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The intricate connection between the circadian clock and metabolism remains poorly understood. 

We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver 

and cell autonomous metabolism. In liver, ~50% of metabolites were circadian, with enrichment of 

nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including 

amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems 

and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation 

and amino acid pathways. To assess clock-dependence of these rhythms, we used genetic 

perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 
perturbation generally shortened/lengthened rhythms, respectively. Surprisingly, CRY1 
knockdown induced 8 h rhythms in amino acid, methylation, and vitamin metabolites, decoupling 

metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These 

results provide the first comprehensive views of circadian liver and cell autonomous metabolism.

Blurb

Using high temporal resolution metabolite profiling, XXX et al show that over 50% of liver 

metabolites are circadian, with a significant overlap of cycling metabolites between mouse and 

human liver, especially those involved in epigenetic regulation. Coupling of metabolite with 

transcriptional rhythms is regulated by core clock genes.

Introduction

Circadian rhythms in physiology and behavior are critical to most organisms. In mammals, 

disruption of circadian rhythms leads to many pathophysiological conditions such as 

cognitive dysfunction, psychiatric disorders, cancer, obesity, insulin resistance, metabolic 

syndrome, and inflammation (Albrecht, 2013; Altman et al., 2015; Antunes et al., 2010; 

Bechtold et al., 2010; Kawachi et al., 1995; Parkes, 2002; Reppert and Weaver, 2002; 

Sharifian A, 2005). Recent work shows the circadian clock is intimately connected to 

metabolism and sheds light on metabolic pathways that are potentially under circadian 

control (Asher and Schibler, 2011; Bass, 2012; Eckel-Mahan and Sassone-Corsi, 2013; 

Green et al., 2008; Papagiannakopoulos, 2016; Zhang et al., 2014; Zwighaft et al., 2015)
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Cell autonomous circadian rhythms are generated through a transcriptional regulatory 

network of clock genes. In the core feedback loop, the transcriptional activators BMAL1 and 

CLOCK regulate the Cryptochrome (Cry1 and Cry2) and Period (Per1 and Per2) 

transcriptional repressors. After translation and nuclear localization, the PER and CRY 

proteins inhibit BMAL1/CLOCK function, leading to rhythmic genome-wide gene 

expression (including their own). In many physiological pathways, rate-limiting steps are 

under circadian clock control. Genetic mutation or environmental perturbation (e.g. shift 

work or jet lag) disrupt clock function and can cause sleep disorders, cancer, cardiovascular, 

and metabolic diseases (Asher and Schibler, 2011; Bass and Takahashi, 2010; Green et al., 

2008).

Over the last several years, a number of studies investigated oscillatory metabolism using a 

range of experimental designs. These varied from sampling every 4 or 6 hours for 24 h under 

light / dark (LD) conditions (most common) to every 2 h for 24 h in LD to every 4 h for 40 h 

in DD (See Table S1). While important for a basic understanding of oscillatory metabolism, 

these studies weren’t adequately designed to detect circadian oscillations for several reasons. 

First, the vast majority were done under driven (LD) conditions, not constant (LL or DD), 

conditions. Second, most of these studies were under-powered to comprehensively detect 

rhythms. In particular, sampling every 4 or 6 h for a 24 h day (even with replicates) limits 

the ability to detect truly rhythmic metabolites. These designs are also subject to false 

positive errors, as any monotonic noise can be interpreted as rhythmic. Further, in reporting 

these rhythms, most studies failed to account for multiple testing (false discoveries). While 

these studies provide valuable first insights, they were not designed to comprehensively 

detect circadian rhythms in metabolism.

We sought to characterize circadian regulation of metabolism to follow up our high temporal 

resolution transcriptomics studies (Zhang et al., 2014). Because we did not know the 

technical limitations imposed by the metabolomics platform and their impact on detecting 

rhythmicity (Hughes, 2007), we sampled mouse liver, in replicate, every 1 h for 48 h in DD. 

Further, as metabolite oscillations in a cell autonomous model have not been previously 

investigated, we sampled U2 OS cells every 2 h for 48 h under control conditions, and also 

after knockdown of the core clock genes BMAL1, CRY1, and CRY2. Surprisingly, in mouse 

liver, we found a higher percentage (>50%) of detected metabolites are clock-regulated than 

detected transcripts (~37%). This observation is much more striking in the U2 OS cell 

autonomous clock function, with 28% of metabolites detected as cycling compared with just 

1.5% of transcripts using the same mathematical approaches. This suggests an amplification 

of the circadian drive between transcription, translation, and function. As predicted, genetic 

perturbations showed the vast majority of this cycling depends on an intact clock. Strikingly, 

knockdown of CRY1, short period in cells and mice, resulted in the appearance of both 8 h 

and 32 h rhythmic metabolites, decoupling the transcriptional and metabolic oscillations. 

Collectively, these results have important implications for experimental design as well as 

circadian regulation of metabolism in vitro and in vivo.
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Results and Discussion

Clock regulation of liver metabolites

Early studies established the strong link between the circadian oscillator and metabolism 

(Panda et al., 2002; Storch et al., 2002; Ueda et al., 2002). These global analyses showed 

that many or even most liver metabolic pathways harbored clock-controlled steps, often key 

and rate limiting. Later, investigation of core clock genes confirmed this linkage, as mutation 

of Clock or Bmal1 led to profound metabolic abnormalities in mice (Rudic et al., 2004; 

Turek et al., 2005). More recently, several papers have elucidated mechanistic links between 

clock function and specific clock-regulated metabolism (Asher and Schibler, 2011; Bass, 

2012; Gerhart-Hines and Lazar, 2015; Peek et al., 2013; Zwighaft et al., 2015) . These 

papers and the advent of high-throughput metabolite profiling platforms prompted a number 

of studies whose broad aim was to describe rhythmic metabolism (Table S1).

However, these experimental designs were not ideal to comprehensively investigate 

metabolite circadian rhythms. To address these limitations, we sought to understand the 

impact of time-sampling intervals, duration, and replicates on detection of circadian 

metabolites. We analyzed liver samples from mice maintained under constant darkness with 

1 h time sampling over 48 hours in duplicate (Figure S1A). Extensive metabolite rhythms 

were observed, with ~50% of measured metabolites (90 of 189) deemed rhythmic by 

JTK_Cycle algorithm analysis (FDR controlled q-value < 0.05) (Figure 1A, S1C). This 

rhythmicity spanned many areas of metabolism, most notably nucleotide, energy, oxidative, 

and carbohydrate metabolism (Figure 1B). Interestingly, this number is similar to the 

percentage of rhythmic genes in transcription using a similar experimental design. However, 

the amplitudes of metabolite rhythms were lower than those found in transcription. 

Interestingly, like transcription, cycling metabolite peak phases were multi-modal and 

associated with subjective dawn. Unlike transcription, the high-resolution analyses here 

reveals that metabolite cycling has multiple additional daytime peaks near CT 3 and CT 7, 

and a nighttime peak at CT 17 (Figure 1C).

We further sought to determine the optimal experimental design for metabolite studies using 

“leave some out” analyses. In our transcriptional analyses, the selected design was every 2 h 

for 2 days, which captured 70% of the true rhythmic transcripts with a low false discovery 

rate at half the experimental burden. In contrast, and likely a reflection of the signal/noise of 

metabolite profiling, higher temporal resolution was even more important. The most 

common designs for these studies, every 4 or 6 h over 1 day, had high false negative rates 

(56/90, ~62% with 4 replicates), particularly when controlling for multiple testing (Figure 

1E). As with the transcript data, single replicate 2-hour sampling over 2 days maximized 

true positive detection (49/90, ~54%) at the cost of a few false positives (4/90, ~4%) with a 

minimum number of samples required (24). As such we suggest that 1 h resolution is 

required when attempting to provide a ‘gold standard’ to detect cycling, but can be balanced 

with lower resolution analysis to overcome the experimental burden implied by such a 

design, so long as the error rates are acceptable for the question at hand.

Interpretation of acrophase modulation of metabolite rhythms gives rise to a number of 

biologically relevant ‘metabolic waves’ occurring through the circadian day. For example, 

Krishnaiah et al. Page 4

Cell Metab. Author manuscript; available in PMC 2018 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diurnal glycogen content is known to peak between CT 0-2 in mice (Doi R, 2010; Ishikawa 

K, 1980; Roesler W.J, 1985). Our data suggests a wave by which conversion of glycogen to 

glucose and subsequent entry into the TCA cycle follows rapidly with glucose and citrate 

having peak phases of CT 2.5 h and CT 1 h respectively (Figure S1D). Subsequently, the 

other TCA cycle intermediate showing significant cycling, malate, has an acrophase at CT 

5.5 h. Similarly, the metabolite cycling is reflective of changes in the oxidative status of the 

cell with shifts in oxidative metabolite peaks. For example, Figure S1E demonstrates 

opposing acrophases in reduced glutathione and ascorbate (CT 23.5 and CT 1.5) compared 

with FAD (CT 11.5). FAD is notable as one of only two metabolites with acrophase near 

dusk, the other being phenyllactate. UDP-glucose and the oxidized counterpart UDP-

glucuronate also demonstrate opposing acrophases of CT 6 and CT 18.5 hours respectively. 

While some of these compounds have been noted to have circadian oscillations in liver, this 

is the first comprehensive atlas of temporal metabolic changes in liver tissue.

The 1 h resolution time sampling of liver metabolites allowed us to interrogate these data for 

other periodicities. Using JTK, we searched for metabolites cycling in a window between 4 

and 40 h. We found ~15 metabolites cycling at the 12 h frequency, a 2nd harmonic of the 

circadian frequency. These metabolites were enriched for members of aromatic amino acid 

and nucleotide metabolism. Intriguingly, we also found 3 metabolites cycling at the 8 h 

frequency, a 3rd harmonic of circadian periodicity, 2-hydroxyglutarate, aconitate, and 

NADH, all involved in energy metabolism. These results are strikingly similar to earlier 

findings of transcription and protein regulation(Ramsey, 2009). Earlier, we described 

hundreds of transcripts expressed at the 12 h periodicity and dozens at the 8hr in liver 

(Hughes et al., 2009) . These harmonics depended on an intact clock (Hughes et al., 2012), 

as the 12 h rhythmic transcripts became 24 h when clock function was selectively restored to 

the brain. Gaschon and colleagues described 12 h rhythms in proteins levels for components 

of the unfolded protein response (Ern1/Ire1) and the endoplasmic reticulum, with similar 

dependence on an intact clock. Therefore, like transcription and translation, harmonics of the 

circadian frequency appear a hallmark of metabolite cycling (Cretenet et al., 2010).

Pathway analyses of these data shows an interconnected network consisting of methylation, 

one-carbon, creatine, and nitrogen metabolism (Figure 2). The majority of these metabolites 

cycle with acrophase near CT 18 (yellow color in figure) with the notable exceptions of 5’-

methylthioadenosine (MTA), S-adenosylmethionine (SAM), and creatine that have 

acrophases near CT 4 (blue color). SAM and MTA are directly connected via 5-

adenosylmethionamine (not measured in this study) and are precursors in methylation to S-

adenosylhomocysteine (SAH). In a previous report, this pathway oscillates after high-fat diet 

challenge (Eckel-Mahan et al., 2013), which could be an amplification of the endogenous 

rhythm detected in our study. Methylation has been shown to be a key circadian regulatory 

process through chromatin transitions, for example trimethylation of Lys4 in histone H3 

(Ripperger and Schibler, 2006).

Cell autonomous metabolite cycling

A distinguishing feature of circadian clocks is their ability to cycle independently of external 

cues (zeitgeibers) such as light, nutrients, hormones, or activity. The U2 OS osteosarcoma 
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cell line has a robust circadian clock and has been used extensively in clock research (Baggs 

et al., 2009; Brown et al., 2008; Zhang et al., 2009) However, despite robust rhythms in 

luminescence assays (reflecting clock function), only several hundred genes cycle at the 

mRNA level (1.5% of measured genes, JTK q-value < 0.2, Figure 1A)(Hughes et al., 2009) 

compared to 500 to several thousands in almost every tissue in vivo (Zhang et al., 2014). 

Using 2-hour sampling over 48 hours (Figure S1B), we found 28% of measurable 

metabolites (39/137, Figure 3A; Figure S1C) demonstrate circadian rhythmicity (JTK q-

value < 0.2). This observation was robust to the q-value used. In general, amplitudes were 

lower for cell autonomous rhythms, however the phases were surprisingly coherent with 

peaks near CT 6 and 10 (Figure 3B). These observations are consistent with the fact that cell 

autonomous rhythms, where cells are separated from rhythmic temperature, hormones, diet, 

and activity, are weaker than rhythms in vivo where these signals are integrated and 

coherent. The remarkable discrepancy between the percentage of transcripts and metabolites 

cycling suggests the powerful effect that a limited number of genes has on overall cellular 

metabolic output, suggesting an amplification of clock-control between transcription, 

translation, and function. While deeper metabolite coverage would be helpful to understand 

these relationships, it is clear that irrespective of the depth of coverage, there are a limited 

number of transcripts which give rise to significant metabolic rhythms. We note that 

metabolite levels are a function of multiple inputs via metabolite flux through a number of 

enzymatic pathways, both catabolic and anabolic. As such the relative contribution of phases 

in enzyme and metabolite levels as well as post-translational modifications remains to be 

determined.

Analysis of the metabolites themselves demonstrates pan-metabolome cycling (Figures 3C, 

F), with amino acids, energy and lipid metabolism, and enzyme cofactors being highly 

represented. Analysis of the range of periods demonstrates that the metabolites are cycling 

with a major peak slightly less than 24 hours (Figure 3D), with minor peaks at 12 and 30 

hours. The amplitude of the metabolites at the extreme periods (i.e. 12 and 30 hours) was 

notably smaller than those with periods in the range of 20–26 hours (Figure 3E). The 

metabolites cycling with the lowest JTK q-values were also found in the 20–26 hour range. 

Overall, this suggests that in the presence of an intact transcriptional circadian clock, 

metabolism also cycles with a period near 24 hours in the absence of any external zeitgeibers 

with remarkable coherence in phase.

Cell autonomous metabolite rhythms depend on the circadian clock but can be frequency 
decoupled

The genetic tractability of the U2 OS system enabled us to investigate the relationship 

between the core clock and circadian metabolism. To see if metabolite rhythms required an 

intact oscillator and transcription, we knocked down BMAL1 and performed metabolite 

profiling every 2 h for 2 days (Figures S2A). Like behavioral rhythms in mice, knockdown 

of BMAL1 leads to progressive loss of amplitude in reporter gene activity in U2 OS cells 

(Baggs et al., 2009). Similar to these observations, ~70% knockdown of BMAL1 resulted in 

loss of rhythmicity in 36/39 metabolites, all but ATP, ADP, and nicotinamide ribotide 

(Figure 4A, Figure S2B). Interestingly, the glycolytic metabolites lactate and 

bisphosphoglycerate metabolites cycled in response to BMAL1 knockdown despite not 
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cycling under control conditions. Together, these results suggest that cell metabolite rhythms 

largely depend on an intact transcriptional oscillator, but some independent metabolic 

oscillators may also exist.

In contrast to BMAL1, which is required for rhythms, CRY1 and CRY2 regulate the 

periodicity, with Cry1 knockdown inducing a short period (~22.5 h) and Cry2 a longer 

period (~24.6 h) in behavioral rhythms in mice (Okamura et al., 1999) and in transcriptional 

rhythms in U2 OS cells (Baggs et al., 2009) We hypothesized that the period of metabolite 

rhythms would decrease for CRY1 KD and increase for CRY2 KD. As expected, knockdown 

of CRY2 resulted in long period rhythms in metabolites The frequency of these oscillations 

were dispersed with a mean period of ~30 h and also increased the number of observed 

cycling metabolites compared to control (64/137, ~47%, Figures 3B, S2A, S2B and Dataset 

S1). This longer ~30 h period was in fact similar to that observed in transcriptional rhythms 

in U2 OS cells, but unique from behavioral rhythms in mice.

Unexpectedly, knockdown of CRY1 resulted in an increase in the number of cycling 

metabolites (69/137, ~50%; Figure S3 and Dataset S1) with a bi-modal distribution in 

periodicity. Two peaks were observed centered at approximately 8 and 32 hours. These 

period shifts are far greater than that observed in the transcriptional clock or behavioral 

rhythms and frequency decouple transcription from metabolite cycling following CRY1 
perturbation. Interestingly, while there were a few 8 h harmonics under control conditions 

and no 12 h harmonics, CRY1 perturbation led to an increase in metabolites with an 8 h 

period (JTK q-value < 0.01 and Period ≤8 h, Figure 4C). These ultradian cycling metabolites 

included an abundance of amino acids (arginine, methionine, tyrosine, valine, tryptophan, 

leucine, and isoleucine), methylation products (dimethylarginine, dimethylglycine), and 

vitamin B1 (thiamine). Cycling in oxidative status of the cells was also more pronounced in 

the CRY1 and CRY2 knockdown cells compared to BMAL1 knockdown, as measured by 

the ion count ratio of NAD+/NADH (Figure S2C).

Pathway analysis of the control and CRY1/CRY2 KD cycling metabolites (Figure 4D) 

demonstrates that overall both Cry perturbations impact similar metabolic pathways 

compared to control, but exacerbate the cycling effect notably in pathways such as central 

carbon metabolism, glucose homeostasis, and glutathione metabolism. This result highlights 

the connection between the clock and energy and oxidative stress metabolism.

Metabolic consequences of Cry1 loss implicate effects on nutrient sensing

In order to further probe the decoupling of metabolite and transcript rhythms, we examined 

the U2 OS Cry1 KD metabolite data by first comparing the Cry1 KD with scrambled control 

at all timepoints. 55 compounds demonstrated significantly different concentrations, with 

eleven metabolites reduced under Cry1 KD and the remaining elevated (Figures 5A, S4A). 

We subsequently cross-referenced these differentially regulated compounds with those found 

to be significant cyclers (Figure 5B). Amongst this group, a number of amino acids were 

noted as elevated, including Arg, Ser, Asp, Val, Leu/Ile, Trp, Tyr, His, Thr, as well as amino 

acid derivatives such as N6-aceytllysine and dimethylarginine. This pattern matches an 

overrepresentation of amino acids amongst 8 h cyclers under Cry1 KD. There are 34 cycling 

metabolites with q< 0.05, of which 12 are amino acids, all of which have 8 h period.
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The over-representation of amino acid metabolism in both the cycling and differential 

concentration analysis led us to reason that Cry1 perturbation and the observed related 

transcriptional / metabolic uncoupling would have an impact in vivo on nutrient sensing. As 

the two most significant hits from JTK in the U2 OS experiment were dimethylarginine and 

Arginine, we performed a targeted analysis of livers from male Cry1−/− animals focusing on 

the relationship between Cry1 and specific metabolites known to be involved in this pathway 

(Figure 5C). Samples were collected at ZT10 and ZT22 corresponding to Cry1 acrophase 

and trough, respectively (Figure S4B). This metabolite analysis revealed that Arg was 

elevated in the Cry1−/− genotype (FDR<0.1), and that this elevation was robust to time. 

Similarly, Gln was noted to be reduced irrespective of time. Dimethylarginine demonstrated 

a time-dependent change, as did UMP, an end product of de novo nucleotide synthesis 

shown to be regulated by mTOR (Ben-Sahra, 2013; Robitaille, 2013). Alterations in Arg 

levels are known to impact mTOR signaling via CASTOR1 (Chantranupong, 2016), and 

thus we examined downstream mTOR targets (Figure S4B), and noted a consistent 

upregulation of mTOR pathway activation in CRY1−/− mouse livers compared to control 

mice (which were more heterogenenous overall), particularly at ZT10. Taken as a whole, we 

suggest that the Cry1-dependent coupling observed in U2OS cells has physiological 

consequences, particularly in time-dependent response to amino acids.

A set of ‘core clock metabolites’ links cell autonomous and in vivo metabolism

To further probe the interaction between cellular metabolism and the molecular clock, we 

examined the overlap between the cycling metabolites in human U2 OS cells and mouse 

liver (Figure 6A). We found a set of 18 cycling metabolites that oscillate between tissues/cell 

types and across humans and mice. We call these ‘multi-cycling metabolites’ (MCMs) and 

suggest that they are regulated by primary outputs of the clock. This set consists of amino 

acids (L-arginine, L-histidine, L-proline, L-methionine, L-glutamate, L-glycine) vitamins 

and co-factors (1-methylnicotinamide, nicotinamide), lipid related compounds 

(phosphocholine, glycerophosphocholine, butyrlcarnitine, L-malic acid), methylation 

compounds (SAH, MTA), oxidized glutathione, Uridine disphosphate glucose (UDP-

glucose), taurine, and cytidine monophosphate (CMP). These MCMs were over-represented 

for components of cysteine and methionine metabolism (Figure 6B) in addition to 

glycerophospholipid, histidine, and nicotinate and nicotinamide metabolism. Four of the 

metabolites (L-arginine, MTA, SAH and L-methionine) were contained in the 

interconnected pathway represented in Figure 1F, with three of them closely related in the 

critical methylation step (Figure 6C). Some of these MCMs may have clock functions 

through actions on RNA methylation or chromatin, for example, UDP-glucose derived 

glycosylation or methylation at histone tails (Eckel-Mahan and Sassone-Corsi, 2013). This 

leads to the possibility that these metabolites could play a role in epigenetic regulation.

To test whether the 18 MCMs were regulated by primary outputs of the clock, we 

investigated their levels in U2 OS cells after knockdown of BMAL1, CRY1, and CRY2. As 

expected, all were arrhythmic after BMAL1 knockdown. Overall these MCMs (Figure 5D) 

follow the expected trend of a shorter period with CRY1 knockdown and lengthened period 

with CRY2 knockdown. There were exceptions, e.g. rather than changing period, MTA 

cycling was ablated when either CRY1 or CRY2 were depleted, while SAH cycling and 
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UDP-glucose was ablated only with CRY1 KD. Together, these results argue that 

interactions of the transcriptional and metabolic clocks influences molecules involved in 

methylation, oxidative stress, and glycosylation, which have been shown by many others to 

play a role in epigenetic mechanisms.

In order to further assess the cell autonomous metabolite rhythms, we studied synchronized 

primary mouse hepatocytes. Due to known dampening of the molecular clock in isolated 

hepatocytes (Hughes et al, 2009), a limited time course was performed (4 h collection of 24 

h). Verification of key clock genes confirmed that expected core clock gene transcripts were 

cycling (Figure 7A, S5A). Clear temporal variation was noted in a number of metabolites 

(Figure 7B, S5B), with 45/154 (29%) metabolites showing significant circadian rhythms 

using the same criteria as the U2 OS cell experiment (BH.Q<0.2 in JTK_Cycle). This is very 

similar to the total cycling metabolites in U2 OS, and reduced compared to liver which is 

likely a function of being cell autonomous, dampening rhythms and the relatively low-

resolution of temporal sampling.

A comparison of the cycling between primary hepatocytes and liver for the set of multi-

cycling metabolites reveals that a subset of the MCMs also cycle in hepatocytes (Figure 7C). 

Five of these (histidine, butyrlcarnitine, UDP-glucose, oxidized glutathione, and taurine) 

cycle significantly (BH.Q < 0.2), with nicotinamide, and CMP being close to meeting this 

threshold. As a result, a subsequent comparison was done with a slightly relaxed threshold 

(BH.Q < 0.3, p<0.05) to the liver and U2 OS data (Figure 7D). Consistent circadian cycling 

of these seven metabolites in two cell autonomous systems and one in vivo system presents 

compelling evidence that these metabolites are indeed directly related to the transcriptional 

clock. It remains to be seen if the remaining MCMs not observed to be cycling in primary 

hepatocytes have functional significance in maintenance of circadian function.

MCM metabolites are differentially regulated under conditions of circadian challenge

We note 90 metabolites which cycle in livers from in ad lib fed mice. Feeding, and timing of 

food intake can be viewed as both an input into the (Damiola, 2000) clock as well as a 

property controlled by the clock. In our experiment, the DD conditions imply that the 

influence of feeding on the metabolome will be a circadian property in and of itself. In order 

to better understand the influence of feeding behavior on our results, we compared the liver 

cycling metabolite to two studies which have used high fat diet (HFD) and/or time-restricted 

feeding (tRF) as models of circadian manipulation (Complete comparisons are available as 

Dataset S2).

The study of Abbondante et al. examined oscillatory behavior in animals fed both ad lib and 

HFD using 4 h sampling over 24 h. A total of 88 metabolites were measured in both the 

current and Abbondante studies. Using the same FDR (q < 0.05), 26 metabolites cycle in the 

Abbondante data with normal chow diet compared to 51 in this study. 20 of these 

metabolites overlap. Thus, our high-resolution time sampling study nearly doubled the 

number of cycling metabolites.

Additionally, the effects of HF vs control diet on circadian function was examined using a 

relaxed FDR for the previous study (BH.Q < 0.20). ~24% cycled under both normal chow 
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and HFD and in our study, including four MCM metabolites (UDP-glucose, methionine, 

proline, and phosphocholine). An additional five metabolites cycled in our study and under 

normal chow in Abbondante et al, (~6%) including three MCMs (glycine, CMP and 

glycerophosphocholine). Conversely, 13 metabolites (~15%) cycled in our study and under 

HFD, including 6 MCMs (SAH, Taurine, 5-methylthioadensine, glutamate, butrylcarnitine, 

and oxidized glutathione). A further 13 metabolites (~15%) were cycling only in our study 

including four MCMs (histidine, nicotinamide, arginine, and malate), while 12 and 16 

metabolites (~14% and ~18%) were oscillatory under normal chow and HFD, respectively, 

in Abbondante et al. and not significantly cycling in this study.

We note with interest that the metabolites cycling under HFD in Abbondate et al included 

methylation metabolites found to be key MCMs in our study (SAH, 5-methylthioadenosine). 

Our interpretation is that these metabolites are detectable as oscillating in our study, 

presumably due to high-resolution sampling, and under HFD perturbation this metabolite 

cycling is amplified. This reasoning is supported by fact that another metabolite from this 

pathway, SAM also cycles only under HFD in Abbondante, as well as in our study under ad 

lib feeding.

In order to examine if there are a set of cycling metabolites which are resistant to clock 

dysfunction, metabolites which cycled under both ad lib and HFD conditions in liver, as well 

as in the cell autonomous U2 OS system were compared. Ten metabolites met this criteria, 

including the MCMs UDP-glucose, methionine, and proline, as well as branched chain 

amino acids (Leucine/isoleucine, valine), alanine, phenylanaline, inosine, and NAD+.

An alternative approach to examine the influence of feeding on circadian function is through 

time-restricted feeding. Hatori et al (2012) examined the interaction between tRF and 

feeding regimes (normal chow vs. HFD). Although this study did not examine directly 

oscillatory behavior, global comparison of 82 metabolites measured in both studies reveals 

27 metabolites (33%) including eight MCM’s (taurine, 5-methylthioadenosine, glutamate, 

glycine, nicotinamide, phosphocholine, glycerophosphocholine, CMP, and malate) are 

oscillating in this study and altered by tRF. In contrast, 21 metabolites (25%) including 

seven MCMs (SAH, histidine, methionine, oxidized glutathione, proline, butrylcarnitine and 

arginine) oscillate in this study but are not tRF-dependent in Hatori et al., while 13 

metabolites (~16%) are time-dependent in Hatori et al, but not oscillating with BH.Q<0.05 

in this study. The remaining 21 metabolites (26%) are not oscillating or time-dependent in 

either study.

Circadian transcription, translation, and metabolite acrophases

To better understand the interaction between transcription and metabolism, we looked at the 

relationship between the peak expression of the liver transcripts (Hughes et al., 2009) and 

the MCMs synthesized by their protein products (Figure 6D). Recent studies demonstrate a 

median 6 h delay between transcription and protein levels in the liver (Robles et al., 2014). 

We hypothesized that there’s an additional delay between protein levels and function, as 

measured by metabolite concentrations. Consistent with this, phase differences were just 

over 12 hours (mean, 12.44 h, median 13.75 h) between cycling transcript and metabolites. 

This relationship, combined with previous proteome analysis, would imply a delay of ~6 h 
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between protein expression and metabolite peaks. Examination of two published proteomics 

(Mauvoisin, 2014; Robles et al., 2014) datasets revealed available information on twelve 

unique rate-limiting enzymes in liver with significant cycling (FDR < 0.2), namely Tdo2, 

Pck1, Lpin1, Lpin2, Tat, Fads2, Alas1, Hmgcs1, Gne, Fkbp4, Crot, and Impdh2. Of these, 

metabolite information was available for the tyrosine aminotransferase reaction catalyzed by 

TAT, with the hydroxyphenylpyruvate product. Peaks for TAT protein (CT18), and 

hydroxyphenylpyruvate from this study (CT 3.5) roughly agreed with our analysis, although 

in this case the mRNA acrophase was simulataneous with the protein (CT18) highlighting 

the complexity of these relationships. Intuitively, the delay between protein peak and 

product peak is perplexing as most enzymes would be expected to act in a much shorter 

timescale.

Further analysis of other canonical pathways reveals a variety of interactions between 

cycling transcripts, metabolites and proteins and their rhythmicity. For example, there is no 

cycling at any level in the conversion of phosphoenolpyruvate to pyruvate and then lactate. 

On the other hand, cycling in glucose-6-phospate (measured as hexose-6-phosphate here but 

dominated by the glucose form) is robust, as is mRNA cycling of Pfkl and Fbp1, but not 

fructose-1,6-bisphophate nor any protein products. Similarly, robust glucose and glucose 

transporter (Glut2/Slc2a2) mRNA cycling is observed (but no significant rhythmicity in 

transporter protein or hexokinase mRNA or protein). This suggests that multiple forms of 

regulation are at played and stoichiometry alone is not sufficient to understand these 

relationships. A complete analysis would require additional factors such as substrate and co-

factor availability, catabolic protein production, protein PTM state and cellular transport and 

localization. In sum, the overall picture appears to be an orderly transition between peak 

cycling of transcripts, proteins, and metabolites with ~ 6 h delays between each step.

In conclusion, we present the first description of comprehensive oscillatory metabolism in 

mammalian systems under true circadian conditions (DD, with high temporal resolution). 

We find a similar percentage of detected polar metabolites oscillate as transcripts. Further, 

we describe the first comprehensive analyses of cell-autonomous metabolite rhythms in 

mammalian cells. Here, we find a much higher % of metabolites cycle than transcripts. 

Interestingly, in mouse liver, like transcription and translation, we find harmonics at both the 

12- and 8-h frequency. We find a significant overlap in the cycling metabolites between 

mouse liver and human U2 OS cells, with many of the metabolites known to play a role in 

epigenetic regulation. Genetic perturbation of the U2 OS system shows that this cycling 

depends on an intact circadian clock. However, following CRY1 knockdown, rather than 

adopting a global short period analogous to locomotor activity in Cry1−/− mice, metabolites 

become frequency de-coupled from transcription, with many adopting an 8-h frequency. 

Mapping the transcription and metabolite profiling, we found a ~ 12 h difference, or double 

the average difference found between transcription and translation in a set of conserved 

metabolites cycling across both systems. In sum, these data show the pervasive influence of 

the clock on metabolism and complex multi-scale interactions between systems.
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STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Aalim M. Weljie (aalim@upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal preparation and liver collection—High-resolution circadian collection was 

performed by using 6 week old C57Bl/6J male mice were acquired from Jackson Labs, 

entrained to a 12 h light: 12 h dark lighting schedule for 1 week before being released into 

constant darkness. After 18 h in constant darkness, three mice were euthanized in the dark 

every hour, for 48 hours by cervical dislocation. Liver samples were quickly excised and 

snap-frozen in liquid nitrogen. (Hughes et al., 2009; Zhang et al., 2014). Food and water 

were supplied ad libitum throughout. All procedures were approved by the University of 

Pennsylvania Institutional Animal Care and Use Committee.

Homozygous Cry1 −/− or Cry2−/− mice were obtained from original Cry1 −/− or Cry2−/− 

lines of partial C57Bl/6 background and were each backcrossed more than 12 times against 

the C57Bl/6 background and then these were again crossed. The backcrossed homozygous 

Cry1 −/− or Cry2−/− mice were maintained in 12 h light: 12 h dark with food and water ad 

libitum. At approximately 8 weeks of age, mice were individually sacrificed by asphyxiation 

with CO2 at either ZT10 or ZT22. Liver samples were immediately snap frozen. All 

procedures were approved by the University of North Carolina Institutional Animal Care 

and Use Committee.

Cell autonomous U2OS cell collection—U2 OS cells (female) were seeded at 150,000 

cells per 35-mm dish in DMEM medium containing 10% fetal bovine serum (FBS), 1X L-

glutamine (Gibco), without antibiotics. Cells were transfected with 12 pmol of siRNA using 

Lipofectamine RNAiMax transfection reagent (Invitrogen) following the manufacturer’s 

instructions. A negative control siRNA (AllStars Negative control siRNA; Qiagen) was used 

to control for exogenous RNA introduction into the cell at equal molar amounts of BMAL1, 

CRY1 and CRY2 siRNA in each condition. Cells were plated 4 days prior to synchronization 

and allowed to grow to confluence. Cells were synchronized with 0.1 μM dexamethasone. 

The collection began 48 hours post-synchronization for MS studies with siRNA addition 

(Baggs et al., 2009). During the collection, cell pellets were collected and snap frozen every 

two hours for 48 hours (Altman et al., 2015).

Primary mouse hepatocytes—Primary hepatocytes (male) were isolated from 8-weeks-

old male C57BL/6J mice, ordered directly from Jackson Labs. Animals were housed in 

groups of five mice/cage in a pathogen-free barrier facility in a 12-hour light-dark cycle with 

free access to food and water for 2weeks.

Hepatocytes were isolated using modified two-step perfusion method. The portal vein was 

cannulated and the liver was perfused with Liver Perfusion Media (Invitrogen) followed by 

Liver Digestion media, containing Kreb-Ringer Bicarbonate (Sigma) supplemented with 

20mM HEPES, 500uM CaCl2, Collagenase/Elastase (Worthington) and DNase I 
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(Worthington) were used for isolation. After the perfusion, liver was removed, disrupted to 

release cells using cell scrapers. The cell suspension was then filtered through 70μm filter 

and centrifuged at 50g for 5 minutes at 4°C, washed once in KRB buffer and precipitated in 

25% Percoll gradient at 120g for 5 minutes at 4°C. Healthy hepatocytes were plated at a 

concentration of 3X106 and 1X106 on 10 cm and 100 mm collagen coated dishes 

respectively, in 1XDMEM supplemented with 10% FBS and1% Penicillin Streptomycin 

(Miller, et al, JCI, 2011).

METHOD DETAILS

Immunoblots—Liver samples were immersed in M-PER Mammalian Protein Extraction 

Reagent (Thermo Fisher) supplemented with protease inhibitor cocktail (BD Biosciences, or 

Promega) and phosphatase inhibitors II and III (Sigma). Samples were then lysed with a 

Tissue Lyser II (Qiagen), further homogenized by passage through a Qiashredder column 

(Qiagen), and centrifuged at 16,000 x g for 10 min at 4°C. Supernatants were quantified for 

protein content using the Bio-Rad DC assay kit (Bio-Rad), with BSA serving as a reference 

(Thermo Fisher). Proteins were resolved by SDS-PAGE using Criterion pre-cast gradient 

gels (Bio-Rad). Antibodies used were rabbit anti-Cry1 (Abcam), rabbit anti-phospho p70 

S6K Thr. 389 (Cell Signaling), rabbit anti-p70 S6K (Cell Signaling), rabbit anti-pS6 Ser. 

235/236 (Cell Signaling), mouse anti-S6 (Cell Signaling), rabbit anti-4EBP1 Thr. 37/46 

(Cell Signaling), rabbit anti-4EBP1 (Cell Signaling), and mouse anti-α Tubulin (EMD 

Millipore). Secondary antibodies used were Alexa-Flour 680 goat anti-rabbit IgG (Life 

Technologies) and Alexa-Flour 790 goat anti-mouse IgG (Life Technologies). Immunoblots 

were imaged with the Odyssey CLx infrared imaging system (Licor) and uniformly 

contrasted.

qPCR and Primers—RNA was extracted from the frozen pellets of U2 OS as well as the 

mouse primary hepatocytes, using the RNeasy Plus Mini Kit (Qiagen) according to 

manufacturer’s instructions. U2OS cDNA was prepared using 500 ng of RNA and the 

qScript RT reagent (Quanta Biosciences), and hepatocyte cDNA was prepared using 2 μg of 

RNA and TaqMan Reverse Transcription Reagents (Life Technologies). U2OS cDNA was 

diluted 1:10, and hepatocyte cDNA not diluted, and used as template for quantitative real 

time PCR (qPCR) with specific human or mouse primers. qPCRs were performed with 

Power SYBR Green PCR Master Mix (Life Technologies), Taqman Universal PCR Mix 

(Life Technologies), or PerfeCTA Fast mix II Low Rox (Quanta Biosciences), using the 

StepONE Plus System (Life Technologies) and the Viia7 system (Life Technologies). 

Relative mRNA expression levels for hepatocytes were normalized to 36B4 (Gréchez-

Cassiau, 2008) and to GAPDH for U2 OS cells, and analyzed using comparative delta-delta 

CT method. All qPCR primers are listed below:

Gene Name Sequence or Product Number Source

36B4 (Rplp0) TTA TAA CCC TGA AGT GCT CGA C, CGC TTG TAC 
CCA TTG ATG ATG

IDT

REV-ERBα (Nr1d1) Mm00520708_m1 Taqman Gene Expression Assay
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Gene Name Sequence or Product Number Source

REV-ERBβ (Nr1d2) Mm.PT.51.12747673 IDT

BMAL1 (Arntl) Mm00500226_m1 Taqman Gene Expression Assay

Cry1 Mm00514392_m1 Taqman Gene Expression Assay

Cry2 Mm01331543_g1 Taqman Gene Expression Assay

GAPDH Endogenous Human control Taqman Gene Expression Assay

ARNTL Hs00154147_m1 Taqman Gene Expression Assay

CRY1 Hs00172734_m1 Taqman Gene Expression Assay

CRY2 Hs00391360_m1 Taqman Gene Expression Assay

Metabolite Extraction—U2OS and hepatocyte cell pellets were thawed on ice and 

metabolites were extracted using a modified Bligh-Dyer method (Bligh and Dyer, 1959; 

Tambellini et al., 2013). Briefly, a methanol:chloroform (2:1) mixture (300μl) was added to 

the cell pellets, then vortexed and sonicated for 15 min. Chloroform and water (100μl each) 

were then added and samples were vortexed. Organic and aqueous layers were separated by 

centrifugation at 13,300rpm, for 7mins at 4°C. Aqueous layer was dried in a speed vacuum 

for 4 h until dry and re-dissolved in a mixture of 50:50 acetonitrile:water. The samples were 

centrifuged at 13300rpm for 5min to remove fine particulates. The supernatant was 

transferred to a LC-MS certified sample vial for Ultraperformance liquid chromatography 

with 95:5 water:acetonitrile 20mM ammonium acetate, pH 9 (solvent A) and 100% 

acetonitrile (Solvent B), on a Waters Acquity UPLC coupled to a Waters TQD mass 

spectrometer (Waters Corporation, USA). The same procedure was used for liver tissue 

analysis with 50 mg of liver tissue extracted per animal.

UPLC-MS based data acquisition for targeted polar metabolite profiling—
Liquid chromatography conditions and mass spectrometer parameters were optimized and 

performed by injecting each 5μl sample onto an XBridge BEH 2.5μm 100mm x 2.1mm 

amide column using an Acquity H-class UPLC system (Waters Corporation, USA). Total 

chromatographic separation was 22min initial conditions of 15% A and 85% B at 0.15mL/

min, ramped to 70%A and 30% B in 5mins, followed by an isocratic hold for 10mins. The 

column was washed in 98% A and 2% B and re-equilibrated in the starting conditions before 

the next injection. Mass spectrometry was performed on a QQQ quadrupole instrumentation, 

(Xevo TQD or TQS-micro, Waters Corporation, USA) operating using ion-switching with 

capillary voltage of 3000V and 2000V respectively, and a column temperature of 40°C. The 

desolvation gas flow was set to 900 L/h and the temperature was set to 450°C. The source 

temperature was set at 150°C. Data was acquired as multiple reaction monitoring’s (MRM) 

to target specific metabolites along with validation either through standards or mass 

spectrometry databases. The entire set of duplicate sample injections were bracketed with a 

test mix of standard metabolites at the beginning and at the end of the run to evaluate 

instrument performance with respect to sensitivity and reproducible signal. The sample 

queue was randomized to remove bias (Rhoades, 2016).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Mass spectroscopy data processing and enrichment analysis—Mass 

spectroscopy data processing was performed using Waters TargetLynx software (version 

4.1). Ion counts were exported from TargetLynx and subsequently processed in R (version 

3.2) using a custom-designed processing script. Quality control (QC) samples, which 

consisted of a pooled sample of all samples, were injected at the beginning of the batch for 

LC column equilibration and every 6 injections during the analysis to account for 

instrumental drift. For every metabolic feature, a locally-weighted scatterplot smoothing 

function (LOESS) was fitted to the QC data, which was then used as a normalization factor 

for the samples as a function of run (Dunn, 2011) order. Additionally, metabolic features 

which appeared in less than 50% of the QC samples and displayed a relative standard 

deviation (RSD) greater than 30% were dropped from the final dataset. In total, 250 

endogenous polar compounds were targeted, with 179 passing the above criteria. This is 

similar to non-lipid compounds in previous work (for example ~175 polar compounds in 

Abbondante et al (2015). Pathway analysis was conducted using Metabolites Enrichmement 

Set Analysis (Xia, 2010) (MSEA.com) or IMPALA (Kamburov, 2011). Pathway impact or 

fraction is the number of metabolites as hits in a pathways compared to the total set.

Statistical parameters such as details of replication and error bar meaning are reported in the 

figure legends.

Transcript to metabolite phase analysis—To study phase differences between 

circadian metabolites and their circadian transcripts, EC numbers for direct synthesis 

enzymes were extracted manually from KEGG pathways related to the 18 common 

metabolites cycling between mouse liver and human U2 OS cells. Cycling data from high-

resolution time-series transcriptome (Hughes et al., 2009) from wild type mouse liver were 

coordinated. Raw cel files (downloading from GEO database) were analyzed with gcrma() 

function (gcrma package) and further normalized by normalize Quantiles() function (limma 

package) implemented in R. Time-series expression profiles and metabolite data were 

separately analyzed by JTK_CYCLE, version 3 (Hughes, 2010) through meta2d() function 

(only ‘JTK’ is selected for periodic detection, period length in search was set as 24; 

MetaCycle package). For extracting annotation information (including gene symbol and EC 

number) for each probe set, the mouse4302.db package was used. Those probe sets with 

maximum expression value less than 10^1.45 or lacking annotation were filtered out, and 

BH.Q values (Benjamini, 1995) were re-calculated based on p-values given by JTK_CYCLE 

for the remaining probe sets. For genes with multiple probe sets, a representative with 

smallest p-value and largest amplitude (in the case of multiple probe sets with equal smallest 

p-value) was selected. Metabolites (FDR < 0.05) and transcripts (FDR < 0.05) were linked 

based on the EC number to calculate phase differences. As we were focused on synthesis 

genes, we assumed that the peak phase of a metabolite must follow the peak phase of its 

associated transcripts. If transcript acrophase preceded metabolite acrophase, the phase of 

transcript was shifted by one 24 h period length. The phase differences between circadian 

metabolites and circadian transcripts involved in their synthesis were then calculated. R 

software (R 3.2.3) was used to perform analysis.
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DATA AND SOFTWARE AVAILABILITY

The final metabolite dataset is publically available in the MetaboLights database under 

accession number MTBLS292 in addition to Supplemental Table 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 50% of detected metabolites oscillate in mouse liver

• 18 metabolites cycle in both liver and in the cell autonomous U2 OS system

• These oscillations in the U2 OS system are driven by core clock genes

• Genetic perturbation of CRY1 decouples transcriptional and metabolite 

rhythms
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Figure 1. Mouse liver circadian metabolites uncovered using high temporal resolution profiling
(A) Heat map demonstrating robust circadian metabolite cycling for 90/179 (~50%) 

metabolites measured in two replicates collected every hour for 48 hours with a JTK BH Q < 

0.05. Compounds with low confidence identification are indicated by a numeric m/z 

transition. (B) Metabolite enrichment analysis of oscillating metabolites indicates largest 

pathway impact on arginine and proline metabolism; cysteine and methionine metabolism; 

glycine, serine and threonine metabolism and pyrimidine metabolism. Y-axis depicts 

significance of the over-representation compared to a random reference of known 

metabolites. (C) Distribution of circadian phases from metabolite cycling indicates discrete 

peaks anticipating dawn and through the circadian day. (D) Distribution of periodicity of 

cycling metabolites, with the majority of metabolites having circadian periods, a significant 

set with ~12 h periods and 3 metabolites with ~8 h periods. (E) “Leave some out” analysis 

of resolution required to adequately sample circadian metabolite data. Lines are labeled with 

time between samples (temporal resolution), and the most common reported experimental 

designs in literature noted with a red box. See also Figure S1, Table S1 and Dataset S1.
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Figure 2. 
Network of pathways consisting of methylation, nitrogen and creatine metabolism. 

Metabolites with significant circadian oscillations are colored as a gradient with blue 

indicating peaking near CT 6 and yellow near CT 18. Outside panels show individual 

normalized mass spectrometry measurements at each time point (mean ± SEM), with a loess 

fit demonstrating the oscillatory metabolites. Data for all time-series plots was derived from 

two biological replicates and two analytical replicates. Error bars represent standard error of 

the mean.
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Figure 3. Cell autonomous U2OS cells undergo large-scale rhythms in metabolism
(A) 27% of measured metabolites (left panel) and 1.5% of measured genes (right panel, 

from Hughes et al, 2009) show circadian oscillations in the U2 OS cell system (assessed as 

periods between 20-28 hours, JTK BH.Q<0.2). Cells were sampled every 2 hours over two 

days starting 48 hours post-synchronization with dexamethasone. (B) Distribution of 

circadian phases from metabolite cycling indicates discrete peaks at CT 6 and CT 10. (C) 

Heat map showing wide range of cycling metabolites. Metabolites were ordered according 

to periodicity. (D, E) Cycling metabolites over the range of observed periods with a peak just 

less than 24 h, with a minor peak at 12 and 30 h. The lowest BH.Q values from JTK analysis 

corresponded to 22 and 24 hours. (F) Pathway enrichment analysis using MSEA highlights 

predominately one carbon, branched chain, glycerophospholipid and nicotinamide 

metabolism. See also Figure S1, Table S1 and Dataset S1.
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Figure 4. Perturbation to core clock components BMAL1, CRY1 and CRY2 in U2OS cells alters 
metabolic cycling
(A) BMAL1 knock down ablates cycling of most metabolites, with only 8/137 metabolites 

oscillating (JTK BH.Q < 0.2). Three metabolites (ATP, ADP, Nicotinamide ribotide) also 

oscillate with addition of the scrambled siRNA control, and the remaining 5 oscillate de 
novo. (B) Knockdown of CRY1 and CRY2 induce asymmetric shifts on the overall period of 

cycling metabolites. CRY1 knockdown creates a bimodal distribution of periods centered at 

~8 and ~30 hours. CRY2 knockdown induces a shift in periods over a range of 20-40 hours 

with a peak near 34 hours. (C) Metabolites with well-defined 8 h oscillations in CRY1 
knockdown cells (JTK BH.Q < 0.01), are primarily amino acids, including methylated 

species. The y-axis is the intensity following run-order correction as described in the 

methods. Data for time-series plots was derived from two analytical replicates, with error 

bars representing standard error of the mean. (D) Metabolite pathway mapping and 

trajectory created using Impala represents the impact knockdown of CRY1 and CRY2 have 

on oxidative stress and energy related pathways. Depletion of either CRY species increases 

the number of metabolites perturbed and extent of pathway coverage. (E) Effect of CRY1 
and CRY2 knockdown on the 18 clock controlled metabolites identified as overlapping 

between U2 OS metabolism and liver metabolism. Top row of numbers in gray boxes are the 

observed period lengths with lowest BH.Q values from JTK_CYCLE analysis and the 

intensity is proportional to the amplitude (AMP). These metabolites follow overall trends in 

period shifting observed across all metabolites, however rhythmicity in methylation 

metabolites is lost following CRY1 knockdown (SAH) and in both CRY1 or CRY2 KD (5-

methylthioadenosine). See also Figure S3.
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Figure 5. Metabolic impact of CRY1 loss
A) Global metabolic changes in U2 OS cells under CRY1 siRNA KD conditions. Samples 

from all timepoints were compared with control cells scrambled control siRNA to establish 

global metabolic defects. B) Volcano plot of differential changes in U2 OS cells under CRY1 
KD. The annotated compounds correspond to those with significant cycling. C) Targeted 

analysis of amino acids and UMP involved in nutrient sensing via mToR signaling from 

male Cry1−/− animals and background controls (N=5–6 / group). Error bars represent 

standard error of the mean. See also Figure S4.
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Figure 6. Rhythmic metabolites are under common clock control from U2 OS cells and mouse 
liver
(A) Overlap of rhythmic metabolites between cell autonomous human U2 OS model and 

mouse liver. Eighteen metabolites are found to be oscillatory in both systems. (B) Metabolite 

enrichment of the 18 clock regulated metabolites specifically demonstrates the importance 

of cysteine and methionine metabolism. (C) Expansion of the metabolic pathway involving 

three metabolites in the methylation pathway, including SAH (S-adenosylhomocysteine), 

methionine and 5’-methylthioadenosine. Metabolites in blue are also involved but not found 

to be overlapped between U2 OS and liver, and grey boxes represent putative methylation 

targets including several known clock-modifying targets such as histones. (D) Analysis of 

difference between peak phase of metabolites (orange) and transcripts involved in their 

synthesis (blue) in mouse liver. Open orange circles indicate metabolite phases shifted with 

one period length. The phase difference (metabolite phase minus transcript phase) is 

indicated as purple triangles.
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Figure 7. Primary hepatocytes exhibit global metabolic cycling
A) Cultured hepatocytes were synchronized with 0.1 μM dexamethasone, and mRNA was 

collected at the indicated timepoints after synchronization. Expression of Bmal1 (Arntl), 

Rev-erbβ (NR1D1), and Rev-erbβ (Nr1d2) were determined by qPCR, normalized to 

expression of 36B4 (Rplp0), as has been described (Gréchez-Cassiau, 2008) previously 

(Data are averages from two biological replicate experiments). (B) Temporal concentrations 

of circadian cycling metabolites with lowest FDR values demonstrating metabolite cycling. 

Complete data are available in Dataset S1. Data are averages of two to three biological 

replicate experiments with three analytical replicates and the error bars represent standard 

error of the mean. (C) Comparison of the JTK reported q-values for circadian cycling 

between liver and hepatocytes for the 18 MCMs reported here. Metabolites with appreciable 

cycling are annotated. (D) Overlap in number of metabolites reported to cycle between liver, 

U2 OS and primary hepatocyte cycling datasets. See also Figure S5.
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