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Abstract. Glandular structural features are important for the tumor pathologist in the assessment of cancer
malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual
observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement
among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An auto-
mated gland segmentation system can highlight various glandular shapes and structures for further analysis by
the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an
automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from
prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and
stroma regions. Our automated gland segmentation system was trained using these manual annotations. It iden-
tifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial
information for consolidating pixel-level classification results into object-level segmentation. Experimental results
show that our method outperforms various texture and gland structure-based gland segmentation algorithms in
the literature. Our method has good performance and can be a promising tool to help decrease interobserver
variability among pathologists. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.027501]
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1 Introduction
The prostate gland is a functional conduit that allows urine to
pass from the urinary bladder to the urethra and adds nutritional
secretions to the sperm to form semen during ejaculation.
Microscopically, the prostate is composed of glandular epi-
thelium and fibrous stroma. Prostate cancer (PCa) occurs mostly
in gland cells and hence is called prostate adenocarcinoma.

Gleason grade of prostate adenocarcinoma is an established
prognostic indicator that has stood the test of time.1,2 The
Gleason system is based on the glandular pattern of the tumor.
Architectural patterns are identified and assigned a pattern
from 1 to 5, with 1 being the most differentiated and 5 being
undifferentiated.2,3

Increasing Gleason grade is directly related to a number of
histopathological end points, including lympho-vascular space
invasion by carcinoma, tumor size, positive surgical margins,
and pathological stage, which includes risk of extraprostatic
extension and metastasis. Histological grade of prostatic carci-
noma is one of the most powerful, if not the dominant, predictor
of clinical outcome for patients with this cancer. A number of
clinical end points have been linked to histological grade. These
clinical end points include clinical stage, response to different
therapies, prostatic-specific antigen (biochemical) failure, pro-
gression to metastatic disease, PCa-specific survival, and overall
survival.2,4–7

Certain areas of the Gleason system have been modified over
the years. Some aspects in the original scoring are interpreted
differently in modern practice. Due to the changes in the
Gleason scoring over the years, it is now known that a specimen
that has received a Gleason score of 1þ 1 ¼ 2 in the area of
Gleason would today be referred as adenosis (atypical adenoma-
tous hyperplasia).8 It is therefore a grade that should not be diag-
nosed regardless of the type of specimen, with extremely rare
exceptions. Also, a diagnosis of a lower score on needle biopsy
is inaccurate because of

1. poor reproducibility among experts,

2. poor correlation with prostatectomy grade, with the
majority of cases exemplifying higher grade at resec-
tion, and

3. the possibility of misguiding clinicians and patients
into believing that the patient has an indolent tumor.

Hence, clinicians are no longer using these Gleason 1 and
2 cancers in managing PCa. As for Gleason 5, it is easily iden-
tified by pathologists, and hence in our study, we did not focus
on it. Instead, our study concentrates on the difficulties and
reliability in identifying Gleason 3 and 4 cancers, which will
subsequently affect both pathology and actual clinical manage-
ment of PCa.
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In the International Society of Urological Pathology 2005
Modified Gleason System, Gleason pattern 3 includes discrete
glandular units, glands that infiltrate in and among nonneoplas-
tic prostate acini and showing marked variations in size and
shape. Pattern 4 exhibits ill-defined glands with poorly formed
glandular lumina, cribriform, and fused microacinar glands.
Pattern 4 also shows hypernephromatoid structures.9

The Gleason grading system, like all histological grading
methods, possesses an inherent degree of subjectivity. Intra-
and interobserver variability do exist. Recent data suggest
that, for needle biopsy grading, pathologist training and expe-
rience can influence the degree of interobserver agreement.10–12

Manual diagnosis of PCa is a tedious and time-consuming proc-
ess where the pathologist examines a prostate tissue under

a microscope. Moreover, the diagnostic accuracy depends on
the personal skill and experience of the pathologist.

While the Gleason system has been in use for many decades,
its dependence on qualitative features leads to a number of
issues with standardization and variability in diagnosis.
Intermediate Gleason grades (3 or 4) are often under- or over-
graded, leading to interobserver variability up to 48% of the
time.12 The main reason for undergrading (score 6 versus 7)
was not recognizing relevant fusion of glands as a criterion
for pattern 4.13

These problems motivate the research and development of
assisting the diagnosis and prognosis processes through the
use of software.14 Effective assistive diagnosis and prognosis
tools have to be built in stages. First, basic tools, such as

(a)

(b)

Fig. 1 (a) Example of Gleason pattern 3 H&E image, I0. We also show the annotations (image G) over-
laid on I0. For image G, red: gland, blue: lumen, and green: periacinar retraction clefting. Both the gland
section with discontiguous lumina and the gland section with no visible lumen generally result from tan-
gential sectioning of well-formed glands.We illustrate these two cases by the schematic diagram of gland
tissue with example section positions in the middle. (b) Overview of our gland segmentation system.
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automated prominent nucleoli detection and gland segmentation
tools, need to be developed. Second, these tools need to be put
together in an effective way. We developed an effective promi-
nent nucleoli detector in our previous work.15 In this paper, we
present an effective method for gland segmentation. Gland seg-
mentation is the first step for the analysis of gland shapes and
architecture. We illustrate the main challenges we encountered
in gland segmentation in a sample Gleason pattern 3 image in
Fig. 1(a). The original hematoxylin and eosin (H&E) image I0

overlaid by annotation image G and the exhibiting potential
issues in segmentation are shown in this figure.

Glands are inherently three-dimensional (3-D) structures,
but, when processed and sliced, we can only analyze the
cross section of these 3-D structures. Glands are generally com-
posed of a lumen in the center with epithelial nuclei at the boun-
dary and cytoplasm filling in the intermediate space. Lumen can
be identified as empty white spaces within the glandular struc-
ture. Periacinar retraction clefting resulting in clear spaces
around the glandular area may be seen on the histological
material as a random phenomenon in tissue fixation. These cleft-
ings arise from tissue handling during the biopsy procedure,
undue delay in fixation, and tissue fixation itself. These peria-
cinar retraction clefting are also white and are very similar to
lumen. Some of the white areas may be masked by other cellular
components, such as blood cells, which may impede automated
identification of lumen and periacinar retraction clefting objects.
Tangential sectioning of well-formed glands leads to gland sec-
tions with no visible lumen and/or with discontiguous lumina in
the histological tissue slides. These issues arise when the tangen-
tial section plane misses the lumen or passes through the lumen
multiple times (see Fig. 1). The varying gland shapes and sizes
impede segmentation algorithms, which rely on template shapes
and structures. We have illustrated all of these issues in Fig. 1(a).

In this study, we aim to develop an automated system for
gland segmentation in PCa tissue images of H&E-stained his-
tology slides. We used a machine learning and image process-
ing-based gland segmentation method. Machine learning
methods used pixel neighborhood and object shape information
for an empirical estimate of various regions of the image. Image
processing methods were used to further refine these approxi-
mations to compute the final segmentation result. The workflow
of our method is as follows:

1. Tissue images are manually extracted from whole slide
images. These images are then segmented by our auto-
mated gland segmentation system.

2. Periacinar retraction clefting and lumen regions are
automatically identified in the extracted tissue images.

3. All the glands lined by epithelial cells and surrounded
by stromal cells are automatically segmented for the
final result.

2 Related Work
Existing gland segmentation methods generally use texture and/
or gland structure information. Farjam et al.16 used variance and
Gaussian filters to extract roughness texture features in prostate
histopathological images. They used k-means clustering for
pixel-wise classification for nucleus and cytoplasm. This pixel
information was then used for gland segmentation. Texture-only
based approaches generally do not have access to lumen and

epithelial nuclei’s spatial information and may perform badly,
as discussed in Sec. 4.

To alleviate this problem in gland segmentation, algorithms
have been developed to use gland morphology and lumen–
epithelial nuclei relationships. Naik et al.17 used a level set
method for gland segmentation. The initial level set is detected
by a Bayesian classifier and surrounded the lumen region. The
energy functional was developed for attaining minimum energy
when the level set is around the epithelial nuclei. Xu et al.18 pro-
posed a faster version of Naik et al.17 after modifying the energy
functional in the geodesic general active contour model. These
level set methods, when initialized correctly, would result in
a reasonable segmentation. This property also defines their
main limitation, which is level set initialization. These algo-
rithms would also result in inaccurate segmentation due to incor-
rect or missing initial level sets.

Gunduz-Demir et al.19 proposed using object graphs for seg-
mentation of colon histopathology images. Their algorithm first
detects circular objects in the images and then identifies them as
nuclei and lumen using object-graph information. A boundary
of the gland was then constructed by connecting the centroids of
nuclei objects. The identified lumen objects are then grown until
they touch the gland boundary. This method will segment glands
with lumen inside them but would fail to properly segment
glands with no visible lumen and discontiguous lumina.

Nguyen et al.20 used k-nearest neighbor classification based
on CIELab color space information to classify pixels as stroma,
lumen, nuclei, cytoplasm, or blue mucin. This method then uni-
fied the nuclei and cytoplasm pixels to extract gland boundaries.
Similarly, Monaco et al.21 used luminance channel in the
CIELab color space in conjunction with Gaussian kernels to
find the gland centers. These gland centers were then expanded
into glands using a region growing method22 in the RGB color
space. This method will segment glands with lumen inside them
but would fail to segment glands with no visible lumen and dis-
contiguous lumina.

An improvement of Nguyen et al.20 was suggested in Ref. 23
by finding nuclei and lumen object first and then using a local
spatial search to connect the lumen to their nearby nuclei.
Various points at the lumen boundary were sampled, and all
the nearest nuclei points were connected to these points. The
final gland segmentation was defined as the convex hull of vari-
ous connected components, with each connected component
being defined as a gland. Various lumen–nuclei connections
were pruned using simple rules for reducing noise in the
final result. This method will segment glands with lumen inside
them but would fail to segment glands with no visible lumen and
discontiguous lumina.

Nguyen et al.24 proposed a nuclei-based gland segmentation
method to address both issues of gland sections with no visible
lumen and discontiguous lumina by building a graph of nuclei
and lumina in an image. This paper then used the normalized cut
method25 to partition the graph into different components, each
corresponding to a gland. The gland boundaries were then cre-
ated by connecting nearby nuclei by straight lines. As such, the
resultant glands would most likely cover most of the actual
gland region. On the other hand, the resultant gland boundaries
would be polygonal in shape, which may not follow the exact
continuous shape of the gland.

Ren et al.26 also proposed a region-based nuclei segmenta-
tion method. This paper used color map normalization27 and
subsequent color deconvolution28 to get separate masks for
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nuclei and gland regions. This paper addressed the issues of
gland sections with discontiguous lumina and no visible
lumen by not using lumen as prior information. Local maxima
points in the distance transform map for the binary gland mask
were used to identify individual glands. Nuclei regions were
grouped to these local maxima points, and their Delaunay
triangulation was used for output gland segmentation. This
method relied on local maxima points to identify individual
glands objects. The output gland boundaries are polygonal in
shape, which like Nguyen et al.24 will not follow the continuous
shape of gland.

Sirinukunwattana et al.29 also proposed a solution for a sim-
ilar problem of gland segmentation in colon histopathological
images by suggesting a random polygons model. This model
treats each glandular structure as a polygon of a random number
of vertices, which in turn represent approximate locations of
nuclei. Their algorithm used a reversible-jump Markov chain
Monte Carlo (RJMCMC) method to infer all the maximum a
posteriori polygons. This method relies on using pixel-based
identification of lumen regions to infer the initial random poly-
gons for RJMCMC. It addresses the issue of segmenting glands
with discontiguous lumina by filtering the converged maximum
a posteriori polygons using a heuristic criterion. The method
then proceeds to rerun RJMCMC with the remaining maximum
‘a posteriori’ polygons as initial polygons. The subsequent
polygon-shaped glands are then improved upon by cubic spine
interpolation such that the segmented glands have a more similar
shape to the actual glands. This paper, however, does not address
the issue of segmenting glands with no visible lumen explicitly.

Various deep learning-based methods have also been devel-
oped for similar segmentation problems in various types of his-
topathological images.30–36 Xu et al.33 proposed a multichannel
neural network for gland segmentation in colon histopatholog-
ical images. Their method comprised three neural network chan-
nels. One channel was responsible for segmenting foreground
pixels from background pixels. The second channel was respon-
sible for detecting gland boundaries while the third channel was
designed for gland detection. The outputs of these three chan-
nels were fused together by a convolutional neural network
(CNN) for the final gland segmentation result. This paper, how-
ever, does not address the issue of segmenting glands with no
visible lumen and discontiguous lumina explicitly.

Chen et al.34 proposed a deep contour-aware network
(DCAN) for gland segmentation in colon histopathological
images. This network was designed to find the gland regions
and gland boundaries (contours) simultaneously. DCAN was
trained after initializing its weights, which were defined accord-
ing to a DeepLab37 model trained on the PASCAL VOC 2012
dataset.38 DCAN fused the results for gland regions and their
boundaries by a simple pixel-based binary operation. This
paper, however, does not address the issue of segmenting glands
with no visible lumen and discontiguous lumina explicitly by
focusing on detecting gland boundaries along with gland
regions.

Ren et al.35 focused on the gland classification task while
proposing a CNN for binary gland segmentation in prostate
histopathological images. This CNN was designed in an encod-
ing and decoding architecture with 10 layers in both of them.
Using this approach, it was able to improve upon Nguyen
et al.23 and Ren et al.26 on a dataset of 22 H&E images, each
of 2400 × 1800 pixels, in the gland segmentation task. This
paper, however, does not address the issues of segmenting

glands with no visible lumen and discontiguous lumina
explicitly.

Jia et al.36 proposed a weakly supervised CNN framework
with area constraints for segmenting histopathological images.
The CNN was trained and tested on two separate datasets of
colon histopathological images. Their main contribution is
the introduction of area constraints as weak supervision. The
dataset was created by annotating cancerous and noncancerous
regions along with a rough estimation (in term of percentage
area) of the relative size of the cancerous regions in each
image. This rough estimate acted as a weak constraint for the
proposed CNN. This paper, however, does not address the issues
of segmenting glands with no visible lumen and discontiguous
lumina explicitly as it was more focused on binary segmentation
of cancerous and noncancerous regions.

3 Method
We propose a machine learning and image processing-based
method to solve the gland segmentation problem while address-
ing the issues illustrated in Fig. 1(a). Figure 1(b) shows an over-
view of our gland segmentation system. We developed a set of
pixel classifiers and object classifiers for identification of
various regions in an image. Our classifiers are trained on the
data extracted from the manual annotations of the pathologist.
The trained pixel and object classifiers are tested on a given
image for an estimate of various regions. Image processing
methods are then used for refining these region estimates into
the final segmentation result.

3.1 Obtaining Manual Annotations for Training
Pixel and Object Classifiers

We describe our image acquisition and manual annotation
steps below.

3.1.1 Annotation of images into gland, lumen, periacinar
retraction clefting, and stroma regions by the
research pathologist

The whole slide tissue images of prostate biopsies for 10
patients with PCa were downloaded from The Cancer
Genome Atlas (TCGA).39 The patients in this data set exhibit
Gleason pattern 3 and/or 4. A total of 43 images from
these whole slide images were extracted. Out of 43 images,
36 images were of 2720 × 2048 pixels and 7 images were of
1360 × 1024 pixels dimensions. All of these images were
extracted at 40× magnification with pixel resolution of
0.25 μm per pixel. Scanner and source institution information
for these patients was not available on TCGA website. We
give details of these TCGA images in Table 1. After image
extraction, the annotation workflow of the research pathologist
is as follows:

1. Segmentation of nontissue regions that appeared white
in color, and these regions were labeled as periacinar
retraction clefting.

2. Identification and segmentation of the glands lined by
epithelial cells. Whether the glands appeared discrete,
variable in size and shape, or fused were properly
classified and annotated. If somewhat touching (not
fused), glands have a discernible boundary, then they
are annotated as separate glands.
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Table 1 Description of extracted images.

Image Gleason grade Bounding box ðxmin; yminÞ; ðxmax; ymaxÞ
TCGA-2A-A8VO-01Z-00-DX1_L72702_T66921_W2720_H2048 3 (72,702, 66,921), (75,422, 68,969)

TCGA-2A-A8VO-01Z-00-DX1_L79545_T35778_W2720_H2048 3 (79,545, 35,778), (82,265, 37,826)

TCGA-2A-A8VO-01Z-00-DX1_L81449_T55250_W2720_H2048 3þ 4 (81,449, 55,250), (84,169, 57,298)

TCGA-2A-A8VO-01Z-00-DX1_L82247_T40015_W2720_H2048 3 (82,247, 40,015), (84,967, 42,063)

TCGA-2A-A8VO-01Z-00-DX1_L85502_T58665_W2720_H2048 3 (85,502, 58,665), (88,222, 60,713)

TCGA-HC-7075-01Z-00-DX1_L11216_T3583_W2720_H2048 3þ 4 (11,216, 3583), (13,936, 5631)

TCGA-HC-7075-01Z-00-DX1_L12975_T10686_W2720_H2048 3 (12,975, 10,686), (15,695, 12,734)

TCGA-HC-7075-01Z-00-DX1_L13921_T14013_W2720_H2048 3 (13,921, 14,013), (16,641, 16,061)

TCGA-HC-7075-01Z-00-DX1_L18204_T7968_W2720_H2048 3 (18,204, 7968), (20,924, 10,016)

TCGA-HC-7075-01Z-00-DX1_L25396_T4657_W2720_H2048 3þ 4 (25,396, 4657), (28,116, 6705)

TCGA-HC-7077-01Z-00-DX1_L31247_T4210_W1360_H1024 3þ 4 (31,247, 4210), (32,607, 5234)

TCGA-HC-7077-01Z-00-DX1_L33310_T6060_W1360_H1024 3 (33,310, 6060), (34,670, 7084)

TCGA-HC-7077-01Z-00-DX1_L34840_T5090_W1360_H1024 3 (34,840, 5090), (36,200, 6114)

TCGA-HC-7077-01Z-00-DX1_L35090_T6525_W1360_H1024 3 (35,090, 6525), (36,450, 7549)

TCGA-HC-7077-01Z-00-DX1_L36272_T3010_W1360_H1024 3 (36,272, 3010), (37,632, 4034)

TCGA-HC-7211-01Z-00-DX1_L30692_T17413_W1360_H1024_pattern4 4 (30,692, 17,413), (32,052, 18,437)

TCGA-HC-7211-01Z-00-DX1_L31053_T21217_W1360_H1024_pattern4 4 (31,053, 21,217), (32,413, 22,241)

TCGA-HC-7212-01Z-00-DX1_L23123_T10332_W2720_H2048_pattern3 3þ 4 (23,123, 10,332), (25,843, 12,380)

TCGA-HC-7212-01Z-00-DX1_L17555_T17714_ W2720_H2048_pattern4 4 (17,555, 17,714), (20,275, 19,762)

TCGA-HC-7212-01Z-00-DX1_L2051_T6465_ W2720_H2048_pattern4 4 (2051, 6465), (4771, 8513)

TCGA-HC-7212-01Z-00-DX1_L9643_T2160_ W2720_H2048_pattern4 4 (9643, 2160), (12,363, 4208)

TCGA-HC-7212-01Z-00-DX1_L6955_T4656_ W2720_H2048_pattern4 4 (6955, 4656), (9675, 6704)

TCGA-XJ-A9DQ-01Z-00-DX1_L58543_T10148_ W2720_H2048 3 (58,543, 10,148), (61,263, 12,196)

TCGA-G9-6364-01Z-00-DX1_L36428_T45944_ W2720_H2048 3þ 4 (36,428, 45,944), (39,148, 47,992)

TCGA-G9-6364-01Z-00-DX1_L43716_T42632_ W2720_H2048 3þ 4 (43,716, 42,632), (46,436, 44,680)

TCGA-G9-6365-01Z-00-DX1_L83292_T39235_ W2720_H2048 3þ 4 (83,292, 39,235), (86,012, 41,283)

TCGA-G9-6365-01Z-00-DX1_L84869_T37165_ W2720_H2048 3þ 4 (84,869, 37,165), (87,589, 39,213)

TCGA-G9-6364_L151748_T35850_W2720_ H2048 3þ 4 (151,748, 35,850), (154,468, 37,898)

TCGA-G9-6364_L131990_T52007_W2720_ H2048 3þ 4 (131,990, 52,007), (134,710, 54,055)

TCGA-G9-6364_L122615_T48695_W2720_ H2048 3þ 4 (122,615, 48,695), (125,335, 50,743)

TCGA-G9-6365_L80439_T8350_W2720_ H2048 3þ 4 (80,439, 8350), (83,159, 10,398)

TCGA-G9-6365_L83152_T15462_W2720_ H2048 3þ 4 (83,152, 15,462), (85,872, 17,510)

TCGA-G9-6365_L69172_T28814_W2720_ H2048 3þ 4 (69,172, 28,814), (71,892, 30,862)

TCGA-G9-6385_L23690_T17439_W2720_ H2048 3þ 4 (23,690, 17,439), (26,410, 19,487)
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3. Identification of the lumen region(s) of the gland. Note
that lumen regions also appear white in the image.
Special care has to be taken to prevent confusion
between periacinar retraction clefting and lumen
objects.

All the regions in the images that were not annotated as either
parts of lumen or gland or periacinar retraction clefting are
considered stroma. We show a sample H&E image and its
corresponding manual annotation in Fig. 1(a). We use these
manually annotated labels for training various pixel classifiers.
Similarly, the annotated lumen and periacinar retraction clefting
objects are used to train the periacinar retraction clefting versus
lumen object classifier.

3.1.2 Distribution of images for training and subsequent
testing

We did a twofold cross-validated study to gauge the perfor-
mance of our gland segmentation system. The first fold has
24 images (from six patients) for training and 19 images
(from four patients) for testing. The second fold has 19 images
(from four patients) for training and 24 images (from six
patients) for testing. For both folds, the training images are
used to extract the pixel- and object-level data to train the
pixel and object classifiers.

3.2 Pixel Classifiers

The manual annotations define four types of pixels, i.e., gland,
stroma, lumen, and periacinar retraction clefting. They are used
to extract the training data for the pixel classifiers. Various
machine learning methods, such as k-means clustering, k-near-
est neighbor classification, random forest, and support vector
machine (SVM)40 along with features generated from RGB
color space, CIELab color space, texture, and pixel neighbor-
hood, have been proposed in the literature for pixel-level
identification.16–21,23,24,29 Similarly, Yap et al.15 also proposed
using different intensity gradient-based features derived from
various color spaces, including RGB and CIELab along with
SVM,40 standard logistic regression (LR), and AdaBoost,41

for prominent nucleoli detection; they also showed that usage
of various color spaces emphasizes multiple aspects of pixel-
level patterns from various regions in the histopathological
images. In our pixel classifier, we use a similar approach of
LR in various color spaces along with AdaBoost41 for the clas-
sifier combination. We discuss the generation of LR classifier
ensemble and the subsequent combination for pixel classifica-
tion later in this section.

3.2.1 Training data extraction from the annotated dataset

An image in our dataset contains at least a million pixels.
It is then computationally infeasible to use all the pixels
for training the pixel classifiers. Instead, we sampled a subset
of pixels to train the pixel classifiers. Each sampled pixel is
endowed with a feature that is derived from a variable image
patch of size s × s pixels centered at that pixel. We define
the periacinar retraction clefting and lumen regions as cavity
regions as both of them appear white in the images. We also
define gland and stroma regions as noncavity regions for their
tissue content.

Sampling cavity pixels and noncavity pixels. All the pix-
els whose corresponding square patches are in either periaci-
nar retraction clefting or lumen are identified as cavity pixels.
All the pixels whose corresponding patches are in either
gland or stroma are identified as noncavity pixels. This def-
inition of cavity and noncavity pixels is used for sampling the
training dataset. The pixels that were very near the boundary
of cavity and noncavity regions were not sampled for training
purposes. Figure 2 shows an example of an annotated image G
and the corresponding cavity pixels and noncavity pixels in
the cavity mask. We sampled 36,000 cavity pixels and non-
cavity pixel pairs to train the cavity versus noncavity pixel
classifier.

Sampling lumen edge pixels and periacinar retraction
clefting edge pixels. We define another pixel classifier to
extract neighborhood information of lumen and periacinar
retraction clefting objects. Both types of objects have different

Table 1 (Continued).

Image Gleason grade Bounding box ðxmin; yminÞ; ðxmax; ymaxÞ
TCGA-G9-6385_L29600_T19834_W2720_ H2048 3þ 4 (29,600, 19,834), (32,320, 21,882)

TCGA-G9-6385_L26699_T26585_W2720_ H2048 3þ 4 (26,699, 26,585), (29,419, 28,633)

TCGA-G9-6385_L23524_T23766_W2720_ H2048 3þ 4 (23,524, 23,766), (26,244, 25,814)

TCGA-G9-6385_L26359_T23758_W2720_ H2048 3þ 4 (26,359, 23,758), (29,079, 25,806)

TCGA-XJ-A83H-01Z_L67058_T32077_ W2720_H2048 3þ 4 (67,058, 32,077), (69,778, 34,125)

TCGA-XJ-A83H-01Z_L69605_T30039_ W2720_H2048 3þ 4 (69,605, 30,039), (72,325, 32,087)

TCGA-XJ-A83H-01Z_L50723_T22263_ W2720_H2048 3þ 4 (50,723, 22,263), (53,443, 24,311)

TCGA-XJ-A83H-01Z_L55225_T17149_ W2720_H2048 3þ 4 (55,225, 17,149), (57,945, 19,197)

TCGA-XJ-A83H-01Z_L68817_T9948_ W2720_H2048 3þ 4 (68,817, 9948), (71,537, 11,996)
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characteristic surrounding regions. Lumen is always inside the
gland and surrounded by cytoplasm. Periacinar retraction cleft-
ing may have any type of surrounding region.

All the pixels at the edge of lumen are considered lumen edge
pixels, and all the pixels at the edge of periacinar retraction cleft-
ing are considered periacinar retraction clefting edge pixels.
Figure 2 shows an example of an annotated image G and the
corresponding lumen edge pixels and periacinar retraction cleft-
ing edge pixels in the lumen edge mask. We sampled 36,000
lumen edge pixels and periacinar retraction clefting edge
pixel pairs to train the lumen edge versus periacinar retraction
clefting edge pixel classifier.

Sampling gland and stroma pixels. All the pixels with
their corresponding square patch inside the gland are considered
gland pixels. All the pixels whose corresponding square patch is
inside the stroma are considered stroma pixels. This definition of
gland and stroma pixels is used for sampling the training dataset.
The pixels that were very near the boundary for gland or stroma
were not sampled for training purposes. Any pixel/information
from the lumen and periacinar retraction clefting regions is not
used. Figure 2 shows an example of an annotated image G and
the corresponding gland pixels and stroma pixels in the gland
mask. We sampled 36,000 gland pixels and stroma pixel pairs
to train the gland versus stroma pixel classifier.

Fig. 2 Gland and stroma regions are extracted from image G to the gland mask (right). Cavity and non-
cavity regions are extracted from image G to the cavity mask (left). Lumen edge and periacinar retraction
clefting edge regions are extracted from image G to the lumen edge mask (bottom). We also separate the
binary groupings in the three masks to show each grouping separately in six images at the bottom. In all
of these images, the inactive pixels are shown in a stripe pattern. Active pixels are shown using the RGB
values of the original image. In the six pixel grouping images, only the active pixels are used for sampling
a particular group (type) of pixels. We also indicate the total number of pixels sampled from each grouping
for training of pixel classifiers.
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3.2.2 Training of pixel classifiers

We designed three pixel classifiers, i.e., cavity versus noncavity
pixel classifier, gland versus stroma pixel classifier, and lumen
edge versus periacinar retraction clefting edge pixel classifier, as
part of our gland segmentation system. They are trained in two
stages. In the first training stage, an ensemble of LR classifiers is
trained using the training data. In the second stage, this ensem-
ble of LR classifiers is combined using AdaBoost.41 We defined
two disjoint subsets of training images (for a given fold) Setweak
and SetAdaBoost corresponding to the two training stages.

For a given pixel classifier, the LR pixel classifier ensemble
was trained on 20,000 pixels pairs sampled from Setweak, and
the AdaBoost41 combination was trained on 16,000 pixel
pairs sampled from SetAdaBoost. As such, we sampled a total
of 36,000 cavity pixel, noncavity pixel pairs; 36,000 gland
pixel, stroma pixel pairs; 36,000 lumen edge pixel, periacinar
retraction clefting edge pixel pairs for training. We were able
to use a total of 72,000 pixels (¼36000 × 2) within a feasible
training time for each of the three pixel-level classifiers.

Ensemble of logistic regression pixel classifiers. We use
the standard LR with the L2 penalty (regularized) and the gra-
dient descent method to train our LR pixel classifiers. We use the
raw pixel values of pcðx; yÞ (c ∈ f1;2; 3g) for a three-channel
image patch p of s × s pixels centered at the given pixel as the
input to the LR pixel classifier. We have a total of 3s2 features
that are the input to the LR. The pixel classification score by LR
is within the interval [0, 1] and is linearly mapped to [0, 255] to
create a grayscale prediction image from all the pixel-wise
scores.

The grayscale LR pixel classification score can be thresh-
olded to create a binary classifier. The binary classifier will pre-
dict a positive sample for score value higher than the threshold
and a negative sample otherwise. As such, we can generate 256
binary classifiers from a single LR pixel classifier. We term the
set of all binary classifiers as weak classifiers.

Yap et al.15 showed that it is effective to extend the RGB
color space to other color spaces viz. HLS, HSV, CIELab,
CIELuv, XYZ, and YCbCr. This paper also proposed using dif-
ferent image patch sizes to capture information at different res-
olutions for a given data sample, i.e., pixel. The original images
in RGB color space were digitally extended to the other six color
spaces indicated above. We also used image patch sizes of 2 × 2,
4 × 4, 6 × 6, 8 × 8, 12 × 12, and 16 × 16 pixels for LR pixel
classifier training. The LR training with all 20,000 pixel pairs
for patch sizes of 8 × 8, 12 × 12, and 16 × 16 pixels can be
time-consuming. We can reduce the training time of LR pixel
classifiers with patch sizes of 8 × 8, 12 × 12, and 16 × 16 pixels
using subsets of 1000, 2000, 4000, 8000, and 16000 pixel pairs
from the total of 20,000 pixel pairs instead of using all pixel
pairs. We were able to train the LR pixel classifiers with patch
sizes of 2 × 2, 4 × 4, and 6 × 6 pixels using all the 20,000 pixel
pairs within feasible time.

Aweak binary classifier is considered to be unique according
to image patch size (s × s), number of training samples, color
space of input images that the underlying LR pixel classifier
is trained on, and the threshold for the grayscale LR pixel
classification score. We have a total of six image patch sizes
(2 × 2, 4 × 4, 6 × 6, 8 × 8, 12 × 12, and 16 × 16), six possible
subset cases (1000, 2000, 4000, 8000, 16000, and 20000
pixel pairs), seven color spaces (RGB, HLS, HSV, CIELab,
CIELuv, XYZ, and YCbCr), and 256 (0 to 255) thresholds to

define a unique weak binary classifier. As such, there are
64;512ð¼ 6 × 6 × 7 × 256Þ possible weak classifiers.

Out of all possible 64,512 weak binary classifiers, we were
able to train 35,840 within reasonable computing time. We gen-
erated three ensembles of 35,840 weak binary classifiers for
each of the three pixel classifiers. These three ensembles corre-
spond to cavity versus noncavity pixel classification, gland ver-
sus stroma pixel classification, and lumen edge versus periacinar
retraction clefting edge pixel classification.

Logistic regression pixel classifier ensemble combination
by boosting. The results of weak classifiers were combined
by AdaBoost.41 Each of the three ensembles was combined
using the AdaBoost41 trained on the corresponding 16,000
pixel pairs sampled from SetAdaBoost images. The boosted com-
bination result for a pixel is a weighted sum (H) of the votes by
all the weak classifiers. A positive H indicates a positive sample
prediction while a negative H indicates a negative sample
prediction.

Our subsequent steps in the segmentation pipeline require the
pixel-level classification output as a probability map, i.e., in the
interval [0, 1]. We mapped the weighted sum H to [0, 1] using
fðHÞ ¼ 1∕1þ e−H . After mapping, the outputs for all three
pixel classifiers are within the same interval of [0, 1]. This map-
ping also allows usage of image processing methods without
any extra pixel value scaling operations.

3.3 Periacinar Retraction Clefting Versus Lumen
Object Classifier

The manual annotations define periacinar retraction clefting and
lumen objects. The annotated lumen and periacinar retraction
clefting objects along with the two pixel classifiers, i.e., gland
versus stroma pixel and lumen edge versus periacinar retraction
clefting edge, are used to extract the training data for the object
classifier.

3.3.1 Training data preparation for periacinar retraction
clefting versus lumen object classifier

We used the neighborhood and shape-based information with
SVM40 for object classification. Vanderbeck et al.42 proposed
using morphological and textural features along with nuclei den-
sity for automated white region (regions that look like cavity
objects in our dataset) classification in liver biopsy images.
Nguyen et al.23 also proposed using morphological features
for gland classification in histopathological images. We use sim-
ilar feature extraction methods for our dataset and the periacinar
retraction clefting versus lumen object classification problem.

Our object feature extraction process comprises three inde-
pendent subprocesses. Two of these subprocesses pertain to the
object’s neighborhood information while the third one pertains
to shape (morphology) information.

We have defined gland versus stroma pixel to differentiate
between gland and stroma pixels and lumen edge versus peri-
acinar retraction clefting edge pixel classifier to differentiate
between lumen edge and periacinar retraction clefting edge pix-
els. Both of these pixel classifiers use information in the square
patch surrounding a given pixel. We wish to extract an object’s
neighborhood information that comprises the distribution of
different types of pixels.

Our above two pixel classifiers after training can aid in
approximation of an object surrounding the pixels’ distribution
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information. The gland versus stroma pixel classifier can quan-
tify the distribution of gland and stroma pixels in the neighbor-
hood. The lumen edge versus periacinar retraction clefting edge
pixel classifier does a more sophisticated prediction and pro-
vides the distribution information about the surrounding pixels
if they belong to a lumen edge or periacinar retraction clefting
edge. The lumen objects are more likely to be surrounded by
gland (predicted) pixels and lumen edge (predicted) pixels.
On the other hand, the periacinar retraction clefting objects

will most likely be surrounded by stroma (predicted) pixels
and periacinar retraction clefting edge (predicted) pixels.
Both of the above pixel classifiers’ responses are hence impor-
tant for quantification of the given object’s neighborhood infor-
mation. Our two subprocesses (1) and (2) use these two pixel
classifiers for extracting the object’s neighborhood information.

The third subprocess is computation of the given object’s
shape descriptors. We illustrate the object feature extraction
process in Fig. 3. In panel (d) of this figure, we illustrate the

(a)

(d)

(b) (c)

Fig. 3 Object feature extraction from manual annotations. (a) Example of an annotated image G overlaid
over the original image. (b) All annotated lumen and periacinar retraction clefting objects in example
image. We also show a zoomed-in image of a lumen object. (c) A lumen object (annotation) is overlaid
over the original image. (d) Object feature extraction process (three independent subprocesses). In (1)
and (2) subprocesses, lumen edge versus periacinar retraction clefting edge classifier and gland versus
stroma classifier are used to test the pixels around the given object. All the inactive pixels (not tested by
the pixel classifiers) are shown in a stripe pattern. In (3) subprocess, shape descriptors are computed for
the object. The final concatenated object feature vector is of 173 (¼130þ 34þ 9) dimensions. We show
the number of dimensions of each computed value by the three subprocesses in parenthesis.
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three subprocesses for feature extraction from an annotated
lumen object. We marked the subprocess (1) for lumen edge
versus periacinar retraction clefting edge classification based-
subfeature, (2) for gland versus stroma classification based-
subfeature, and (3) for shape descriptor subfeature. In both
(1) and (2), a histogram is computed from the classifier
responses. These histograms are subsequently L1-normalized
such that the resultant bin height is a normalized count and
the sum of all the bin heights is unity. In panel Fig. 3(d), for
both (1) and (2), we first show the pixels that are tested by
the corresponding pixel classifier followed by the classifier
response and the L1-normalized histogram.

1. All the pixels within the 27 × 27 pixels patch around
any edge pixel are tested by a pretrained lumen edge
versus periacinar retraction clefting edge pixel classi-
fier. These classifier responses (∈ ½0;1�) are binned
into a 128-bin L1-normalized histogram. The average
value of these classifier responses and proportion of
responses that are greater than 0.5 are also computed.
This generates 130 feature values for the given object.

2. All the pixels within the 9 × 9 pixels patch around any
edge pixel and not within the annotated object are
tested by a pretrained gland versus stroma pixel clas-
sifier. These classifier responses (∈ ½0;1�) are binned
into a 32-bin L1-normalized histogram. If a pixel
being tested is within the annotated stroma region,
then its response is considered fixed at zero. The aver-
age value of these classifier responses and proportion
of responses that are greater than 0.5 are also com-
puted. This generates 34 feature values for the given
object.

3. We compute the object shape descriptors, i.e., Hu
moments (seven-dimensional),43 solidity (ratio of the
object area to that of its convex hull), and circularity
(¼4π × Area∕Perimeter2). This generates nine feature
values for the given object.

The subfeatures from (1), (2), and (3) are concatenated to
create a 173 (¼130þ 34þ 9)-dimensional object feature vec-
tor. For both (1) and (2), various values of square patch size
and number of histogram bins were tried, and the combination
with the best object classification performance was chosen for
the final system. All the periacinar retraction clefting and lumen
objects except the ones being cut at the border of the images
were used to train the periacinar retraction clefting versus
lumen object classifier.

3.3.2 Training of periacinar retraction clefting versus
lumen object classifier

We used the lumen and periacinar retraction clefting objects in
all the images of Setweak and SetAdaBoost to train our object
classifier and ensure usage of the same images for training
both object and pixel classifiers. Both Nguyen et al.23 and
Vanderbeck et al.,42 along with proposing morphological fea-
tures for object classification as discussed, also proposed
using a SVM40 classifier. They finalized SVM40 for classifica-
tion after comparing various classification methods, such as
naive Bayes classifier, LR, decision trees, neural networks,
etc., and using various subset of features. For our gland

classification system, an object classifier SVM40 with radial
basis function kernel, C ¼ 512, and γ ¼ 0.0195312 (found
using cross-validation) was trained on the 173-dimensional fea-
ture space. The object classifier was trained on 810 lumina, 451
periacinar retraction clefting objects in the first fold, 553 lumina,
and 222 periacinar retraction clefting objects in the second fold.

3.4 Testing of the Trained Pixel and Object
Classifiers and Subsequent Usage of Image
Processing Methods to Compute Final
Segmentation from Their Predictions

Once we have trained the pixel and object classifiers, we can use
them on the input test image for identifying various regions.
This testing provides a rough estimate for various regions.
These estimates are refined and improved upon by the image
processing methods discussed in the following sections. We
illustrate the complete segmentation process in Fig. 4. The
input image is denoted by I 0, and the subsequent images in
the pipeline are denoted by an “I” (for binary images) and
“I” (for nonbinary images) symbol with a subscript format.
Binary images are single-channel monochrome images, while
nonbinary images are single-channel grayscale or three-channel
RGB images.

We used some of the basic image processing methods,
including Gaussian blur, median blur, image thresholding,
erosion, and dilation, in our segmentation pipeline. We use
Gaussian blur to reduce noise in grayscale images. We used
median blur along with erosion and dilation to reduce noise
in binary images. A dilation operation was also used to enlarge
small objects in our images as part of various algorithms dis-
cussed later in this section. For both Gaussian blur and median
blur, we fixed the kernel size at 5 × 5 pixels. Image thresholding
methods, including Otsu,44 moments preserving,45 percentile,46

maxentropy,47 and Shanbhag48 methods, were implemented.
These image thresholding methods were used to generate binary
images from the grayscale images in the segmentation pipeline.
We tried various combinations of thresholding methods and
Gaussian kernels with different values of σ at various stages
of the pipeline. The configuration with the best performance
was chosen for the final system.

3.4.1 Image processing methods to compute final
segmentations using pixel and object classifiers’
prediction

Given the input test image I 0, all the pixels in the image are
tested by a cavity versus noncavity pixel classifier. The pixel-
wise classification score is within the interval [0, 1], and this
is linearly mapped to [0, 255] to create a grayscale prediction
image. This prediction image is blurred by a Gaussian kernel
of σ ¼ 10 and thresholded by Otsu’s method44 to separate
the cavity and noncavity regions. The resultant binary mask
Icavity indicates cavity regions in white on black noncavity
regions (see Fig. 4). The Gaussian blur reduces noise in the pre-
diction (cavity versus noncavity) image and prevents various
false positive (FP) (small) cavity objects in Icavity.

The original image I 0 is masked by Icavity. All the white pix-
els of Icavity are set inactive to create I gland mask. The remaining
active pixels in the image are tested by the gland versus stroma
pixel classifier. These predictions are also mapped into a gray-
scale prediction image. This prediction image is blurred by a
Gaussian kernel of σ ¼ 2 to create I 1 (see Fig. 4). In I 1, the
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brighter grayscale regions indicate glands, while darker gray-
scale regions indicate stroma with inactive pixels being indi-
cated by a stripe pattern. During the method development,
we found that a slight amount of Gaussian blur with σ ¼ 2

was needed to enhance the gland boundaries in the prediction
image and to compute I 1. I 1 is then thresholded by a moment
preserving method45 to separate the gland and stroma regions.

The grayscale values of I1 in the identified gland regions are
copied over to another image I 2. In I 2, all stroma, periacinar
retraction clefting/lumen regions are inactive with their pixel
intensity set at zero. We indicate these inactive regions by a

stripe pattern and the remaining active pixels by a grayscale
value (see Fig. 4).

The binary mask Icavity contains all the detected cavity
objects. I2 contains the neighborhood information of these cav-
ity objects. Object shape information from Icavity and neighbor-
hood information from I 2 are used for the classification of
cavity objects as either lumen or periacinar retraction clefting.
The object classification result is stored in I lumen clefting (see
Fig. 4), where lumen and periacinar retraction clefting objects
are indicated in blue and green, respectively, on a white
background.

NUCLEI-SEGMENTATION

MAXIMA-SEEDS

THREE-LEVEL-EGVD

REFINE-SEEDS

Final Segmentation            
overlaid  on     . 

Fig. 4 Complete work flow for segmenting an image into gland, lumen, periacinar retraction clefting, and
stroma regions. Input image is I0, and final segmentation is Spixel.
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We augment I2 by putting all identified lumen pixels as
white (255) and all identified periacinar retraction clefting
/stroma pixels as black (0). The resultant image is I gland map

(see Fig. 4). This grayscale gland probability map is a rough
estimate of glandular regions as the gland boundaries of
nearby/touching glands may not be prominent. Igland map is
thresholded by Otsu’s method44 to compute Ithresholdgland , indicating
gland regions in white on a black background (see Fig. 4).

So far, we have identified gland, lumen, stroma, and peria-
cinar retraction clefting regions. The next step is to further seg-
ment the gland regions into unique gland objects. The gland
regions at this stage in the segmentation pipeline have many
merged gland objects (as indicated by Ithresholdgland in Fig. 4). The
epithelial nuclei generally line the glandular boundary; hence,
once identified, they can aid in estimating gland boundaries.
We use a seed-based segmentation algorithm to find the unique
gland objects in I gland map. These algorithms use the seed loca-
tions as initial objects. These initial objects are grown pixel wise
into glands with each seed defining only one gland. Optimal
positions for the seed for an object are generally inside its central
region. Lumen objects being in this region are hence a natural
choice for seeds. There are some glands sections with no visible
lumen inside them. Nuclei being at the gland border can aid in
finding a seed for these types of glands. There are also glands
with discontiguous lumina. These lumen objects need to be
merged into one seed to avoid oversegmentation. We use the
nuclei objects’ and lumen objects’ spatial distribution to find

unique seeds for glands with discontiguous lumina. We first
discuss the nuclei object segmentation using H&E stain
information.

Stain separation for identification of nuclei objects. Nuclei
are stained in blue by the hematoxylin stain in the H&E (RGB)
image. This H&E image is separated into hematoxylin (blue)
and eosin (pink) channels using ImageJ plugin implementation
of Ruifrok et al.49 The separated channels of eosin and hema-
toxylin are in grayscale, indicating the respective channel’s
color intensity distribution. The hematoxylin grayscale image
is denoised using Gaussian blur, thresholding, and median
blur operations. The final binary mask Inuclei (see Fig. 4) indi-
cates nuclei regions in white on a black background. The
NUCLEI-SEGMENTATION algorithm shows this process in
detail (Algorithm 1).

Seed generation for glands with no visible lumen using
nuclei objects. The thresholded gland probability map
Ithresholdgland and Inuclei are used to find the seeds for the gland
with no visible lumen inside them. We illustrate this process
in Fig. 5. The nuclei mask Inuclei is dilated 8 times using a 3 ×
3 pixel dilation window to compute Ibordernuclei . The nuclei border
image Ibordernuclei is subtracted from Ithresholdgland to extract nonnuclei
gland regions and compute Imask (see Fig. 5). A Euclidean dis-
tance map is computed for Imask, and ImageJ’s “Find Maxima”
function is used for finding intensity (distance) peaks in this

Algorithm 1 Nuclei segmentation algorithm (NUCLEI-SEGMENTATION).

Input:

- I0 is the original H&E image.

Output:

- Inuclei is the binary nuclei mask. White regions are nuclei on a black background.

Function and variable description:

- BLUR(I ; σs) is the Gaussian blur function with kernel with σ ¼ σs . Output is a grayscale image.

- Stain separation method is described by Ruifrok et al.49

- MOMENTS-THRESHOLD(I ) thresholds I using the moments preserving image thresholding method.45 Output is a binary image.

- Median filter (blur) replaces each pixel intensity by the median of all the pixel intensities in its kernel neighborhood.

Parameters:

- Select Gaussian kernel with σ ¼ 3 for the blur operation. This value for sigma was optimized empirically.

1: Procedure NUCLEI-SEGMENTATION(I0)

2: Separate the haemotoxylin and eosin channels of I0 into IHematoxylin and IEosin.
⊳ Both IHematoxylin and IEosin are grayscale images.

3: Iblur
Hematoxylin ¼ BLURðIHematoxylin; 3Þ.

4: I thresholdHematoxylin ¼ MOMENTS − THRESHOLDðIHematoxylinÞ.

5: Remove noise in I thresholdHematoxylin to compute Inuclei by median blur.

6: return nuclei mask Inuclei.

7: end procedure
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distance map. These peaks approximate the centroids of the
glands and hence can be used as seeds for these glands. The
MAXIMA-SEEDS (Algorithm 2) algorithm shows this process
in detail, and its output is Iseed maxima (see Fig. 5, also shown in
Fig. 4). We identify the seeds in Iseed maxima as maxima seeds.

Seed generation for glands with discontiguous lumina
using nuclei and lumen objects. The maxima seeds in
Iseed maxima and lumen objects in I lumen clefting provide different
sets of seeds for segmentation. After incorporating both maxima
seeds and lumen, some gland objects may have multiple poten-
tial seeds inside them. These potential seeds need to be merged
into one unique seed to avoid oversegmentation.

We use an electric potential field-based approach for
refining the gland seeds. We developed REFINE-SEEDS
(Algorithm 3) for this task, illustrated in Fig. 6. REFINE-
SEEDS algorithm treats lumen and maxima seeds as positively
charged objects and the nuclei as negatively charged objects.
We defined COMPUTE-FIELD algorithm (Algorithm 4) to
compute the electric potential field distribution in an image
according to the charge distribution. All lumen and maxima
seeds inside a gland will be in a region with high magnitude
of potential field due to their positive charge. Given the field
image according to a given charge distribution, it can be
thresholded to identify regions with high magnitude of field.
The lumen objects and maxima seeds, which are inside one

Algorithm 2 Maxima-seeds generation algorithm (MAXIMA-SEEDS).

Input:

- I thresholdgland is the binary gland mask. White regions are glands on a black background.

- Inuclei is the binary nuclei-border mask. White regions are nuclei borders on a black background.

Output:

- Iseed maxima is the binary maxima-seed mask. White regions are centroid locations of the gland objects.

Function and variable description:

- DILATE(I; d ) conducts “d ” dilation operations on binary image I with a 3 × 3 pixels dilation window. Output image is also binary.

- DISTANCE-TRANSFORM(I) computes the Euclidean distance map of image I. Output image is grayscale.

- FIND-MAXIMA(I ) computes the local intensity maxima pixels in the I . Output is a binary image indicating the maxima pixels in white.

- Given a binary image I, Ī is a binary image with corresponding inverted pixel values.

- Ia ∧ Ib is a Boolean operation defining pixel-wise AND operation between Ia and Ib .

Parameters:

- Select number of dilation operations d ¼ 8. This value for d was optimized empirically.

1: Procedure MAXIMA-SEEDS (I thresholdgland , Inuclei)

2: Ibordernuclei ¼ DILATEðInuclei; 8Þ.

3: Imask ¼ I thresholdgland ∧ Ibordernuclei . ⊳ Remove nuclei borders from gland regions.

4: Iseed maxima ¼ FIND −MAXIMAðDISTANCE − TRANSFORM½ImaskÞ�. ⊳ Find the centers of the glandular objects.

5: return maxima-seed mask Iseed maxima.

6: end procedure

Fig. 5 Seed generation for glands without any visible lumen by MAXIMA-SEEDS (Algorithm 2).
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gland, will be inside one of the high-field magnitude regions.
This identified region can act as a single unique seed for the
corresponding gland and hence help prevent oversegmentation.

Instead of using all pixels inside nuclei, lumen, or maxima
seeds, we sample some pixels for computing electric potential
field image, I field, thereby saving computational time. In
REFINE-SEEDS (Algorithm 3), we first sample the set of pos-
itive pixels “pixelsþ” from the lumen edges and union it with

the maxima seeds pixels. We extract approximate centroids of
nuclei objects to compute the set of negative pixels, “pixels−”.
COMPUTE-FIELD algorithm (Algorithm 4) uses the pixel
sets pixelsþ, pixels−, and the binary gland mask Ithresholdgland to com-
pute the image’s electric potential field image I field. Electric
potential field for nongland regions is not computed.

We define a binary mask Imask that indicates the nonnuclei-
border glandular regions. The Euclidean distance map of Imask

Algorithm 3 Seed-refining algorithm (REFINE-SEEDS).

Inputs:

- I thresholdgland is the binary gland mask. White regions are glands on a black background.

- Inuclei is binary the nuclei mask. White regions are nuclei on a black background.

- Iseed maxima is the binary maxima-seed mask. White regions are centroid locations of the gland objects.

- I lumen clefting is the lumen-clefting RGB image. Blue objects are lumen and green objects are periacinar retraction clefting on a white background.

Output:

- Iseed is the binary seed mask. White regions are seed objects on a black background.

Function and variable description:

- PIXEL-IN(I) returns all the white pixels in the binary image I. DILATE(I; d ) and DISTANCE-TRANSFORM(I) are the same functions as defined
in Algorithm 2.

- Given a binary image I, Ī defines a binary image with corresponding inverted pixel values. Ia ∧ Ib and Ia ∨ Ib are the Boolean operations defining
pixel-wise AND and OR operations between Ia and Ib , respectively.

- pixelsþ and pixels− are two sets containing positive and negative charged particles (pixels).

- MAX-ENTROPY-THRESHOLD(I ) thresholds I using the entropy-based image thresholding method.47 Output is a binary image.

Parameters:

- Select number of dilation operations d ¼ 8. This value for d was optimized empirically.

1: Procedure REFINE-SEEDS (I thresholdgland , Inuclei, Iseed maxima, I lumen clefting)

2: Ibordernuclei ¼ DILATEðInuclei;8Þ.

3: Create binary lumen mask I lumen from I lumen clefting. ⊳ I lumen indicate lumen in white.

4: Sample some pixels along the edges of lumen objects (I lumen) into pixelsþ.

5: pixelsþ ¼ pixelsþ ∪ PIXELS − INðIseed maximaÞ. ⊳ All the maxima seeds are added to pixelsþ.

6: Extract approximate centroids of nuclei in Inuclei into pixels−. ⊳ Remove nuclei from the gland regions.

7: Imask ¼ I thresholdgland ∧ Ibordernuclei .

8: I field ¼ COMPUTE−FIELDðI thresholdgland ; pixelsþ; pixels−Þ.

9: I field map ¼ I field × DISTANCE − TRANSFORMðImaskÞ. ⊳ Pixel-wise multiplication of two real valued images.

10: Linearly rescale I field map to values within [0, 255] for further numerical operations.

11: I thersholdfield map ¼ MAX − ENTROPY − THRESHOLDðI field mapÞ.

12: Fill holes in I thresholdfield map image.

13: Iseed ¼ Iseed maxima ∨ ðI thresholdfield map ∨ I lumenÞ. ⊳ Unify all the seeds.

14: return seed mask Iseed.

15: end procedure
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will have low pixel values around the nuclei regions compared
with high pixel values in the central region of the glands. Field
map image I field map is computed by pixel-wise multiplication
of I field and the Euclidean distance map of Imask. It will have low
pixel values around the nuclei regions and high pixel values in
the central region of the glands. The multiplication operation
enhances the electric field distribution image from I field to
I field map. The high electric potential field regions are identified
by thresholding I field map using Maxentropy image thresholding

method.47 All the seeds from thresholded field image I threshold
field map,

lumen object image Ilumen, and maxima-seed image Iseed maxima

are unified by a pixel-wise OR operation to compute Iseed (see
Figs. 4 and 6).

Evolving generalized Voronoi diagram-based binary
gland segmentation. We use the evolving generalized
Voronoi diagram (EGVD)-based segmentation method to define
gland boundaries of touching or nearby glands in I gland map. The

Pixels

Pixels

COMPUTE-FIELD (                                          ) 

Fig. 6 Seed refinement using REFINE-SEEDS (Algorithm 3). The distribution of positively and negatively
charged objects is shown in black box. Nuclei constitute negatively charged particles. Lumen and
maxima seeds constitute positively charged objects.
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EGVD-based binary segmentation uses a seed (binary) image
and a grayscale image. The grayscale image defines background
regions in black and foreground (gland) regions by a grayscale
value. The output binary segmentation is created by growing all
the seed objects defined in the seed image until they touch each
other or meet the background region as defined in the input
grayscale image.50

We show an example of EGVD output image IEGVD when we
use seed image Iseed and grayscale image Igland map in Fig. 7(a).
For a good gland segmentation result, the seed growing should
stop at the gland boundaries lined by epithelial nuclei. The out-
put glands should also not have their boundary defined within
cytoplasm. The seed growing iterations in EGVD treat both
cytoplasm and nuclei regions in the foreground equally. The
black arrows on IEGVD in Fig. 7(a) show the gland boundaries
being defined in cytoplasm. We also observe that some of the
seeds in Iseed are extraneous and do not belong to any gland
object. The bottom-left black arrow indicates the segmented
gland that has been grown across nuclei and hence leads its
boundary to be defined in cytoplasm. It also indicates one of
the glands grown from the extraneous seed.

We developed a THREE-LEVEL-EGVD method
(Algorithm 5) to solve the issues of extraneous seeds and
gland boundaries being predicted within cytoplasm. We illus-
trate the method in Fig. 7(b). We first put all nuclei border pixels
indicated by Ibordernuclei in I gland map as black to compute I gland temp.
Iseed is used as the seed image and Igland temp as the grayscale
image to compute the binary EGVD result, IEGVD−output1. Nuclei
border pixels are put as black in I gland temp to prevent the gland
object from growing across the nuclei by EGVD. As black
pixels are defined as background, EGVD will stop growing

the seed objects once they touch the nuclei border regions.
Hence, the grown seed objects will not cover the nuclei regions.
IEGVD−output1 is cleaned up by removing small gland objects and
noise to compute IdenoisedEGVD−output1. A pixel-wise OR operation is

done on Iseed and IdenoisedEGVD−output1 to retain all the initial seeds
in Iseed, for they may have been removed during previous
denoising step. The resultant image is Iseed2.

In the second level of EGVD, Iseed2 and Igland map are used as
the seed image and the grayscale image, respectively. The
EGVD result is IEGVD−output2. As illustrated in Fig. 7(b), we
can observe that the objects in IEGVD−output2 cover a major por-
tion of the respective gland regions. The extraneous seeds are
generally in the stroma regions near the gland boundaries.
The seed growing iterations for these seeds will lead to small
gland objects as they touch the background regions or other
gland objects earlier than the seeds, which are in the central
regions of actual glands. The gland objects generated by extra-
neous seeds of Iseed2 are identified by their relatively smaller
size and are removed from IEGVD−output2. The resultant denoised
EGVD output, IdenoisedEGVD−output2, is eroded to compute the seed
image for the third level, Iseed3.

In the third level of EGVD, Iseed3 and Igland map are used as
the seed image and the grayscale image, respectively. The
EGVD result is IEGVD−output3. The seed objects in Iseed3 cover
a major portion of the respective gland regions. In many
cases, the seed objects’ boundaries are next to the corresponding
epithelial nuclei. These type of seed objects will lead the seed
growing iterations to terminate within the nuclei regions as
the neighboring grown seed objects would be touching each
other when they grow into the nuclei regions. This step allows

Algorithm 4 Field computation algorithm (COMPUTE-FIELD).

Inputs:

- I thresholdgland is the binary gland mask. White regions are glands on a black background. Field is computed inside gland regions only.

- pixelsþ is a set of pixels with an assigned positive charge.

- pixels− is a set of pixels with an assigned negative charge.

Output:

- I field is the grayscale field image. Pixel intensity is directly proportional to field magnitude at its location. Pixel intensities are within [0, 255].

Parameters:

- Define +ve and −ve charges as þ1 and −1, respectively. Set decay rate for +ve and −ve charges as 1.0 and 1.6, respectively. These charge
values and decay rates were optimized empirically.

1: Procedure COMPUTE-FIELD(I thresholdgland , pixelsþ, pixels−)

2: Initialize all pixels in I field to zero.

3: for All pixels ðx; yÞ ∈ I thresholdgland do

4: I fieldðx; yÞ ¼
P

ðx j ;y j Þ∈pixelsþ
ð1.0Þ

½ðx−x j Þ2þðy−y j Þ2 �
1
2
þP

ðxk ;yk Þ∈pixels−
ð−1.0Þ

½ðx−xk Þ2þðy−yk Þ2 �
1.6
2
.

5: end for

6: Linearly rescale I field to values within [0, 255] for further numerical operations.

7: return field image I field.

8: end procedure
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(a)

(b)

Fig. 7 (a) Example of EGVD output with Iseed and Igland map as inputs. Top-right black arrows indicate
gland boundaries being predicted within the cytoplasm. Bottom-left black arrow indicates one of the
glands that was grown from extraneous seed. (b) Complete workflow for the THREE-LEVEL-EGVD algo-
rithm (Algorithm 5).
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THREE-LEVEL-EGVD to define the gland boundaries in the
nuclei regions and not in cytoplasm [see IEGVD−output3 in
Fig. 7(b)]. IEGVD−output3 is then cleaned up similarly as in the
previous steps to compute the final result Iresultgland.

Merging all detected gland, lumen, and periacinar
retraction clefting objects for final segmentation. The
binary gland output Iresultgland and object classification result
I lumen clefting are merged to compute the final segmentation
result Spixel. We have illustrated the complete segmentation
process starting from pixel classifiers testing to the last
EGVD-based segmentation step in Fig. 4.

As discussed in this section, the binary nuclei mask,
Inuclei, that is computed by NUCLEI-SEGMENTATION
(Algorithm 1) is used by algorithms MAXIMA-SEEDS

(Algorithm 2), REFINE-SEEDS (Algorithm 3), COMPUTE-
FIELD (Algorithm 4), and THREE-LEVEL-EGVD
(Algorithm 5) either directly as input or indirectly as pixels−.
Inuclei may have noisy segmentation result when the nuclei
are crowded and/or have margination of chromatin. The sole
purpose of Inuclei is to provide an approximate location of
gland boundaries and approximate location of negatively
charged pixels in our gland segmentation pipeline. This pipeline
has been developed such that it dilates the Inuclei to counter noisy
nuclei segmentation. Along with number of dilation operations,
the value for “−ve” charge and the corresponding decay rate in
the COMPUTE-FIELD (Algorithm 4) were also empirically
estimated to keep the gland segmentation pipeline robust to
noisy nuclei segmentation. Another possible concern in our
gland segmentation pipeline is how the color variations of a
given image will affect the final result. We have used the images

Algorithm 5 Three level EGVD algorithm (THREE-LEVEL-EGVD).

Inputs:

- Iseed is the binary seed mask. White regions are seed objects on a black background.

- Igland map is the grayscale gland image. Grayscale regions are glands on a black background.

- Inuclei is the binary nuclei mask. White regions are nuclei on a black background.

Output:

- I resultgland is the binary gland mask. White regions depict gland on a black background.

Function and variable description:

- DILATE(I; d ) conducts “d ” dilation operations on binary image I with a 3 × 3 pixels dilation window. Output image is also binary.

- EGVD(Is; I f ) is the image segmentation algorithm described by Yu et al.50 where Is is the seed image and I f is the grayscale image. It returns
the binary segmentation result.

- Ia ∨ Ib is a Boolean operation defining the pixel-wise OR operation between Ia and Ib .

Parameters:

- Select number of dilation operations d ¼ 8. This value for d was optimized empirically.

1: Procedure THREE-LEVEL-EGVD(Iseed, Igland map, Inuclei)

2: Ibordernuclei ¼ DILATEðInuclei;8Þ. ⊳ Ibordernuclei indicates nuclei border pixels in white.

3: Put all white pixels indicated by Ibordernuclei in Igland map as black to compute Igland temp.

4: IEGVD−output1 ¼ EGVDðIseed; Igland tempÞ.

5: Remove small objects and noise in IEGVD−output1 and then save it to IdenoisedEGVD−output1.

6: Iseed2 ¼ IdenoisedEGVD−output1 ∨ Iseed.

7: IEGVD−output2 ¼ EGVDðIseed2; Igland mapÞ.

8: Remove small objects and noise in IEGVD−output2 and then save it to IdenoisedEGVD−output2.

9: Erode IdenoisedEGVD−output2 to compute Iseed3.

10: IEGVD−output3 ¼ EGVDðIseed3; Igland mapÞ.

11: Remove small objects and noise in IEGVD−output3 and then save it to I resultgland.

12: return binary gland mask I resultgland.

13: end procedure
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from 10 patients in TCGA dataset. These images were extracted
such that they had color variations. Our pixel classifier training
sets were sampled randomly from different patient images to
ensure heterogeneity. We show four images from our dataset
depicting four color variations in Fig. 8. We have also defined
the usage of Ruifrok et al.49 in conjunction with tunable
blur and threshold operations in NUCLEI-SEGMENTATION
(Algorithm 1) to reduce the effect of color variations. The empir-
ical estimation of various parameters in our segmentation pipe-
line was also done for robust performance.

4 Experiments and Results

4.1 Dataset and Experiments

H&E-stained images of the PCa were used to demonstrate the
effectiveness of our method. This dataset consisted of 43 images
extracted from 10 patients’ tissue whole slide images. These
whole slide images were hosted by TCGA. We did a twofold
cross-validation study of our gland segmentation system.
We trained and tested our system as discussed in Sec. 3. We
have compared our segmentation method with base-line meth-
ods as discussed by Farjam et al.,16 Naik et al.,17 and Nguyen
et al.23 We implemented these methods and tuned the parameters
to maximize their segmentation performance. We evaluated
all the gland segmentation methods’ results according to our
manual annotations. As discussed in Sec. 3.1.1, we annotated

almost touching nearby glands according to their discernible
boundaries. This lead to a design where we have not tried to
incorporate any ambiguity with respect to boundaries between
different glands.

4.1.1 Evaluation of image segmentation

We evaluate the segmentation performance using pixel-wise
metrics, such as precision, recall, accuracy, F-score, and
omega index (OI),51 and object-wise metrics, such as Jaccard
index (JI), Dice index (DI), and Hausdorff distance (HD). We
do image-wise comparison of the segmentation results. We
denote a manual annotation image by G and a corresponding
segmented image generated using method “t” by St.

We show an example H&E image I 0, corresponding anno-
tation G, and various segmentation results St in Figs. 9(a)–9(f).
Our method as shown in Spixel correctly identifies major por-
tions of various gland objects defined in G. It is also able to
segment glands with no visible lumen inside them and glands
with discontiguous lumina inside them. The result image
SNguyen for Nguyen et al.23 has many segmented lumen objects
that are much larger than the actual lumen objects. This method
was able to estimate the gland boundaries at the epithelial
nuclei. The result image SNaik for Naik et al.17 shows many
nearby glands being merged into one. This method also esti-
mated the gland boundaries at the epithelial nuclei. The result
image SFarjam for Farjam et al.16 shows that only the nuclei

Fig. 8 (a)–(d) Four images from our dataset illustrating different color variations. Our gland segmentation
pipeline was developed using 43 images with different color variations for robust and generalizable
performance.
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regions were identified as gland objects. This method predicted
all the other regions as stroma.

Pixel-wise metrics. For each type of classification of gland,
lumen, or periacinar retraction clefting, we can compute true
positive (TP), FP, true negative (TN), and false negative (FN)
pixels predictions. We can then report precision, recall,
F-score, and accuracy using TP, FP, FN, and TN values.
Higher values of these metrics indicate better performance of
a given segmentation method.

The current image segmentation problem can also be viewed
as a clustering problem where we want to cluster the pixels into

gland, lumen, clefting, or stroma pixels. We can quantify the
agreement between G and St by OI, which indicates the ratio
of how many pairs of pixels out of all the pixels were put in
the same cluster by both G and St. Given L pixels in image
G, OI is computed by going through all the corresponding
LC2 pixel pairs. It is computationally infeasible to calculate
OI from all the pixels in our dataset as each image has at
least a million pixels. Hence, we approximated OI using a subset
of pixels in the images. While sampling pixels, we ensure that
we sample the same number of pixels from each pixel type for
unbiased estimation. The number of sampled pixels in image G
is constrained by the smallest total area spanned by a single pixel

Fig. 9 We compare various methods in (a)–(f). (a) Original H&E image I0, (b) annotation image G,
(c) image Spixel by our method, (d) image SNguyen by Nguyen et al.,23 (e) image SNaik by Naik et al.,17

and (f) image SFarjam by Farjam et al.16 We also illustrate a failure case for our method in (g)–(i).
(g) Another input H&E image, (h) corresponding annotation image, overlaid on image in (g), and
(i) our result Spixel. All the annotation/segmented images are shown overlaid on the corresponding original
image I0 and red: gland, blue: lumen, green: periacinar retraction clefting, and white: stroma.
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type. If the smallest number of pixels of one type in an image is
lp, then we can only sample lp pixels from each of the four types
in this image. The maximum possible value of lp was chosen as
2217 by going through all the images in the dataset. This was
done to ensure OI computation is done using the same number
of pixel pairs. We sampled 2217 pixels in each of the four pixel
types, namely, gland, lumen, periacinar retraction clefting, and
stroma, and then approximated OI by going through 8868C2

pixel pairs.

Object-wise metrics. We define three types of objects in our
segmentations, namely, gland, lumen, and periacinar retraction
clefting. We first find all the gland objects in G and St. All the
gland objects in G are identified as G1; G2; : : : ; Gi; : : : ; Gm. We
put these objects in OG such that Gi ∈ OG. Similarly, all the
gland objects in St are identified as St1; S

t
2; : : : ; S

t
j; : : : ; S

t
k.

We put these objects in OSt such that Sj ∈ OSt . All the objects
Gi are matched to an object Mi ≡ Stj (say) using the Gale–
Shapley algorithm.52 The set of all matched objects is M,
i.e., ðGi;MiÞ ∈ M. We compute the object-wise JI, DI, and
HD as

EQ-TARGET;temp:intralink-;e001;63;521JIðGi;MiÞ ¼
jGi ∩ Mij
jGi ∪ Mij

; (1)

EQ-TARGET;temp:intralink-;e002;63;477DIðGi;MiÞ ¼
2jGi ∩ Mij
jGij þ jMij

; (2)

EQ-TARGET;temp:intralink-;e003;63;439HDðGi;MiÞ ¼ maxfsup
x∈Gi

inf
y∈Mi

����x − y

����; sup
y∈Mi

inf
x∈Gi

kx − ykg;

(3)

where j · j denotes the number of pixels of a given object. Both
JI and DI evaluate the overlap of two matched objects while HD
evaluates the shape similarity between them. Higher values of
HD indicate large deviations of shape between the two objects.
For evaluating any segmentation algorithm’s result St at the
object level, we need to evaluate

i. how well the segmented objects in OSt overlap the
objects in OG and

ii. how well the ground truth objects in OG overlap the
objects in OSt .

We compute weighted averages of JI, DI, and HD for a given
image as follows:

EQ-TARGET;temp:intralink-;e004;63;233JIweightedðOG; OStÞ ¼ 1

2

�Xk
j¼1

wjJIðGj; StjÞ

þ
Xm
i¼1

w 0
i JIðGi;MiÞ

�
; (4)

EQ-TARGET;temp:intralink-;e005;63;151DIweightedðOG; OStÞ ¼ 1

2

�Xk
j¼1

wjDIðGj; StjÞ

þ
Xm
i¼1

w 0
iDIðGi;MiÞ

�
; (5)

EQ-TARGET;temp:intralink-;e006;326;752HDweightedðOG; OStÞ ¼ 1

2

�Xk
j¼1

wjHDðGj; StjÞ

þ
Xm
i¼1

w 0
iHDðGi;MiÞ

�
; (6)

where wj ¼ jStjjP
k
j
jStjj

and w 0
i ¼ jGijP

m
i
jGij

. The first and second term

in the above equations take care of the evaluation criterions
(i) and (ii), respectively, as discussed above. These object-
level metrics were derived from the ones discussed by
Sirinukunwattana et al.29 Better segmentation algorithms will
have higher values of JIweighted, and DIweighted and a lower
value of HDweighted.

Some of the objects in OG and OSt will remain unmatched
due to very low or no intersection with all the objects in the other
set. A higher number of unmatched objects in OG and OSt indi-
cates lower performance of the segmentation algorithm. We
evaluate the object matching by computing the F-score,
which is a harmonic mean of the percentage of objects matched
in OG and the percentage of objects matched in OSt . The higher
this object matching F-score is, the better is the segmentation
algorithm. We also defined the metrics unmatched object area
of G (UG) and unmatched object area of St (US) [see
Eqs. (7) and (8)]. We calculate total area of all unmatched
objects and then divide it by the area of the image G. Area
of G and corresponding St will always be the same. A better
segmentation algorithm will result in lower values for UG and
US metrics.

EQ-TARGET;temp:intralink-;e007;326;423UG ¼
P

lArea of unmatched objectGl ∈ OG

Area of Image
(7)

EQ-TARGET;temp:intralink-;e008;326;380US ¼
P

lArea of unmatched object Stl ∈ OSt

Area of Image
(8)

Comparison and discussion. The evaluation metrics dis-
cussed above were computed on the test results of our method
(Spixel), active contour-based method (SNaik17), texture-based
method (SFarjam16), k-means clustering, and nuclei–lumen asso-
ciation-based method (SNguyen23). For the active contour-based
method by Naik et al.,17 the initial level set was defined from the
white regions detected by our method. We compared the pixel-
wise metrics of our method with the other three methods. We
report image-wise averages of precision, recall, accuracy, and
F-score for the three cases of gland, lumen, and clefting clas-
sification in Table 2. Image-wise averaged OI is reported in
Table 2.

Our method identified all four regions, i.e., gland, lumen,
periacinar retraction clefting, and stroma, in the images.
Hence, we show our pixel-wise metrics for the three regions
in Table 2. Our method used pixel-level information for empiri-
cal estimates of the regions and then improved it using object-
level information.

Nguyen et al.23 used k-means clustering to identify the lumen
regions and nuclei regions first. After identification, the nuclei
regions were associated to nearby lumen regions. The output
segmented glands were computed using the convex hull of
some pixels sampled from the associated lumen and nuclei
regions. We observed many instances with identified lumen
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regions indicating surrounding cytoplasm as lumen region. The
output convex hull may not follow the shape of gland as it would
connect the adjacent nuclei points by a straight line. This lead to
incorrect predictions of both gland and stroma pixels. Nguyen
et al.23 also do not differentiate between lumen and periacinar
retraction clefting regions, which explains this method’s low
pixel-wise accuracy, F-score, and OI as illustrated in Table 2.

Our implementation of Naik et al.17 used the cavity objects
provided by our method as the initial level set for the glands.
These level sets after energy minimization converged around
the epithelial nuclei. In the case of nearby and touching glands,
the final level sets merged, leading to one gland instead of two or
more adjacent gland segments. This merging lead to incorrect
predictions for both gland and stroma pixels and, hence, the
low pixel-wise F-score, accuracy, and OI as illustrated in
Table 2.

Farjam et al.16 used a texture-based approach to first segment
nuclei regions and then segmented stroma, cytoplasm, and
lumen regions together. The nuclei regions were used to identify
the gland boundaries to obtain gland regions. This method used
k-means clustering in the grayscale images for identifying these

regions. The nuclei regions were being identified correctly.
In many instances, the combined stroma and lumen regions
were not being identified properly. The identified stroma, cyto-
plasm, and lumen regions did not contain the actual lumen,
stroma, or cytoplasm completely. This lead to most of the cyto-
plasm being predicted as background with only nuclei and sur-
rounding pixels being predicted as gland regions. This explains
the low pixel-wise F-score, accuracy, and OI as shown in
Table 2.

We computed JIweighted, DIweighted, HDweighted,UG, andUS for
gland objects in each image result. We report the image-wise
average of these object-wise metrics for all four methods in
Table 3. Figure 10 illustrates the evaluated JI (JIweighted for
gland objects), gland object matching F-score, and pixel-wise
OI for all the images.

Our method identified the lumen, periacinar retraction cleft-
ing, and nuclei regions based on the object-level information.
The spatial distribution of lumen and nuclei regions was used
to obtain the gland objects. The usage of lumen and nuclei
objects for seed estimation allowed fewer false gland detections;
hence, we obtained a high gland object matching F-score as

Table 2 Pixel-wise metrics for testing. The reported values are average value �standard error over the set of 37 images. Spixel: our method,
SNguyen: k -means clustering and nuclei–lumen association-based method by Nguyen et al.,23 SNaik: active contour method by Naik et al.,17

and SFarjam: texture-based method by Farjam et al.16

Pixel type Method Precision Recall F -score Accuracy

(a) Pixel-wise metrics for each pixel type

Gland Spixel 0.64� 0.017 0:90� 0:004 0:74� 0:01 0:72� 0:01

SNguyen 0:66� 0:015 0.30� 0.02 0.39� 0.02 0.59� 0.01

SNaik 0.61� 0.019 0.41� 0.02 0.47� 0.02 0.59� 0.01

SFarjam 0.54� 0.01 0.08� 0.0003 0.15� 0.005 0.54� 0.01

Lumen Spixel 0:82� 0:02 0.55� 0.02 0:64� 0:02 0:94� 0:004

SNguyen 0.49� 0.03 0:69� 0:02 0.54� 0.02 0.86� 0.01

SNaik 0.65� 0.02 0.62� 0.02 0.60� 0.01 0.90� 0.01

SFarjam NA

Periacinar retraction clefting Spixel 0.42� 0.05 0.15� 0.02 0.18� 0.026 0.97� 0.003

SNguyen NA

SNaik NA

SFarjam NA

(b) OI for comparing all pixel types

Method OI

Spixel 0.48� 0.01

SNguyen 0.36� 0.01

SNaik 0.36� 0.01

SFarjam 0.18� 0.01

Note: The best results are shown in bold.
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shown in Table 3. Seed-based growing also helped attain high
overlap between the actual gland regions and the segmented
gland regions and hence the high values of object-wise metrics
JIweighted and DIweighted. There were some cases of segmented
glands indicating surrounding stroma as gland region and
hence having a different shape, leading to a high value of the
object-wise metric HDweighted as shown in Table 3.

Nguyen et al.23 obtained gland objects by convex hulls of the
same pixels in the detected lumen and nuclei objects. The con-
vex hulls lead to shape differences between the actual glands and
detected glands. Also, the detected glands (convex hulls) some-
times included adjoining stroma regions and/or excluded some
the glandular region, leading to low values of object-wise met-
rics JIweighted and DIweighted as shown in Table 3. The shape
differences lead to a high value of the object-wise metric
HDweighted as shown in Table 3.

Our implementation of Naik et al.,17 as discussed, merged
nearby/touching glands into one gland. This lead to low overlap
and drastic shape differences between the actual gland regions
and detected gland regions. Due to low overlap, we obtained low
values of object-wise metrics JIweighted and DIweighted, and huge
shape differences lead to a high value of the object-wise metric
HDweighted as shown in Table 3.

Farjam et al.,16 as discussed, identified the nuclei and sur-
rounding regions as glands. It essentially identified a lot of
false gland objects. These objects did not cover the actual
gland regions and led to low overlap and substantial shape dif-
ference between the matched objects. This led to very low values
of object-wise metrics JIweighted and DIweighted, and huge shape
differences led to a high value of the object-wise metric
HDweighted as shown in Table 3.

4.2 Failure Cases

In our dataset of 43 images, we have a total of six images with a
cribriform pattern. Our method resulted in inaccurate segmen-
tation for these six cribriform pattern cases. We show an exam-
ple image in Figs. 9(g)–9(i). In these cribriform cases, the glands
have multiple lumen and they are surrounded by nuclei instead
of just cytoplasm. Our method REFINE-SEEDS (Algorithm 3)
failed in merging them as it relies on cytoplasm to define the
inside region of the gland and on nuclei to define the gland
boundary. REFINE-SEEDS assumes the regions with high
nuclei density as the border regions and keeps the multiple
lumina disconnected. Due to inaccurate seed refining, sub-
sequent THREE-LEVEL-EGVD results in oversegmentation as
shown in Fig. 9(i). Other methods, such as Farjam et al.,16 Naik
et al.,17 and Nguyen et al.,23 also generated final segmentation

Table 3 Object-wise metrics for testing (for gland objects). The reported values are average value �standard error over the set of 37 images.
Spixel: our method, SNguyen: k -means clustering and nuclei–lumen association-based method by Nguyen et al.,23 SNaik: active contour method by
Naik et al.,17 and SFarjam: texture-based method by Farjam et al.16

Method JI (JIweighted) DI (DIweighted) UG US HD (HDweighted) Object matching F -score

Spixel 0:54� 0:01 0:65� 0:01 0:04� 0:006 0.11� 0.02 189.98� 13.27 74:54� 1:42

SNguyen 0.38� 0.01 0.49� 0.01 0.10� 0.02 0.17� 0.01 177:83� 13:58 58.24� 1.68

SNaik 0.26� 0.02 0.37� 0.03 0.20� 0.02 0:02� 0:002 497.04� 57.47 51.26� 3.14

SFarjam 0.01� 0.0008 0.02� 0.0002 0.00� 0 0.12� 0.004 228.46� 14.55 1.101� 0.078

Note: The best results are shown in bold.
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Fig. 10 Results for all 37 images. (a) JI (JIweighted) for gland segmen-
tation (object-wise metric), (b) F -score for gland object matching
(%age) (object-wise metric), and (c) OI (pixel-wise metric). Object-
wise results for texture-based method by Farjam et al.16 are not
shown due to low performance.
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similar to that of our method (oversegmented) for these six
cribriform pattern cases.

5 Conclusion
We developed an automated method for gland segmentation in
prostate histopathological images using machine learning and
image processing methods. We used a dataset of Gleason pattern
3 and 4 PCa images for developing this system. Our method
outperformed texture- and gland structure-based methods by
Farjam et al.,16 Naik et al.,17 and Nguyen et al.23 Our method,
however, fails in the images with the cribriform pattern. The
cribriform pattern contains a lot of glands fused into one and
hence contains a lot of nuclei clusters inside a gland. These clus-
ters, in turn, impede our method during the seed-refining step,
resulting in inaccurate segmentation.

A possible extension of our work can be the development of
a practical user-friendly interface with efficient image acquisi-
tion and dataset preparation systems. Another future research
can be the development of automated systems to analyze
the segmented glands for grading purposes. The architecture,
shape, and size of glands are some of the important features
in the diagnostics of PCa. A good quality gland segmentation
enables the computer to elucidate these features correctly. As
such, a gland segmentation system may work as a base for future
expert systems that analyze gland architectures.
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