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Abstract

Computational approaches to drug discovery can reduce the time and cost associated with 

experimental assays and enable the screening of novel chemotypes. Structure-based drug design 

methods rely on scoring functions to rank and predict binding affinities and poses. The ever-

expanding amount of protein-ligand binding and structural data enables the use of deep machine 

learning techniques for protein-ligand scoring.

We describe convolutional neural network (CNN) scoring functions that take as input a 

comprehensive 3D representation of a protein-ligand interaction. A CNN scoring function 

automatically learns the key features of protein-ligand interactions that correlate with binding. We 

train and optimize our CNN scoring functions to discriminate between correct and incorrect 

binding poses and known binders and non-binders. We find that our CNN scoring function 

outperforms the AutoDock Vina scoring function when ranking poses both for pose prediction and 

virtual screening.
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Introduction

Protein-ligand scoring is a keystone of structure-based drug design. Scoring functions rank 

and score protein-ligand structures with the intertwined goals of accurately predicting the 

binding affinity of the complex, selecting the correct binding mode (pose prediction), and 

distinguishing between binders and non-binders (virtual screening).

Existing empirical1–7 and knowledge-based8–13 scoring functions parameterize a 

predetermined function, which is usually physically inspired, to fit data, such as binding 

affinity values. Scoring functions that use machine learning1,13–25 provide greater flexibility 

and expressiveness as they learn both parameters and the model structure from data. 

However, the resulting model often lacks interpretability, and the increased expressiveness 

increases the probability of overfitting the model to the data, in which case the scoring 

function will not generalize to protein targets or ligand chemotypes not in the training data. 

The risk of overfitting increases the importance of rigorous validation,26,27 but the inherent 

increase in flexibility allows machine learning methods to outperform more constrained 

methods when trained on an identical input set.28 The choice of input features can limit the 

expressiveness of a machine learning method. Features such as atom interaction counts,22 

pairwise atom distance descriptors,13 interaction fingerprints,21 or “neural fingerprints” 

generated by learned atom convolutions24 necessarily eliminate or approximate the 

information inherent in a protein-ligand structure, such as precise spatial relationships.

Neural networks29 are a neurologically inspired supervised machine learning technique that 

is routinely and successfully applied to problems such as speech recognition and image 

recognition. A basic network consists of an input layer, one or more hidden layers, and an 

output layer of interconnected nodes. Each hidden node computes a feature that is a function 

of the weighted input it receives from the nodes of the previous layer. The outputs are 

propagated to each successive layer until the output layer generates a classification. The 

network architecture and choice of activation function for each layer determine the design of 

the network. The weights that parameterize the model are typically optimized to fit a given 

training set of data to minimize the error of the network.

Deep learning30 refers to neural networks with many layers, which are capable of learning 

highly complex functions and have been made practical largely by the increase in 

computational power provided by modern graphics cards. The expressiveness of a neural 

network model can be controlled by the network architecture, which defines the number and 

type of layers that process the input to ultimately yield a classification. The network 

architecture can be manually or automatically tuned with respect to validation sets to be as 

expressive as needed to accurately model the data and reduce overfitting.31,32 Structure-

based scoring functions that use neural networks20–25 were recently shown to be competitive 

with empirical scoring in retrospective virtual screening exercises while also being effective 

in a prospective screen of estrogen receptor ligands.33 Neural networks have also been 

successfully applied in the cheminformatics domain through creative manipulations of 2D 

chemical structure and construction of the network architecture,34–37 and as alternatives to 

computationally intensive quantum chemical calculations.38–40
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Convolutional neural networks (CNNs)30 are a type of neural network commonly used in 

image recognition. CNNs hierarchically decompose an image so that each layer of the 

network learns to recognize higher-level features while maintaining their spatial 

relationships as illustrated in Figure 1. For example, the first layer may learn to identify lines 

and corners in an image, the next may assemble these features to learn different shapes, and 

so on until the final layer can recognize something as high-level and complex as a dog breed. 

CNNs are the best performing method for image recognition,41 as epitomized by the 

GoogLeNet winning entry to the ImageNet Large Scale Visual Recognition Challenge of 

201432 and the Microsoft ResNet entry of 2015,42 both of which perform better at 

classifying images than most humans.43

The impressive performance of CNNs at the image recognition task suggests that they are 

well-suited for learning from other types of spatial data, such as protein-ligand structures. 

Unlike previous machine learning methods, a CNN scoring method does not require the 

extraction of high-level features from the structure. Instead, the method automatically 

identifies the most informative features required for successful scoring. This allows for the 

extraction of features that are not readily encoded in simplified potentials, such as 

hydrophobic enclosure44 or surface area dependent terms,45 as well as features that have not 

yet been identified as relevant by any existing scoring function.

Here we describe the development of a CNN model for protein-ligand scoring that is trained 

to classify compound poses as binders or non-binders using a 3D grid representation of 

protein-ligand structures generated through docking. We show that our CNN scoring method 

outperforms the AutoDock Vina' scoring function that is used to generate the poses both 

when selecting poses for pose prediction and for virtual screening tasks. Our method 

outperforms other machine learning approaches in our virtual screening evaluation even 

when it is also trained to perform well at pose-sensitive pose prediction. Finally, we illustrate 

how our CNN score can be decomposed into individual atomic contributions to generate 

informative visualizations.

Methods

In order to create our CNN scoring models we utilize two training sets, one focused on pose 

prediction and the other on virtual screening. The structural information in these sets is 

translated into a custom input format appropriate for CNN processing. We systematically 

optimize the network topology and parameters using clustered cross-validation. The 

optimized network is then trained on the full training set and evaluated with respect to 

independent test sets. The predictions from the resulting models are decomposed into atomic 

contributions to provide informative visualizations.

Training Sets

We utilize two training sets focused on two different goals: pose prediction and virtual 

screening. In all cases we generate ligand poses for actives and decoys using docking with 

smina1 and the AutoDock Vina scoring function.7 We note that methods using the AutoDock 

Vina scoring function performed well in blind evaluations of docking performance.46,47 We 

use docked poses, even for active compounds with a known crystal structure, because (1) 
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these are the types of poses the model will ultimately have to score and (2) to avoid the 

model simply learning to distinguish between docked poses and crystal structures (which 

were likely optimized with different force fields).

Ligands are docked against a reference receptor within a box centered around a reference 

ligand with 8Å of padding. If 3D coordinates are not available for the ligand, a single 3D 

conformer of the ligand is generated using RDKit48 to provide the initial coordinates (using 

rdconf.py from https://github.com/dkoes/rdkit-scripts). A single conformer is sufficient since 

the docking algorithm will sample the degrees of freedom of the ligand. All docking is done 

against a rigid receptor that is stripped of water but not metal ions. Protonation states for 

both the ligand and receptor are determined using OpenBabel.49

Pose Prediction: CSAR—Our pose prediction training set is based on the CSAR-NRC 

HiQ dataset, with the addition of the CSAR HiQ Update.50 This set consists of 466 ligand-

bound co-crystals of distinct targets. To generate the training set, we re-docked these ligands 

with the settings –seed 0 –exhaustiveness 50 –num_modes 20 to thoroughly and 

reproducibly sample up to 20 distinct poses. We exclude targets where the ligand is 

annotated with a binding affinity of less than 5 pK units (a value provided as part of the 

CSAR dataset). This results in 337 co-crystals where the ligand has a reported binding 

affinity better than 10μM (where the affinity may come from a variety of sources, including 

IC50 measurements). For the purposes of training, poses with a heavy-atom RMSD less than 

2Å from the crystal pose were labeled as positive (correct pose) examples and those with an 

RMSD greater than 4Å RMSD were labeled as negative examples. Poses with RMSDs 

between 2Å and 4Å were omitted. The final training set consists of 745 positive examples 

from 327 distinct targets and 3251 negative examples from 300 distinct targets (some targets 

produce only low or high RMSD poses).

Virtual Screening: DUD-E—Our virtual screening training set is based off the Database 

of Useful Decoys: Enhanced (DUD-E)51 dataset. DUD-E consists of 102 targets, more than 

20,000 active molecules, and over one million decoy molecules. Unlike the CSAR set, 

crystal poses of these ligands are not provided, although a single reference complex is made 

available. To generate poses for training, we dock against this reference receptor using 

smina’s default arguments for exhaustiveness and sampling and select the pose that is top-

ranked by the AutoDock Vina scoring function. Top-ranked poses are used both for the 

active and decoy compounds. The result is an extremely noisy and unbalanced training set. 

The noisiness stems from cross-docking ligands into a non-cognate receptor, which 

substantially reduces the retrieval rate of low-RMSD poses in a highly target-dependent 

manner,1 as well as the use of randomly chosen decoys in DUD-E (the dataset may contain 

false negatives). The unbalance is due to the much larger number of decoy molecules. The 

final training set contains 22,645 positive examples and 1,407,145 negative examples.

Input Format

Traditionally, CNNs take images as inputs, where a scene is discretized into pixels with red, 

green, and blue values (RGB). To handle our 3D structural data, we discretize a protein-

ligand structure into a grid. The grid is 24Å on each side and centered around the binding 
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site with a default resolution of 0.5Å, although we evaluate alternative resolutions. Each grid 

point stores information about the types of heavy atoms at that point. Ligand and protein 

atoms have distinct atom types and each atom type is represented in a different channel 

(analogous to RGB channels in images) of the 3D grid. Our default is to use smina1 atom 

types for a total of 34 distinct types with 16 receptor types and 18 ligand types as shown in 

Table S1. Only smina atom types that were present in the ligands and proteins of the training 

set were retained. For example, halogens are not included as receptor atom types and metals 

are not included as ligand atom types. Hydrogen atoms are ignored except to determine 

acceptor/donor atom types. We also evaluate alternative atom typing schemes. Atom type 

information is represented as a density distribution around the atom center. We represent 

each atom as a function A(d, r) where d is the distance from the atom center and r is the van 

der Waals radius:

(1)

A is a continuous piecewise combination of a Gaussian (from the center to the van der Waals 

radius) and a quadratic (which goes to zero at 1.5 times the radius). This provides a 

continuous representation of the input. We also evaluate a ‘hard’ discrete boolean 

representation.

We generate these grids of atom density using a custom, GPU-accelerated layer, MolGrid-

DataLayer, of the Caffe52 deep learning framework. This layer can process either standard 

molecular data files, which are read using OpenBabel,49 or a compact, custom binary 

gninatypes file that contains only the atomic coordinates and pre-processed atom type 

information.

A visualization of our atom type volumetric representation is shown in Figure 2 with density 

data rendering using isosurfaces. This input format fully represents the spatial and chemical 

features of the protein-ligand complex; the sole approximations are the choice of grid 

resolution and the atom typing scheme.

Training

Our CNN models were defined and trained using the Caffe deep learning framework.52 

Training minimized the multinomial logistic loss of the network using a variant of stochastic 

gradient descent (SGD) and backpropagation. The order of training data was shuffled and 

classes were balanced by sampling the same number of positive examples as negative 

examples per batch. Additionally, our MolGridDataLayer has the ability to randomly 

rotate and translate the input structures on-the-fly. This feature is controlled via data 

augmentation parameters specifying whether to randomly rotate structures and the 

maximum distance to randomly translate them. Enabling this data augmentation 

significantly improved training, as shown in Figure 3.

Ragoza et al. Page 5

J Chem Inf Model. Author manuscript; available in PMC 2018 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The values for training hyperparameters were initially evaluated in ranges common for 

neural network training, and these values were verified to behave reasonably for our data. In 

general, training parameters within conventional ranges converged to similar loss values, 

with the main difference being the number of iterations needed to converge. The same 

parameters for the SGD solver (batch_size=10, base_lr=0.01, momentum=0.9), for learning 

rate decay (lr_policy = inverse, power=1, gamma=0.001), and for regularization 

(weight_decay=0.001, dropout_ratio=0.5) were used to train all models. In all cases we 

manually verified that model training had qualitatively converged after 10,000 iterations.

Model Evaluation

The performance of trained CNN models were evaluated by 3-fold cross-validation for both 

the pose prediction and virtual screening tasks. To avoid evaluating models on targets similar 

to those in the training set, training and test folds were constructed by clustering data based 

on target families rather than individual targets. For the CSAR pose prediction training set, 

clusters were created using the 90% sequence identity families provided by CSAR (i.e., 

protein targets with greater than 90% sequence identity are always retained in the same fold 

to avoid testing on a target highly similar to one in the training set). For the DUD-E virtual 

screening dataset, we created our own clusters of proteins using the hierarchical clustering 

module of scipy and ensured that proteins with greater than 80% sequence identity were 

retained in the same fold.

Receiver-operating characteristic (ROC) curves were generated for each scoring function, 

plotting the true positive rate against the false positive rate. The performance metric was the 

area under the ROC curve (AUC), with AUC = 1 representing a perfect classifier and AUC = 

0.5 being no better than chance. For early enrichment, we report the ROC enrichment53,54 at 

0.5%, 1%, 2% and 5% false positive rate (FPR) thresholds. The ROC enrichment is the ratio 

of the true positive rate (TPR) to the FPR at a given FPR threshold; as the maximum TPR is 

1.0, the maximum possible ROC enrichment depends on the chosen FPR threshold (e.g., at 

an FPR of 5%, the best possible ROC enrichment is 20). Random performance has an 

expected ROC enrichment of 1.0.

In addition to the default Vina scoring function, we also evaluate the ability of two machine 

learning scoring functions, RF-Score13 and NNScore,20 to separate actives from inactives in 

the virtual screening evaluation. In both cases we used published models;55,56 no effort was 

made to compensate for overlap between the training sets used to create these models and 

our test set. These models were applied to all docked poses of a ligand and the best score 

was used to classify the ligand. For NNScore we took the average of the three provided 

models.

Independent Test Sets—To control for any systematic bias in the training sets, we also 

chose to assess classification accuracy on several completely independent test sets. To 

evaluate pose prediction performance, we utilized the 2013 PDBbind core set.57 The 

PDBbind database consists of high quality protein-ligand complexes with no unusual atomic 

features, such as uncommon elements. The core set is a representative, non-redundant subset 

of the database and is composed of 195 protein-ligand complexes in 65 families.
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To assess virtual screening performance, we utilized two datasets created from assay results. 

One was generated from ChEMBL by Riniker and Landrum,58 following Heikamp and 

Bajorath.59 They selected a set of 50 human targets from ChEMBL version 14. They chose 

actives that had at least 10 μM potency, had a molecular weight under 700 g/mol, and did not 

have metal ions. The actives were down sampled using the RDKit diversity picker to select 

the 100 most diverse compounds for each target. For each active, two decoys with a Dice 

similarity greater than 0.5 using a simple atom-count fingerprint (ECFC0) were randomly 

selected from the ZINC database to yield a total of 10,000 decoys that were shared across all 

targets. Our other virtual screening dataset is a subset of the maximum unbiased validation 

(MUV) dataset,60 which is based on PubChem bioactivity data. MUV consists of assay data 

from 17 targets, each with 30 actives and 15000 decoys. Actives were selected from 

confirmatory screens and were chosen to be maximally spread based on simple descriptors 

and embedded in decoys. The decoys were selected from a primary screen for the same 

target. The MUV datasets were designed to avoid analog bias and artificial enrichment, 

which produce overly optimistic predictions of virtual screening performance.

To avoid artificially enhancing our performance on these test sets, we enforced a maximum 

similarity between targets included in the test sets and targets from DUD-E and CSAR used 

for training. We performed a global sequence alignment for all targets from the training and 

proposed test sets and removed any test targets that had more than 80% sequence identity 

with a training target. We also performed ProBiS61 structural alignment on the binding sites 

of all pairs of targets from the training and proposed test sets and rejected those for which a 

significant alignment was found using the default ProBiS parameters. Finally, since 

structural data were necessary for scoring, assay targets were only included if a crystal 

structure of a ligand-bound complex containing the target was available in the Protein Data 

Bank. If multiple structures of active-site drug-like inhibitors were available, we selected the 

lexicographically first structure that had minimal mutations. This structure was used to 

generate docked poses at a known binding site. After these constraints were applied, the 

independent test sets consisted of a 54 complex subset of the 2013 PDBbind core set, a 13 

target subset of the Riniker and Landrum ChEMBL set, and a 9 target subset of the MUV 

set.

For the pose prediction task, we re-docked ligands from the PDBbind core set with the 

settings –seed 0 –exhaustiveness 50 –num_modes 20 (the same settings used to generate 

poses for the CSAR training set). The resulting PDBbind core subset had 98 low RMSD (< 

2Å) out of 897 total poses. For the virtual screening task, the active and decoy sets were 

docked against an appropriate reference receptor using smina’s default arguments for 

exhaustiveness and sampling. All generated poses were scored and the best score for each 

ligand was used to assess virtual screening performance. The resulting ChEMBL subset had 

11,406 poses associated with 1,300 active compounds and 663,671 poses associated with 

10,000 decoys. The resulting MUV subset had 1,913 poses associated with 270 active 

compounds and 1,177,989 poses associated with 135,000 decoys.

The ChEMBL and MUV test sets provide collections of actives and decoys associated with a 

target protein, but they do not provide crystal structures for the target. We only included 

targets with bound crystal structures available, and we used the bound ligand to identify the 
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pocket into which to dock the assay’s actives and decoys. Table S2 shows the PDB accession 

code for the crystal structure we used for each target, the bound ligand associated with that 

structure, that ligand’s experimental affinity for the target (if available), and the type of assay 

used to identify the actives and decoys.

Optimization

An initial CNN architecture was constructed using simple guidelines in order to limit 

parameterization and serve as a starting point for optimization. The preliminary model 

architecture consisted of five 3×3×3 convolutional layers with rectified linear activation units 

alternating with max pooling layers. The number of filters in each convolutional layer was 

doubled from the previous one so that the width of the network increased as the spatial 

dimensionality decreased. Following the alternating convolution and pooling layers was a 

single fully connected layer with two outputs and a softmax layer for binary classification.

The various parameters of the neural network model were tuned to train the most accurate 

model with respect to the CSAR pose prediction test set. The CSAR set was chosen as its 

smaller size made iterative model optimization more practical. Model optimization was 

performed by systematically modifying a reference model. A single parameter was varied 

and the resulting training times and accuracies computed. After all parameters were tested, 

the changes resulting in the best gain of accuracy and similar or reduced training time were 

combined to create a new reference model. This process was repeated until the model’s 

accuracy no longer increased. Several model parameters were explored.

Atom Types—In addition to the default smina atom types, we evaluated two simpler atom 

typing schemes: element-only and ligand/receptor only. Unlike smina atom types, which 

include aromaticity and protonation state information, element-only types only record the 

element, although we still provide distinct types for receptor and ligand atoms. With ligand/

receptor only types, there are only two types (corresponding to two “channels” in the input 

3D image): ligand atoms and receptor atoms.

Occupancy Type—In addition to a smoothed Gaussian distribution of atom density, we 

also evaluated a Boolean representation, where grid point values are one if they overlap an 

atom and zero otherwise. Unlike with the Gaussian scheme, in the Boolean representation 

individual grid point values provide no indication of the distance of the grid point from the 

atom center.

Atomic Radius Multiplier—By default, we extend atom densities beyond the van der 

Waals radius by a multiple of 1.5 (e.g., if the atomic radius is 1.0, the atom density decays to 

zero at 1.5). Additionally, we evaluated multiples of 1.0, 1.25, 1.75, and 2.0. With larger 

multiples, a single grid point contains more information about the local neighborhood.

Resolution—The default grid resolution is 0.5Å resulting in 483 grid points. We also 

evaluated higher (0.25Å) and lower (0.75, 1.0, and 1.5Å) resolution grids.

Layer Width—In our initial reference model, the first convolutional layer generates 128 

feature maps, and each successive layer doubles the number of feature maps after halving 
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the dimensions of the maps with a pooling layer. We also evaluate models that double, half, 

and quarter the width of these layers. Wider layers allow for a more expressive model, but at 

the cost of more computation.

Model Depth—Our initial model contained 5 convolution layers. We also evaluate models 

with more (up to 8) and fewer (as little as 1) convolution layers. More layers allow for a 

more expressive model, but take longer to process and increase the risk of suffering from 

vanishing gradients, which inhibit convergence.62

Pooling Type—Pooling layers reduce the size of their inputs by propagating a single value 

for each window (or kernel) of the input. The propagated value can either be the maximum 

value or the average value of the kernel and the kernel size can be varied. In our initial 

model we use max pooling with a kernel size of 2. We additionally evaluate average pooling 

and kernels of size 4.

Fully Connected Layer—After a series of convolution and pooling layers, a traditional 

fully connected layer reduces the final feature maps to two outputs. Our initial model 

contains a single fully connected layer with no hidden nodes. Additionally, we evaluate 

alternative models with a single hidden layer with anywhere from 6 to 50 nodes. More 

expressive fully connected layers allow the model to arbitrarily combine the spatial features 

generated by the convolution layers to generate the final prediction.

Visualization

In order to better understand the features that the neural network learns, we implemented a 

visualization algorithm based on masking.63 In image recognition masking, pixels are 

systematically masked out and the image is reclassified in order to get a “heat map” of 

important areas. The visualization algorithm is illustrated in Figure 4. Atoms are colored by 

relative contribution to the total neural network score as determined by removing the atom 

and rescoring the complex.

Atoms are removed either one at a time, or as part of larger fragments. The individual and 

fragment removals of atoms differ significantly enough that an average of both scores is 

computed. The individual removals produce sharper contrasts between “good” and “bad”, 

compared to a more gradual effect in the fragment removals. The combination of the two 

methods provides a broader representation of how the model interprets functional groups, 

while maintaining any significant individual atom scores.

In order to reduce computational load, removals were carried out on whole residues of the 

protein at a time. This provided enough information to assess spatial relationships between 

protein and ligand, which is a key goal of visualization.

Results

Our systematic optimization of network and training parameters successfully improved the 

performance of the CNN models in clustered cross-validation while revealing the 

importance, or lack thereof, of various choices of parameters. We evaluated the optimized 
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network architecture for performance in pose prediction, virtual screening, and affinity 

prediction, while also considering the importance of the training set used to create the 

model.

Optimization

Two rounds of model optimization were performed. In each round, parameters of a reference 

model were individually varied. For each parameter type, the best parameter was used to 

define the reference model of the next iteration. Each iteration both increased the cross-

validation AUC and decreased the training time of the model. The results obtained in the 

first two iterations are shown in Figure 5. A third iteration did not result in further 

improvements (data not shown). The initial reference model had an AUC of 0.78 and a 

training time of 580ms per an iteration, and the final model increased to an AUC of 0.82 

with a training time of 120ms per an iteration. The ROC curves for all three models are 

shown in Figure S1.

Based on the first iteration of parameter sensitivity analysis, the second reference model 

reduced the depth from five to four convolutional layers and quartered the widths of these 

layers. After another round of optimization, the final reference model further reduced the 

depth to three convolutional layers. The final optimized network architecture is shown in 

Figure 6. Since parameters were varied individually in each optimization iteration, we can 

assess the relative importance of each parameter class on the overall model performance.

Atom Types—The best AUCs are achieved using smina atom types. However, simpler 

atom types are remarkably competitive, with at most a 0.05 reduction in AUC for the binary 

protein/ligand atom typing in the second iteration of optimization. Although this is 

consistent with previous findings with empirical scoring functions where purely steric terms 

were found to be the dominant terms of the scoring function,1,64 it is likely that the model is 

inferring atom types from the atomic radii. When a single radius is used for all elements, the 

binary protein/ligand atom typing AUC drops by an additional 0.11. We also note that, 

although the overall AUCs were similar, smina and element-only atom types result in better 

early enrichment (the initial slope of the ROC curve is steeper).

Occupancy Type—Interestingly, changing the atom density representation from the more 

informative Gaussian to a simple Boolean did not reduce the AUC. The models do not seem 

to need the additional distance information provided by a Gaussian atomic density.

Atomic Radius Multiplier—The default radius multiplier of 1.5 provided the best AUC, 

although other multipliers were nearly equivalent with all but the 2.0 multiplier within 0.01 

of the reference AUC.

Resolution—Predictive performance correlates with resolution, with the highest resolution 

(0.25Å) achieving an AUC more than 0.1 greater than the lowest (1.5Å). However, we 

decided against using higher resolution grids since the small increase in AUC (0.02) in 

increasing the resolution from 0.5Å to 0.25Å was accompanied by a more than 4X increase 

in per-iteration training time, which directly correlates with the evaluation time of the final 
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model (i.e., the final model would have 4X less throughput when performing a virtual 

screen).

Layer Width—We found that increasing the width of the layers resulted in significant 

increases in training time, but slight decreases in predictive performance, possibly due to 

overfitting. Reducing the width improved both the AUC and training time up to a limit. In 

our final model, the first convolutional layer generates 32 feature maps; reducing this 

number further hurts predictive performance.

Model Depth—Model depth behaved similarly to the layer width parameter. Our initial 

model topology was needlessly expressive, and by reducing the depth (ultimately to only 

three convolutional layers), we improved both training time and predictive performance, 

likely by reducing the amount of overfitting.

Pooling Type—Somewhat surprisingly, the use of average pooling instead of max pooling 

obliterated predictive performance and prevented the model from learning. Alternative 

kernel sizes did not improve the AUC.

Fully Connected Layer—Modifications to the final fully connected layer had no 

discernible effects on predictive performance or training time, suggesting most of the 

learning is taking place in the convolutional layers.

The final optimized model architecture was used to train and evaluate pose prediction, 

virtual screening, and affinity prediction performance. It is available at https://github.com/

gnina/models.

Pose Prediction

Pose prediction assesses the ability of a scoring function to distinguish between low RMSD 

and high RMSD poses of the same compound. We assess pose prediction performance both 

in terms of inter-target ranking and intra-target ranking. With inter-target ranking, which is 

most similar to the training protocol, all poses across all targets are ranked to generate a 

ROC curve. Intra-target ranking better represents the typical docking scenario, and the goal 

is to select the the lowest RMSD pose among poses generated for each individual target. A 

scoring function can do well in intra-target ranking even if the low RMSD pose has a poor 

score as long as all other poses for that target have worse scores.

The CNN model performed substantially better than the Autodock Vina scoring function in 

its ability to perform inter-target ranking of CSAR poses as shown by the cross-validation 

results in Figure 7. The CNN model achieves an AUC of 0.815 while the Vina scoring 

function has an AUC of 0.645.

In intra-target ranking, the CNN model performed substantially worse than Autodock Vina, 

as shown in Figure 8. The Autodock Vina scoring function is parameterized to excel at 

redocking1,7 and correctly identifies a low RMSD pose as the top ranked pose for the given 

target for 84% of the targets compared to 64% with the CNN model. When the top 5 poses 

are considered, the difference between Vina and the CNN model shrinks with Vina 
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exhibiting a success rate of 93% and the CNN model 92%. As pose selection performance is 

dependent on the range of poses that are selected from (e.g., some targets have highly rigid 

ligands in tightly constrained pockets resulting in nearly all low RMSD poses), we also show 

the results of random selection in Figure 8. Both methods are substantially better than 

random.

The correlations between pose RMSD and scores are shown in Figure S3. The CNN scores 

weakly correlate with RMSD, with higher RMSD poses exhibiting lower scores as expected 

(a more positive CNN score is more favorable). Vina scores do not correlate with RMSD, 

although there is a noticeable “funnel” shape due to the best scoring poses having very low 

RMSDs. Interestingly, there is no correlation between CNN scores and Vina scores, 

indicating that they use different criteria to rank poses.

Virtual Screening

Structure-based virtual screening assesses the ability of a scoring function to distinguish 

between active and inactive compounds using docked structures. In assessing virtual 

screening, we consider both the case where the CNN model ranks only the top-ranked (by 

Vina) docked pose of each ligand (single-pose prediction) and the case where the CNN 

model selects from all available docked poses of the ligand (multi-pose prediction).

Overall cross-validation results for the entire DUD-E benchmark are shown in Figures 9 and 

S4 and Tables 1 and S3. Early enrichment performance is shown in Figure 10 and Tables 

S4–S7. Even using the exact same poses (single-pose scoring), CNN scoring substantially 

outperforms Vina with an overall AUC of 0.85 versus 0.68. Multi-pose scoring does slightly 

better with an AUC of 0.86. In terms of early enrichment, the CNN model is 2–4 times 

better than Vina on average (Table 1 and Figure 10). On a per-target basis, CNN scoring 

outperforms Vina scoring for 90% of the DUD-E targets, as shown in Figure 11. As shown 

in Figures 9 and 10, the CNN models and Vina both outperform the alternative machine 

learning scoring functions evaluated. It is possible these methods are at a disadvantage due 

to having been trained on structures created with a different pose generation protocol.

Combined Training

CNN models trained on one kind of data do not generalize particularly well to another. For 

example, as shown in Figure 12, a CNN model trained exclusively on DUD-E data achieves 

a cross-validation AUC of 0.56 in CSAR pose prediction. This is not unexpected as the 

DUD-E training data consists of noisy, likely inaccurate, docked poses. A CNN model 

trained on this data will be less sensitive to changes in ligand pose. In the other direction, 

training on CSAR data resulted in a cross-validation AUC of 0.66 at the virtual screening 

task. However, as shown in Figure 12, combining CSAR and DUD-E training data results in 

models that perform nearly as well as single-task trained models. At a ratio 2:1 DUD-E to 

CSAR (for every two virtual screening training examples from DUD-E, one pose prediction 

example from CSAR is included during training), the resulting CNN model exhibits an AUC 

of 0.79 at pose prediction and an AUC of 0.83 at virtual screening. The inclusion of pose 

prediction training data accentuates the difference between single-pose and multi-pose 
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DUDE evaluation (e.g., 0.79 vs 0.83 at a 2:1 ratio), suggesting that such data allows the 

CNN model to select more accurate poses.

Although a combined training set results in a minimal reduction in overall AUC for DUD-E, 

on a per-target basis, shown in Figure 11, there is a more significant reduction in 

performance, with only 81% of targets performing better than Vina, compared with 90% 

with a DUD-E-only training set. Early enrichment (Figure 10) is also reduced, although still 

significantly better than Vina on average (Table 1). In a few cases, there is a dramatic 

performance difference, such as with the fpps (farnesyl diphosphate synthase) target which 

goes from a 0.98 AUC with the DUD-E-only training set to a 0.10 AUC with the combined 

2:1 training set. This target is also a challenge for the Vina scoring function, which also 

achieves a worse-than-random 0.29 AUC, suggesting that the generated poses may be highly 

inaccurate.

An example ligand from the fpps target is CHEMBL457424, which the DUD-E model 

scores as 0.99 but the combined model scores as 0.01. The DUD-E model is completely pose 

insensitive - all poses of this ligand score similarly despite large differences in RMSD. The 

pose selected with Vina is shown visualized with the DUD-E model in Figure 13. This pose 

is most likely incorrect; based on the 3Z0U crystal structure, the bisphosphonate group 

should chelate with the magnesium ions. The DUD-E model highlights the polar and 

aromatic parts of the molecule and disfavors the apolar parts. It also highlights the polar 

residues of the binding site. It is possible that the DUD-E-only model is simply ranking 

polar molecules highly, having recognized the highly polar binding site. Furthermore, all the 

actives associated with this target in the DUD-E benchmark contain a bisphosphonate group, 

whereas fewer than 1% of the decoy compounds even contain phosphorous. A scoring 

function that favors this group regardless of the 3D interaction structure will do 

exceptionally well in scoring these actives. When pose quality is incorporated into the 

training of the model, as with the combined model, erroneous poses are penalized and non-

structural properties, such as polarity, play a less dominant role. Similar trade-offs between 

learning non-structural cheminformatic information and enforcing structural constraints 

likely explain the difference in performance between the DUD-E and combined models.

Independent Test Sets

To evaluate CNN scoring performance on our independent test sets, we trained three models 

using all folds of the available training data: a pose prediction model trained only on CSAR 

data, a virtual screening model trained only on DUD-E data, and a combined model trained 

on DUD-E and CSAR data at a 2:1 ratio.

Pose Prediction—Summary results for the PDBbind core set are shown in Figures 14, 15, 

16 and S2. As with the cross-validation results, the CNN models outperform Vina in an 

inter-target assessment of pose ranking (Figure 14) with an improvement of about 0.1 AUC. 

Also consistent with the cross-validation results is the Ending that, on average, Vina’s top-

ranked pose has a lower RMSD than the top-ranked poses of any of the CNN methods, but 

by the second ranked pose the CSAR and DUD-E/CSAR combined CNN models, both of 

which were trained on pose prediction data, have improved on Vina (Figure S2). As 
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expected, the model trained on DUD-E data, which consisted of inaccurate docked poses, 

does poorly at pose prediction.

The distribution of best RMSD values at different ranks is shown in Figure 15. Even for the 

poorly performing DUD-E-only model there is a significant cluster of low RMSD poses. 

The percentage of complexes where a low RMSD pose (< 2Å) was found in the top N 

ranked poses for each method is shown in Figure 16. The DUD-E trained model had similar 

performance to random pose selection, providing further evidence for the conclusion that 

models trained on this kind of data lack pose sensitivity. The models trained with pose 

prediction data did significantly better than random, with the CSAR-trained model correctly 

identifying a low RMSD pose as the top ranked pose in 46% of the complexes, compared to 

57% for Vina. As with the cross-validation results, accuracy improved significantly as the 

number of top ranked poses considered increased. The combined DUD-E/CSAR model 

outperformed Vina at identifying a low RMSD pose within the first three ranked poses.

Examples of PDBbind poses visualized with the CSAR model are shown in Figures 17 and 

18. Figure 17 shows human protein kinase CK2 (PDB 3PE2). For this complex, Vina 

correctly top-ranks a low RMSD pose while the CNN model prefers to flip the compound in 

the binding site. The visualization illustrates why. The CNN model correctly favors the 

binding of the low RMSD pose to the hinge region of the kinase (as indicated by the green 

highlighting on both the ligand and protein in this region), but it disfavors the position of the 

alkynyl. Although flipping the compound results in less favorable interactions with the hinge 

region, it results in what the model considers to be a better pose of the alkynyl. Figure 18 

shows an Aurora A kinase (PDB 3MYG). In this case, the CNN model correctly top-ranks a 

low RMSD pose while Vina prefers a pose that is flipped and more buried in the binding 

site. Again, the model highlights the interactions with the hinge region of the kinase. While 

the model slightly disfavors the solvent exposed portion of the compound, flipping the 

compound and burying this portion of the compound in the interior of the kinase is more 

strongly disfavored (as indicated by the red highlighting).

Virtual Screening—Virtual screening results for the ChEMBL and MUV independent test 

sets are shown in Figures 19–24, S5, and S6 and Tables 2, 3, and S8–S17. The ChEMBL and 

MUV tests sets are more challenging than the DUD-E benchmark for all methods. 

Averaging across targets, the AUCs for the ChEMBL benchmark are 0.67, 0.64, and 0.78 for 

the Vina, 2:1 DUD-E/CSAR CNN, and DUD-E CNN methods, which is consistently lower 

than the corresponding average cross-validation AUCs on DUD-E: 0.71, 0.80, and 0.86. 

Average values for ROC enrichment are shown in Table 2 and track the AUC means. Per-

target values are shown in Table S5. The distributions of AUCS and ROC enrichments 

across targets are shown in Figures 19 and 20. Overall ROC curves (where the test set is 

evaluated as a whole) are shown in Figure 24. Consistent with previously reported 

results,58,65 the MUV set is even more challenging, with average AUCs of 0.55, 0.50, and 

0.52 for Vina, 2:1 DUD-E/CSAR CNN, and DUD-E CNN. Unlike the cross-validation 

results (Figure 12), the CSAR-trained CNN has close to random performance at virtual 

screening for most targets (Figures 21, 22, 24, and Tables 3 and S6).
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Consistent with the cross-validation results, the DUD-E-trained CNN model generally 

outperforms the DUD-E/CSAR combined model and the alternative machine learning 

models, although RF-Score does better in this evaluation than when targeting DUD-E. Since 

the ChEMBL and MUV sets were constructed using a methodology that differs from the 

DUD-E benchmark, this suggests that the DUD-E CNN model is learning genuinely useful 

information about features of the ligand and protein binding site that are relevant to binding, 

despite a lack of pose sensitivity, and is not learning solely an artifact of the construction of 

the DUD-E set. Interestingly, as shown in Figure 23, the targets with the biggest drop in 

performance between the DUD-E model and the pose sensitive DUD-E/CSAR model are 

also some of the targets with the lowest Vina performance. This would be the expected effect 

if docking is failing to sample accurate poses, as in this case a more cheminformatic-

oriented, pose insensitive model would perform better.

The MUV benchmark is particularly challenging, with no method achieving an AUC greater 

than 0.6 on more than two targets. The overall performance across the benchmark is 

essentially random for all methods, as shown in Figure 24. Unlike with the ChEMBL set 

(Figure S5), in MUV the few individual targets where methods do appreciably better than 

random the improvement in AUC is not driven by early enrichment (Figure S6). The use of 

cell-based assays and the lack of structures bound to ligands of known affinity (Table S2) 

may make MUV a poor choice for a structure-based virtual screening assessment. 

Alternatively, the observed poor performance may be due to the method MUV uses to 

construct the active and decoy sets, which attempts to avoid analog bias and artificial 

enrichment by ensuring that actives are well embedded in the chemical space of the decoys. 

The MUV target 466, a lipid G protein-coupled receptor, is identical to ChEMBL target 

11631, and we used the same structure, PDB 3V2Y, to generate poses. This allows us to 

compare the effect of the different decoy construction approaches between the two 

benchmarks. As shown in Table 4, for all methods, the highest performance is achieved with 

the ChEMBL actives. This suggests, for this target at least, that the method used to construct 

the decoys is not the cause of the observed poor performance and that the performance 

observed on the ChEMBL set is not due to artificial enrichment.

Visualization

Visualization is intended to provide a qualitative and easy to interpret indication of the 

atomic features that are driving the CNN model’s output. In order to more quantitatively 

assess the utility of our visualization approach, we considered single-residue protein 

mutation data and partially aligned poses.

Mutation Analysis—The Platinum66 database provides measured differences in protein-

ligand binding affinity upon mutation of single receptor residues. This experimental 

technique is a close analogue of the visualization algorithm, where whole residues are 

removed and the complex re-scored. For our assessment, we filtered the database to consider 

only experiments with single mutations to alanine or glycine in proteins that are not present 

in our training data and evaluated those with the largest changes in binding affinity.
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The CNN was able to identify critical residues in many of the examples that were tested. 

The three protein-ligand pairs with the highest changes in binding affinity are shown in 

Figure 25. In all three cases, many residues had heavy green coloring, and the mutant 

residue is always colored green. Other highlighted residues may also be critical, but were not 

present in the Platinum database. It is worth emphasizing that the CNN model was not 

trained on protein mutational data. The fact that critical residues are highlighted suggests 

that the model is learning some general underlying model of the key features of protein-

ligand interactions.

Partially Aligned Poses—We identified the high RMSD (> 4Å) docked poses in the core 

PDBbind dataset that had the highest percentage of aligned atoms (< 0.1Å distant to the 

corresponding crystal atoms). These are poses that are partially correct; part of the molecule 

matches the crystal and part does not.

The five poses with the highest percentage of congruent atoms are shown visualized using 

the 2:1 DUD-E/CSAR model in Figure 26. For all five poses, the CNN model ranks the 

crystal pose higher than the docked pose. Our visualization shows why these poses are 

scored lower. In all cases, the part of the docked pose that is aligned to the crystal pose is 

predominantly or entirely green (indicating positive contributions), but the divergent part of 

the ligand is entirely or partially red (indicating negative contributions).

Discussion

We have provided the first detailed description and evaluation of applying deep learning and 

convolutional neural networks to score protein-ligand interactions using a direct, 

comprehensive 3D depiction of the complex structure as input. By several metrics, our CNN 

models outperform alternative approaches, in particular the Autodock Vina empirical scoring 

function and the RF-Score and NNScore machine learning scoring functions. In inter-target 

evaluations of pose prediction, both using cross-validation and an independent test set, CNN 

models can perform substantially better (e.g., Figures 7 and 14). Likewise, CNN models can 

do well in virtual screening evaluations (e.g., Figures 11 and 23). However, our results also 

point to weaknesses in the current method and opportunities for improvement.

Although the CNN models performed well in an inter-target pose prediction evaluation, they 

performed worse at intra-target pose ranking (e.g., Figures 8, 15, and S2), which is more 

relevant to molecular docking. It is likely that intra-target ranking could be improved by 

changing the training protocol to more faithfully represent this task. For example, currently 

ligands are treated identically regardless of their affinity, as long as they fall below a 

threshold (10μM). It is conceivable that a high RMSD pose of a high affinity ligand should 

legitimately be scored better than a low RMSD pose of a low affinity ligand, a distinction the 

current training protocol cannot make. Incorporating the binding affinity as a component of 

training, or performing relation classification,67 which assesses the ability of the network to 

rank rather than score poses, may significantly improve intra-target performance of CNN 

models.
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Our models perform well in a clustered cross-validation evaluation of virtual screening on 

the DUD-E benchmark. However, this benchmark may be susceptible to artificial 

enrichment,37 resulting in overly optimistic predictions of virtual screening performance. We 

believe that our use of clustered cross-validation, which not only avoids training on ligands 

of the same target but also all similar targets, should mitigate some of the artificial 

enrichment issues inherent in DUD-E. Furthermore, our independent test sets both used an 

entirely different method of dataset construction than the DUD-E set.

Ideally the CNN models learn a generalizable model of protein-ligand binding from the 

training data. However, our models’ ability to generalize beyond the task inherent in the 

training data, while present, is limited (e.g. Figure 12). This is further highlighted by that 

fact that our CNN scores do not correlate (|R| < 0.1) with binding affinity data when 

evaluating the CSAR crystal poses. In contrast, Vina exhibits a modest correlation (R = 0.37) 

on the same benchmark. That is, training to classify poses and active/inactive compounds 

does not generalize to the regression problem of binding affinity prediction. We expect that 

CNN models trained on binding affinity data would provide substantially improved results 

on this task. Furthermore, our experience training combined pose prediction and virtual 

screening models indicates that multiple data types can be integrated to generate effective 

multi-task models. Unfortunately, we have not yet observed instances where including multi-

task training data resulted in a synergistic effect, improving the performance of all tasks, 

although such an effect has been observed in other domains.37

In total, we believe that the current work demonstrates the potential of convolutional neural 

network models of protein-ligand binding to outperform current methods. There remain 

many possible avenues for improving CNN models, such as training with larger datasets 

spanning a range of objectives (e.g. pose ranking, affinity prediction, virtual screening, etc.) 

related to ligand binding. In order to aid in the development of more robust and higher 

performance CNN models, all of our code and models are available under an open source 

license as part of our gnina molecular docking software at https://github.com/gnina.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A classical convolutional neural network for image recognition. The first layer applies three 

different convolutions to the input image to create three maps of low level features that are 

the input for another convolutional layer that creates five maps. Feature maps preserve the 

spatial locality of the features. As a last step, a traditional neural net is applied to generate a 

classification.
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Figure 2. 
Visualization of atom densities used as input to CNN scoring. Aromatic carbon atom 

densities are shown at two isosurface levels (solid and transparent surfaces) for both the 

receptor (purple) and ligand (lavender).
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Figure 3. 
AUC on training and test sets, with and without data augmentation. Training on CSAR 

without data augmentation results in classic signs of overfitting: the training set AUC 

approaches 1.0, but the test AUC plateaus at a much lower value. When additional random 

rotations and translations are included in the training set, overfitting is reduced.
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Figure 4. 
Visualization algorithm. In the ligand, atoms are removed individually or as fragments and 

each modified molecule is scored. The assigned color is the difference between the 

unmodified protein-ligand score and the score with the removed atom. The protein is treated 

similarly, but whole residues are removed. Positive score differences indicate a positive 

contribution by the atom to the overall score and are colored green, with the intensity 

depending on the magnitude of difference. Red represented negative score differences.
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Figure 5. 
The training time and average cross-validation AUC of various models created by 

systematically varying parameters. Marker shape indicates iteration of optimization and the 

color what parameter was varied.
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Figure 6. 
The network architecture of our final model.
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Figure 7. 
Inter-target cross-validated ROC curve of CNN scoring method compared to Autodock Vina 

on the CSAR pose prediction dataset. The CNN performs better at classifying generated 

poses as low or high RMSD across targets.
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Figure 8. 
Intra-target pose ranking. The percent of targets with a low RMSD pose ranked as the top 

one, three, or five poses is shown. Vina and CNN have similar recovery rates among the 

top-5 ranked poses, but Vina more often ranks a low RMSD pose as the top-1 ranked pose.
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Figure 9. 
Distribution of the area under the ROC curve for targets of the DUD-E dataset for the pose-

insensitive CNN model trained only on DUD-E, the pose-sensitive DUD-E/CSAR 2:1 

model, Vina, RF-Score, and NNScore.
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Figure 10. 
Distribution of ROC enrichment of at different false positive rates for CNN models 

compared to Vina, RF-Score, and NNScore scoring functions on the DUD-E dataset.
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Figure 11. 
Cross-validation performance of CNN models on the DUD-E virtual screening benchmark 

compared to the Vina scoring function. Targets are sorted by performance with Vina. 

Identical sets of docked poses were ranked. The score of the top ranked pose of each ligand 

is used to predict activity (multi-pose scoring). CNN models trained only on DUD-E training 

data perform best, outperforming Vina in 90% of the targets. Models trained using a mix of 

DUD-E and CSAR data also perform well, achieving better AUCs than Vina in 81% of the 

targets.
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Figure 12. 
The cross-validation performance of the CNN model when trained with different ratios of 

CSAR and DUD-E data and evaluated in terms of pose prediction (CSAR) and virtual 

screening (DUD-E).
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Figure 13. 
(a) The top ranked pose by Vina of the CHEMBL457424 ligand of the fpps DUD-E target, 

(b) Visualization of a CNN model trained using only DUD-E training data. The pose is 

scored highly due to the polar parts of the structure regardless of the orientation of the 

ligand.
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Figure 14. 
ROC plot for discriminating low RMSD from high RMSD poses generated from the 

PDBbind core set. The CSAR-trained CNN performs best at classifying generated poses as 

low or high RMSD across targets, with a steep initial slope evincing good performance at 

early recognition.
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Figure 15. 
Boxplots of the best RMSD seen so far at ranks 1, 3, and 5 (shown from left to right) for all 

targets in the PDBbind core subset.
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Figure 16. 
The percentage of complexes with low RMSD poses identified as the top one, three or five 

poses for different scoring methods.
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Figure 17. 
An example, PDB 3PE2, of a complex from the PI)BI hurl core set where Vina correctly 

top-ranks a low RMSD pose (0.25A) and the CNN model does not (5.27A). The crystal pose 

is shown as magenta sticks and the two docked poses are visualized using the CSAR trained 

CNN model.
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Figure 18. 
An example, PDB 3MYG, of a complex from the PDBbind core set where the CNN model 

correctly top-ranks a low RMSD pose (0.96A) and V ina does not (12.7lA). The crystal pose 

is shown as magenta sticks and the two docked poses are visualized using the CSAR trained 

CNN model.
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Figure 19. 
Distribution of the area under the ROC curve for targets of the ChEMBL dataset for the 

pose-insensitive CNN model trained only on DUD-E, the pose-sensitive DUD-E/CSAR 2:1 

model, Vina, RF-Score, and NNScore.
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Figure 20. 
Distribution of ROC enrichment of ChEMBL targets at different false positive rates for CNN 

models compared to Vina, RF-Score, and NNScore scoring functions.
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Figure 21. 
Distribution of the area under the ROC curve for targets of the MUV dataset for the pose-

insensitive CNN model trained only on DUD-E, the pose-sensitive DUD-E/CSAR 2:1 

model, Vina, RF-Score, and NNScore.
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Figure 22. 
Distribution of ROC enrichment across MUV targets at different false positive rates for 

CNN models compared to Vina, RF-Score, and NNScore scoring functions.
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Figure 23. 
Performance of CNN models on ChEMBL and MUV screening benchmarks compared to 

the Vina scoring function. Targets are sorted by performance with Vina. Identical sets of 

docked poses were ranked. The score of the top ranked pose of each ligand is used to predict 

activity (multi-pose scoring). Consistent with the cross-validation results (Figure 11), a CNN 

model trained only on DUD-E training data performs best, outperforming Vina in 86% of 

the ChEMBL targets and 56% of the MUV targets. Models trained using a mix of DIJD-E 

and CSAR data performed less well compared to Vina, achieving better AUCs than Vina in 

36% of the ChEMBL targets and 22% of the MUV targets.
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Figure 24. 
Overall virtual screening performance represented as a combined ROC curve for two CNN 

models trained on their full training sets and tested on the ChEMBL and MUV independent 

test sets and compared to Vina, RF-Score, and NNScore.
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Figure 25. 
Visualizations of protein-ligand complexes with binding affinity data for point mutations in 

the protein. The top three most significant changes in binding affinity from the Platinum 

database are shown from left to right. Any residue that was mutated experimentally is shown 

in stick form, while the rest of the protein is shown as a cartoon. In all three cases, the green 

coloring supports the experimental results that the residues in question are important for 

ligand binding. Visualization is performed using the 2:1 DUD-E/CSAR model.
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Figure 26. 
Visualizations of partially aligned docked poses from the PDBbind core set. The crystal pose 

is shown as magenta sticks and the docked pose and receptor are colored according to our 

visualization algorithm and the 2:1 DUD-E/CSAR model. None of these protein targets were 

included in training. The visualization highlights that the model assesses the part of the pose 

aligned to the crystal ligand as more favorable than the differing part.
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Table 4

The virtual screening performance for sphingosine 1-phosphate receptor EDG-1 (PDB 3V2Y) with different 

choices of active and decoy sets. The active compounds were identified in different screens (biochemical for 

ChEMBL, cell-based for MUV) and the method used to construct the decoy sets is also different.

Actives Decoys Vina DUD-E 2:1

MUV MUV 0.593 0.663 0.492

MUV ChEMBL 0.619 0.682 0.523

ChEMBL ChEMBL 0.668 0.796 0.727

ChEMBL MUV 0.667 0.793 0.696

J Chem Inf Model. Author manuscript; available in PMC 2018 April 24.


	Abstract
	Graphical abstract
	Introduction
	Methods
	Training Sets
	Pose Prediction: CSAR
	Virtual Screening: DUD-E

	Input Format
	Training
	Model Evaluation
	Independent Test Sets

	Optimization
	Atom Types
	Occupancy Type
	Atomic Radius Multiplier
	Resolution
	Layer Width
	Model Depth
	Pooling Type
	Fully Connected Layer

	Visualization

	Results
	Optimization
	Atom Types
	Occupancy Type
	Atomic Radius Multiplier
	Resolution
	Layer Width
	Model Depth
	Pooling Type
	Fully Connected Layer

	Pose Prediction
	Virtual Screening
	Combined Training
	Independent Test Sets
	Pose Prediction
	Virtual Screening

	Visualization
	Mutation Analysis
	Partially Aligned Poses


	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24
	Figure 25
	Figure 26
	Table 1
	Table 2
	Table 3
	Table 4

