. We examine 

each line of evidence in turn in the following paragraphs.

Globally, the proportion of RMP resistant strains that are MDR is higher than the equivalent 

proportion of INH resistant strains. An analysis of aggregate WHO data from 125 settings 

and several years has estimated that 87% of RMP resistant isolates are MDR.47 By 

comparison, using available nationwide data from Jenkins et al.,12 we calculated an average 

(weighted by the population in each country) of 39% of INH resistant strains being MDR. (It 

should be noted that this estimate relies upon reported data that is two or more decades old 

in some cases.) Such patterns likely reflect one of three things- the relatively high INH 

resistance mutation rate as opposed to that for RMP;48 that strains, once RMP resistant, 

rapidly acquire additional INH resistance; or that INH resistance is generally the first step to 

MDR.

Given that katG mutations are generally associated with greater phenotypic resistance than 

inhA mutations, if INH resistance is the first step to MDR it might be assumed that the 

former will be more common in MDR strains than the latter. Studies in various settings (of 

which the cited are a few) have demonstrated this to be the case,25;28;29;49–55 (including 

enrichment of katG mutations in MDR versus non-MDR INH resistant strains20;25;28;29;56). 

The ‘spectrum’ of mutations observed in MDR strains varies from setting to setting, 

however, and may be linked to the dose of INH used for treatment54 and the clonal spread of 

different mutations. The prevalence of different mutations will also reflect relative fitness, 

which is a complex trait57 that may additionally be related to the speed at which bacteria are 

growing.58

A systematic review and meta-regression of trial data published by Menzies et al. in 2009 

examined the question of whether initial INH resistance is associated with increased rates of 

additional resistance.11 Incidence rates of acquired drug resistance were found to increase 

5.1 times in patients with INH resistant disease versus drug sensitive disease (95% 
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confidence interval 2.3 to 11.0) after treatment regimen was controlled for. This study 

examined any additional resistance to the drugs received, rather than looking specifically at 

the transition to MDR, however (Table 1). Although there are RCTs that specifically 

document RMP resistance arising in INH resistant versus drug sensitive patient populations 

by regimen both during and after treatment, data are relatively minimal.59–71 Within these 

RCTs (all of which treated with RMP in all arms) the development of RMP resistance 

almost exclusively occurred in less than 1% of drug sensitive disease patients across failure 

and relapse. In most instances this was also true for INH resistant disease. Notable 

exceptions in the latter population (high risk of progression during treatment [8–31%], but 

not at relapse) occurred when regimens consisted of INH and RMP alone (plus minimal 

STM or STM in the presence of STM co-resistance). One RCT in HIV positives 

documented a much higher risk of developing RMP resistance in drug sensitive patients 

during both treatment failure and relapse and INH resistant patients during treatment failure, 

but this may have been because patients were repeatedly re-infected during treatment.70 

Although the findings above do not include RCTs where a comparator drug sensitive disease 

group was missing or where information was not presented by treatment regimen, it does 

given an indication of a generally low risk of the development of additional resistance. By 

comparison, observational studies without a comparator drug sensitive disease group have 

documented highly differing estimates of the likelihood of INH resistant disease progressing 

to MDR, ranging from <1–10%.38;43;72–74 In both RCTs and observational studies estimates 

will be highly regimen dependent.

Rapid and cheap whole genome sequencing makes analysing the progressive gain of 

resistance mutations at the population level using phylogenetic trees an achievable 

approach.75 A recent study of samples from a particular M. tb clone from KwaZulu-Natal in 

South Africa indicated that INH resistance (katG) mutations arose approximately 30 years 

earlier than RMP resistance.76 A previous study from Argentina also placed katG mutations 

prior to rpoB ones, albeit with a much shorter (3 year) gap and overlapping confidence 

intervals.77 Other studies using different typing techniques (including phenotyping) at the 

individual or population level have similarly suggested that INH resistance arises before 

RMP resistance.78–81 Results at the population level may, however, simply reflect when the 

different drugs were introduced and the more rapid mutation rate to INH resistance. A recent 

study across five continents, however, not only indicated that in 96% of MDR strains INH 

resistance was observed before RMP resistance, but also that this was independent of 

lineage, where strains were sampled from, and the time when resistance arose i.e. INH 

resistance predated RMP resistance even after both drugs were in use (Manson et al., 
currently under review).

Saunders et al. have proposed that INH resistance might precede RMP resistance in the 

development of MDR because the selective pressure of RMP is smaller than that of INH, 

thus RMP resistant strains are more likely to be killed by INH than INH resistant strains by 

RMP.80 The latter strains thus survive and develop additional resistance during substandard 

treatment. A higher mutation rate in strains with katG mutations in the presence of oxidative 

stress has also been suggested as a potential explanation, although evidence is lacking.82
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HOW CAN WE PREVENT INH RESISTANCE?

The prevention of INH resistance falls into two categories- the need to control the spread of 

INH resistant strains (primary resistance) and the need to prevent individual patients 

developing secondary resistance.

The prevention of primary resistance relies upon ensuring that patients with INH resistant 

TB are rapidly detected and placed on an effective treatment regimen in order to avert 

transmission. Importantly, modelling work has indicated no evidence that katG S315T (for 

example) impairs virulence or transmissibility.83 Effective treatment regimens for INH 

resistant LTBI (which may need to be different to standard LTBI regimens) are also 

important, including knowing when the population level prevalence of resistance is sufficient 

to require such regimens to be used nationally as opposed to only in contacts of INH 

resistant disease cases.

Guidance and studies on the treatment of drug resistant LTBI infections are few and far 

between, with work focussing on MDR infections. Early reports exist of INH prophylaxis 

failing in contacts of patients with INH resistant TB, but such studies do not contain good 

comparison estimates of the failure of prophylaxis in individuals with drug sensitive 

infections.84–86 Neither the WHO nor (for example) the National Institute for Health and 

Care Excellence (NICE) in the UK make explicit recommendations regarding the treatment 

of contacts exposed to INH resistant TB (including for children).9;46;87 The American 

Thoracic Society (ATS) and Centers for Disease Control and Prevention (CDC), USA 

recommend a four month regimen of RMP for such individuals (six months for 

children),88–90 unless they are ‘HIV-infected persons taking some combinations of ART’. 

This recommendation was based upon a small number of publications.85;91–94 Of note, three 

to four months of RMP is the only non-INH containing regimen currently recommended for 

LTBI by the WHO.9 In the absence of clearer evidence from trials and observational studies 

about whether INH-containing regimens are suitable for INH resistant LTBI (Table 1), data 

may also be gleaned by comparing the results of studies undertaken in settings of different 

prevalences of INH resistance.

In order to estimate the critical prevalence of INH resistance before RMP LTBI regimens 

should replace nine months of INH a modelling study was undertaken in migrant children.95 

From a cost/benefit perspective, the regimen switch was recommended for children 

originating from settings where the prevalence is at least 11%. The study was, however, 

criticised by other researchers, particularly for its assumptions regarding the relative 

effectiveness of different LTBI regimens.96

The prevention of secondary resistance largely relies upon ensuring appropriate adherence to 

treatment, responsive monitoring of patient progress, and ensuring good access to drugs to 

avoid regimen breaks.97 Higher strength pills (to reduce the number of tablets a patient takes 

at any one time) and combination pills may improve adherence and ensure adequate dosing. 

Additionally, the role of IPT in producing INH resistant LTBI has been debated.98;99 Of 

note, INH resistant disease in this instance would be incorrectly classified as having primary 

drug resistance.

HR et al. Page 8

Int J Tuberc Lung Dis. Author manuscript; available in PMC 2017 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CONCLUSION

INH is an important drug for the control of TB that we cannot afford to lose. It is cheap, 

effective, has a low rate of adverse events, and cannot be substituted by an equally positive 

alternative. Non-MDR INH resistance is surprisingly prevalent globally, especially in FSU 

countries. Resistance may increase the likelihood of negative treatment outcomes, post-

treatment relapse, and death at least for certain sites of disease and with specific regimen. 

The incidence of non-MDR INH resistance (which is higher than that of MDR TB) may well 

affect the effectiveness of IPT at the population level.

Unfortunately, there are many knowledge gaps regarding INH resistant TB (Table 1). The 

most critical of these is perhaps the exact link between resistance-associated mutations, 

phenotypic resistance and active TB treatment outcomes, which also influences guidance on 

treatment regimens for INH resistant disease. Rapid sequencing technologies make 

genotyping highly attractive as part of a pipeline to rapidly make patient-level treatment 

decisions, thus these links are crucial. Such technologies will, however, be hindered by the 

number of mutations associated with INH resistance. Better data on the burden of INH 

resistance globally is also required in order to ascertain whether IPT policy should be 

adjusted. Importantly, none of the gaps highlighted would seem complex to fill using pre-

existing data sources, or with adequately designed data collection.

Ultimately, decisions as to the importance of INH resistance are relative, and it was 

interesting to note during the preparation of this piece how interest in the subject has 

changed over time. When INH was introduced many studies examined INH resistance; this 

lessened as MDR TB became more of a concern. Interest has been increasing again in recent 

years as typing techniques have allowed the evolution of MDR to be studied in more detail. 

The WHO reflected how the relevance of INH resistance is context-specific when writing 

their treatment guidelines, which depend upon the burden of resistance, stating ‘WHO does 

not intend to establish thresholds for low, moderate or high levels of prevalence of isoniazid 

resistance: [National Tuberculosis Programmes] will establish definitions for their own 

countries.’46 Local decision making about the focus on control efforts also depends upon 

budgetary limitations (including how much of a country’s resources are currently being 

spent on MDR disease), the extent to which a country is concerned about further resistance 

arising, the accessibility of first line drug sensitivity testing, and the availability of 

alternative regimens for both LTBI and active disease.

Accurate drug sensitivity testing for all patients is critical for global TB control.1 Another 

critical area that INH resistance has implications for is the use of GeneXpert, an important 

rapid diagnostic. GeneXpert’s focus on detecting RMP resistance as a proxy for MDR and 

thus the potential for countries to move away from testing patients for INH resistance is of 

concern. A reduction in the amount of data available to calculate prevalence estimates for 

INH resistant disease could be anticipated, as well as patients with non-MDR INH resistance 

potentially being put at risk of being treated inadequately. If this latter were the case, 

transmission of INH resistant strains would not only be predicted to increase, but this 

increase would also not be detected. A modelling study using data from India has suggested 

a limited role for rapid INH resistance testing on transmission, however.100 It is interesting 
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to note that in Peru, GeneXpert in its current form is not favoured as a diagnostic due to the 

perceived importance of the country’s burden of INH resistant strains.101

Readers may argue that non-MDR INH resistance has apparently been neglected for many 

years without too disastrous a consequence, and the fact that the proportion of non-MDR 

disease cases who fail treatment is low globally despite the current prevalence of INH 

resistance means that we need not be too concerned. This may well be the case in many 

settings and, indeed, we do not recommend that INH resistance be given priority over MDR 

and XDR TB for research funding. Nevertheless, as a stepping stone to MDR, a high or 

increasing prevalence of INH resistance is concerning in low and high TB-incidence settings 

alike, and if tracked adequately in the past this may have aided the prevention of the MDR 

TB epidemic.

At the beginning of this article, we posed a question- to what extent is INH resistance a topic 

of concern? Our review of the literature suggests that non-MDR INH resistance has been 

neglected, and that this lack of focus needs to be addressed as an important means of 

controlling global TB.
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Figure 1. Percentage of incident tuberculosis cases with isoniazid resistance but not rifampicin 
resistance, 1994–2009
World map showing the percentage of incident tuberculosis disease that was isoniazid 

resistant, but not multidrug resistant, 1994–2009. National level data only, sourced and 

analysed as per Jenkins et al.12 Where countries submitted repeated estimates most recent 

data shown only. White areas did not report national data during the time period in question.
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Table 1

Summary of knowledge gaps for isoniazid resistant tuberculosis

Area Missing information Potential data sources

Prevalence of phenotypic INH 
resistance

44% of the world’s population is not covered by 
prevalence data that could be included at the time of 
Jenkins et al.12 Many reported estimates are old. Temporal 
trend data is often missing.

(Repeated) cross-sectional studies, surveillance 
data

Phenotypic versus genotypic 
resistance

How do specific resistance-associated mutations relate to 
phenotypic resistance?

Cross-sectional microbiological studies

Relative prevalence of 
resistance mutations

How are the different INH resistance-causing mutations 
distributed globally? Does this differ within specific 
population groups e.g. populations deemed at high risk of 
MDR disease?

Systematic review of available literature, cross-
sectional studies

Treatment outcomes in active 
disease

How do phenotypic resistance (measured in different 
ways)21 and genotypic resistance influence treatment 
outcomes and the likelihood of relapse?

Systematic review of available literature

Treatment regimens for active 

disease*
Are regimens with an increased dose of INH effective in 
instances of low-level phenotypic resistance? What are the 
best regimens in children? At what resistance prevalence 
threshold should recommendations to use specific 
regimens be made?

Randomised controlled trials, mathematical 
modelling, health economics

Progression to MDR What is the absolute risk of INH resistant strains 
becoming MDR during treatment? How does this compare 
to drug sensitive disease? How does this relate to 
treatment regimen?

Systematic review of available literature, cohort 
studies

LTBI treatment regimens How effective are currently recommended LTBI treatment 
regimens for INH resistant infection? Are other regimens 
required, including for children? At what population-level 
of INH resistance is it best to avoid IPT?

Randomised controlled trials, mathematical 
modelling, health economics

*
The ATS,102 NICE87 and WHO5 all have their own recommendations on this topic. ATS have recently updated their guidance on the treatment 

of drug sensitive disease, but at the time of writing have not released new guidelines for treating drug resistant disease. ATS- American Thoracic 
Society, INH- isoniazid, IPT- INH preventative therapy, LTBI- latent tuberculosis infection, MDR- multidrug resistance, NICE- National Institute 
of Health and Care Excellence, UK, WHO- World Health Organization
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Table 2

Global guidance on treating isoniazid resistant tuberculosis disease in adults

Issuer of guidance Treatment regimen(s) recommended Reference(s)

WHO Two sets of guidance, one on the basis of background levels of INH resistance and non-availability of 
DST before the continuation phase of treatment, the other when individual-level DST is available.

5;103

Where background levels are deemed ‘high’ among new TB patients and INH susceptibility testing 
results are not available before the continuation phase two months of INH, RMP, PZA and EMB 
followed by four months of INH, RMP and EMB are recommended. The threshold for ‘high’ levels is 
not defined.46

In the presence of individual-level drug susceptibility results, recommendations are made depending 
upon the non-MDR INH resistance pattern found. For example, six to nine months of RIF, PZA and 
EMB (plus or minus a fluoroquinolone) for INH-monoresistant or INH and STM-resistant disease.

ATS Six month regimen of RMP, PZA and EMB (plus a fluoroquinolone for extensive disease). 102

NICE Nine month regimen (10 months where disease is extensive) of two months of RMP, PZA and EMB, 
then seven months of RMP and EMB.

87

ATS- American Thoracic Society, DST- drug sensitivity testing, EMB- ethambutol, INH-isoniazid, NICE- National Institute of Health and Care 
Excellence, UK, PZA- pyrazinamide, RMP-rifampicin, STM- streptomycin, WHO- World Health Organization
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