Skip to main content
. Author manuscript; available in PMC: 2018 May 1.
Published in final edited form as: Med Image Anal. 2017 Mar 8;38:104–116. doi: 10.1016/j.media.2017.03.002

Table 3.

Classification accuracy on OutexTC10, OutexTC12000, OutexTC12001, Out-exTC36tl84, OutexTC36horizon, OutexTC11[b, c, n, s] and OutexTC23[b, c, n, s] datasets using different combinations of features and classifiers.

Method Integrated Features MRELBP
Datasets KNN SVM KNN SVM
OutexTC10 0.999768 0.999768 *0.9984 -
OutexTC12000 1.0 0.99875 *0.9949 -
OutexTC12001 0.999583 0.998541 *0.9977 -
OutexTC36tl84 0.956897 0.934863 *0.9255 -
OutexTC36horizon 0.960449 0.931632 *0.9155 -
OutexTC11b 0.998958 1 *0.9577 -
OutexTC11c 0.996875 1 *0.9472 -
OutexTC11n 0.99375 0.996875 *0.877 -
OutexTC11s 0.983333 0.997916 *0.9984 -
OutexTC23b 0.809559 0.917647 *0.8797 -
OutexTC23c 0.803308 0.892279 *0.8036 -
OutexTC23n 0.816911 0.861397 *0.664 -
OutexTC23s 0.759926 0.792279 *0.9436 -
*

: quoted number from (Liu et al., 2016);

-

: the result is unavailable.