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Abstract

Background

Several genetic association investigations have been performed over the last three decades

to identify variants underlying Juvenile Myoclonic Epilepsy (JME). Here, we evaluate the

accumulating findings and provide an updated perspective of these studies.

Methodology

A systematic literature search was conducted using the PubMed, Embase, Scopus, Lilacs,

epiGAD, Google Scholar and Sigle up to February 12, 2016. The quality of the included

studies was assessed by a score and classified as low and high quality. Beyond outcome

measures, information was extracted on the setting for each study, characteristics of popu-

lation samples and polymorphisms.

Results

Fifty studies met eligibility criteria and were used for data extraction. With a single exception,

all studies used a candidate gene approach, providing data on 229 polymorphisms in or

near 55 different genes. Of variants investigating in independent data sets, only rs2029461

SNP in GRM4, rs3743123 in CX36 and rs3918149 in BRD2 showed a significant associa-

tion with JME in at least two different background populations. The lack of consistent associ-

ations might be due to variations in experimental design and/or limitations of the approach.
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Conclusions

Thus, despite intense research evidence established, specific genetic variants in JME sus-

ceptibility remain inconclusive. We discussed several issues that may compromise the qual-

ity of the results, including methodological bias, endophenotype and potential involvement

of epigenetic factors.

PROSPERO registration number

CRD42016036063

Introduction

Juvenile Myoclonic Epilepsy (JME) has been recognized by the International League Against

Epilepsy (ILAE) as an epileptic syndrome since 1989[1,2] and represents 5% to 10% of all epi-

lepsies[3]. Initial reports indicated JME affects males and females equally, however, recent

studies suggest that females outnumber males[4]. The onset of the condition usually occurs in

the second decade, ranging from about 8 to 36 years[5]. Although diagnostic criteria differ

between epileptologists, it is widely agreed that JME sufferers have early-morning myoclonic

seizures (MC) with or without other seizure types (i.e., generalized tonic–clonic seizures and

less frequent absences)[2,6,7]. Electroencephalography (EEG) has revealed interictal general-

ized spike-wave discharges (SWD) and normal background activity for patients with a typical

history of JME[8,9]. Patients respond to pharmacological treatment, but with a high recur-

rence rate on discontinuation of antiepileptic drugs (AEDs)[6,10].

As demonstrated by family and twin studies, genetic factors play a major role in JME[11].

Different heritability models have been used to explain the genetic basis of JME, including

Mendelian inheritance of a few major genes or simultaneous involvement of multiple genes

with minor effects inherited in non-Mendelian fashion[12,13]. Several methods have been

developed over the past 40 years to identify JME causative/susceptibility genes. By using link-

age analysis in affected families, researchers have identified genes carrying variations that co-

segregate with Mendelian JME (as listed in “Online Mendelian Inheritance in Man”- http://

omim.org and http://www.ncbi.nlm.nih.gov/omim/), including CACNB4 (calcium channel,

voltage-dependent, beta 4 subunit)[14], CASR (calciumsensing receptor)[15], GABRA1
(gamma-aminobutyric acid A receptor, alpha 1)[16], GABRD (gamma-aminobutyric acid A

receptor, delta)[17] and EFHC1 (EF-hand domain (C-terminal) containing 1[18–20]. Many

more chromosome loci have been linked to JME, although their causative genes are still not

known[21]. However, it should be noted that these findings only cover a small proportion of

JME sufferers[22].

The main hypothesis to explain genetic susceptibility in non-Mendelian JME is based on

the interaction among multiple common and/or rare gene variations with modest or strong

effects[23,24]. However, the identification of these susceptibility alleles is challenging[25,26].

One widely used experimental approach to investigate common variants is genetic association

analysis of candidate genes selected according to their molecular function. Association analy-

ses have mostly been used to assess whether the frequency of specific alleles differs between

JME patients and controls more than would be predicted by chance[27]. Although such candi-

date gene approaches have been useful, they require prior knowledge of gene function.
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The completion of the human genome sequences has allowed significant advance in associ-

ation studies by using unbiased approaches such as genome-wide association studies (GWAS).

In the last decade, this strategy has been used to investigate genetic variants associated with

several diseases, including epilepsy[28]. Despite the high frequency of information yielded by

genetic association studies of JME, the translation of these findings into clinical applications is

still limited, requiring a critical appraisal of the existing information. The aim of this system-

atic review, therefore, was to report and evaluate the findings of existing genetic association

studies that have examined the genetic variants underlying the JME phenotype.

Materials and methods

The systematic review was conducted and reported in accordance with the PRISMA guidelines

[29] and the protocol was registered on the international prospective register of systematic

reviews (PROSPERO registration number: CRD42016036063. Available at: http://www.crd.

york.ac.uk/PROSPERO/display_record.asp?ID=CRD42016036063.

Search strategy

We did a systematic review to identify genetic association studies with JME. We performed a

systematic literature search of PubMed, Embase, Scopus, LILACS, epiGAD (Epilepsy Genetic

Association Database), Google Scholar and SIGLE (System for Information on Grey Literature

in Europe) up to February 12, 2016 using the following combinations of relevant keywords:

“Juvenile Myoclonic Epilepsy” AND “Association Study”, “Juvenile Myoclonic Epilepsy” AND

“Polymorphism”, “Idiopathic Generalized Epilepsy” AND “Association Study”, “Generalized

Epilepsy” AND “Association Study”, “Juvenile Myoclonic Epilepsy” AND “Variants”, and

“Generalized Epilepsy” AND “Variants”.

Selection criteria

We included population-based genetic association studies investigating any polymorphism

with JME. Selected articles had to be original research containing independent data and case-

control studies, including those that used candidate gene and GWAS approaches. Articles

were filtered in three steps (see Fig 1): i) duplicated publications from the databases were

excluded; ii) non-relevant studies (based on eligibility criteria) were excluded, such as reviews,

non-genetic studies, non-human studies, case reports, and no access; iii): relevant studies were

screened to exclude studies conducted with IGE patients without discriminating JME sub-

group data and studies with related individuals in case or control groups.

Data extraction

Two investigators independently (Bruna Santos and Layanne Angelo) performed the literature

search and data was cross-checked to ensure consistency. Titles, abstracts, and full texts were

screened sequentially for eligibility criteria and any discrepancies were resolved by consensus

or by a third reviewer.

Data extracted included information on: i) the setting for each study (the genotyping

method employed, the overall sample size and statistical model); ii) characteristics of study

participants (phenotypic definitions and ethnic/geographic characteristics); iii) characteristics

of polymorphism (type, locus, prior evidence of linkage and evidence of functional role) and;

iv) outcome measure (genotype and allele frequencies, Hardy-Weinberg equilibrium test and

odds ratio).
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Quality assessment

Methodological quality of the included studies was independently assessed by two reviewers

(Bruna Santos and Thalita Marques), according to a set of predefined criteria (S1 Table) based

on the scale of Thakkinstian et al.[30], which were amended compared to those used in the

previously published meta-analytic studies[31–33]. The following factors were included in the

criteria: representativeness of cases, representativeness of control, ascertainment of epileptic

disorders, sample size (total number of cases and controls) and matching of case and control

participants. Scores ranged from 0 (lowest) to 13 (highest). If the score was�7, the study was

categorized as “high quality”; otherwise, the study was categorized as “low quality”. Disagree-

ments were resolved by consensus. Due to high heterogeneity in study design and outcome

measurements among the included articles, a meta-analysis was not performed. Instead, we

conducted a narrative synthesis of the evidence.

Fig 1. Flow diagram of study identification. From: MoherD, Libeiati A, TetzlaffJ, Allman DG, The PRISMA

Group {2009). Preferred Reporting /terns for Systematic Reviews and Meta- Analyses: The PRISMA

Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097. For more information, visit

www.prisma-statement.org.

https://doi.org/10.1371/journal.pone.0179629.g001
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Results

Our search returned 9074 citations, 5570 of which were duplicated. Of the 3504 unique cita-

tions, 2652 were excluded because they were not relevant to the current review. Of 852 relevant

studies identified, 50 met the predetermined inclusion criteria (Fig 1). Of these, 49 investigated

susceptibility variants using a candidate gene approach and one by using GWAS[34–83].

The quality of studies ranged from 5 to 13, out of a possible score of 13 (Table 1 and S2

Table). The most of studies were classified as high quality (90%)[35–53,55,56,58–65,67–74,76–

78,80,82,83]. Ninety-eight percent of them clearly define the study population[34–78,80–83].

In relation to representativeness of the controls, fifty-six percent were either population–based

or healthy volunteers[36,38–42,45,46,48,51–53,55,58,62–65,67,69–72,74,77,80,82,83] and

forty-five percent were both population-based and hospital-based/healthy volunteers/blood

donors[34,35,37,43,44,47,49,50,54,56,57,59–61,66,68,73,75,76,78,79,81]. Sixty four percent of

control matched only one variable (age, gender or ethnicity) with cases[36–40,42–48,50–

54,56,57,62,66,68,69,71,73,75–79,81,82]. Ninety-two percent clearly described diagnosis for

JME[35–53,55–78,80,82,83]. Seventy-eight percent of the studies had sample size larger than

200 (number of cases and controls)[38–41,43–68,70–73,76–79,82]. The majority (80%) did not

perform genotyping under “blind” conditions (or did not mentioned this aspect). Results of

HWE analysis were reported in 70% of the studies[36–41,43,45–47,49–53,55,56,58–60,62–

65,67–72,74,76–78,82]. Ninety percent of the studies assessed the association between geno-

types and JME using X2 test and logistic regression, according to Clarke et al.[84][34–39,41–

53,55–68,70–78,80–82].

Gene candidate studies

In all, 49 published studies provided data regarding 224 polymorphisms in or near 52 different

genes, of which 33 were directly related to synapse transmission (channels, receptors, neuro-

transmitters and neuromodulators). The others were involved in different biological processes,

such as gene expression regulation, mitochondrial metabolism and immunological response

(S2 Table).

The studies included in the review were conducted with different ethnic populations from

Europe (n = 34), America (n = 5), Asia (n = 10), Africa (n = 2) and Oceania (n = 3). The num-

ber of patients ranged from 14 to 732, and their age varied from 2 to 25 years. The most used

JME diagnostic criterion was based on the proposal by the Commission on Classification and

Terminology of the International League Against Epilepsy. The vast major of polymorphisms

failed to show associations with JME (S2 Table).

Twenty-two polymorphisms were investigated, independently, in more than one study. For

14 polymorphisms, all independent investigations showed no association (Table 1). Only

rs2029461 SNP in GRM4, rs3743123 in CX36 and rs3918149 in BRD2 showed a significant

association with JME in at least two different background populations. For 5 polymorphisms,

the positive association was not confirmed in independent studies (Table 1). For example,

rs516535 in BRD2, which had reported analysis in several background populations, showed a

significant association with JME in Northern American population[83], but no association in

larger samples of West European[54,60].

GWAS studies

Only one study involved a genome-wide analysis of JME patients. The EPICURE study pub-

lished a large GWAS in GGE, including 382 JME patients of North-Western European origin

and 382 ethnically matched population controls. By combined analysis of the 2-stage, only

SNP rs12059546 in M3 muscarinic acetylcholine receptor (CHRM3), reached genome-wide
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Table 1. Polymorphisms investigated in independent studies.

Gene Locus Previous evidence of

linkage with JME

SNP JME/

Control

Association Population Ethnicity

control

Quality

scolre

Study

CX36 15q14 JME (OMIM 604827) rs3743123

(C588T)

247/621 Yes German PB+GC 12 Hempelmann, 2006 [52]

140/123 Yes European PB 11 Mas, 2004 [47]

GRM4 6p21 JME (OMIM 608816) rs2029461 G/A 249/186 Yes Indian PB+FB 12 Parilhar, 2014 [67]

215/732 Yes German PB 11 Muhle, 2010 [62]

BRD2 6p21 JME (OMIM 608816) rs3918149 20/64 Yes North American PB+FB 7 Pal, 2003[83]

34/256 Yes European PB 12 Cavalleri, 2007 [55]

57/227 Yes Irish PB 12 Cavalleri, 2007 [55]

159/154 No West European PB 11 Layouni, 2010 [60]

48/144 No Southern Indian PB 12 Cavalleri, 2007 [55]

146/99 No Australian PB 12 Cavalleri, 2007 [55]

246/664 No German PB 12 Cavalleri, 2007 [55]

CHRNA4 20q13.33 Other epilepsy (OMIM

118504)

c.594C>T 92/137 No Polish PB 12 Rozycka, 2009 [58]

60/94 No German PB 9 Steinlein, 1997 [37]

<50/198 No Caucasian (UK) PB 9 Chioza, 2002b [44]

1674(+14)A>G 92/137 No Polish PB 12 Rozycka, 2009 [58]

<50/198 No Caucasian (UK) PB 9 Chioza, 2002b [44]

60/94 No German PB 9 Steinlein, 1997 [37]

T1545C 60/94 No German PB 9 Steinlein, 1997 [37]

<50/198 No Caucasian (UK) PB 9 Chioza, 2002b [44]

GABRB3 15q12 Other epilepsy (OMIM

137192)

rs4906902 44/180 No Australian PB 5 Heron, 2007 [79]

304/561 No German PB+GC 10 Hempelmann, 2007 [56]

GRM4 6p21 JME (OMIM 608816) rs937039 G/A 215/732 No German PB 11 Muhle, 2010 [62]

249/186 No Indian PB+FB 12 Parilhar, 2014 [67]

rs745501 T/A 215/732 No German PB 11 Muhle, 2010 [62]

249/186 No Indian PB+FB 12 Parilhar, 2014 [67]

rs2451334 T/C 215/732 No German PB 11 Muhle, 2010 [62]

249/186 No Indian PB+FB 12 Parilhar, 2014 [67]

rs2499697 C/A 249/186 No Indian PB+FB 12 Parilhar, 2014 [67]

215/732 No German PB 11 Muhle, 2010 [62]

KCNN3

(hSkCa3,

hKCa3)

1q21.3 No CAG20 78/290 No German PB+FB 11 Sander, 1999 [40]

222/248 No South India PB 10 Vijai, 2005 [48]

CAG21 78/290 No German PB+FB 11 Sander, 1999 [40]

222/248 No South India PB 10 Vijai, 2005 [48]

TAP1 6p21 JME (OMIM 608816) Ile333Val 14/81 No Tunisian and

European

PB 9 Layouni, 2010b[61]

159/154 No West European PB 11 Layouni, 2010 [60]

Asp637Gly 154/159 No Tunisian and

European

PB 9 Layouni, 2010b [61]

159/154 No West European PB 11 Layouni, 2010 [60]

HLA 6p21 JME (OMIM 608816) DQB1*0603 93/93 No European PB 7 Le Hellard, 1999 [75]

24/129 No Scandinavian PB 6 Moen, 1995 [81]

BRD2 6p21 JME (OMIM 608816) rs516535 20/64 Yes North American PB+FB 7 Pal, 2003[83]

159/154 No West European PB 11 Layouni, 2010 [60]

102/360 No Dutch PB 6 de Kovel, 2007 [54]

GABRG2 5q34 JME (OMIM 137164) rs211037

(Asn196Asn)

201/267 Yes Indian PB 12 Balan, 2013 [64]

98/130 No Brazilian

(Alagoas)

PB 13 Gitaı́, 2012 [63]

(Continued)
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significance with JME (S2 Table). Furthermore, only 10 SNPs located at 8 different loci (1q43;

3q21.31; 5q12.3; 8q23.1, 11p15.4, 13q13.2, 18q11.2, 18q22.3) showed associations with JME

exceeding the Stage-1 screening threshold of PLMM < 1.0 × 10−5 and none of them are

among those included in this review.

Discussion

To the best of our knowledge, this is the first systematic review of genetic association studies in

JME. Our review provides an updated perspective on the accumulating evidence on common

susceptibility alleles in this IGE subtype. In the 50 association studies reviewed, most polymor-

phisms were examined in one case–control study, of which just 17% had a positive association

[34,43,47–49,51–53,55,58,61,62,64,66–69,71,77,80–83]. However, taking into account the high

a priori risk of false positive results in candidate gene association studies[25], a discussion of

the biological significance of these cases was precluded. In fact, genetic associations based on a

single study cannot exclude the possibility of having been obtained by chance, and thus are not

sufficient to establish a link with JME susceptibility. The rest of the discussion is therefore lim-

ited to data generated in more than one independent study.

Positive findings using variants from independent data sets could not be replicated in at

least one of the studies, including GABRG2 (rs211037), HLA (DRB1), HLA (DQB1), BRD2
(rs3918149 and rs516535), KCNJ10 (rs1130183). As we discussed below, part of the reason for

the lack of consistent patterns of association could be the experimental design: sample size,

population stratification and phenotype definition.

Sample size: the recruitment of sufficiently large and homogeneous samples for robust

genetic analysis is a long-standing weakness of association studies[25,85,86]. The using of

small sample size reduces the statistical power to detect loci with a positive effect. On the other

hand, larger sized samples may be more heterogeneous as a result of an effort to get larger

cohorts. Population stratification: studies with discrepant results were often conducted on

patients with different population backgrounds. For example, GABRG2 (rs211037) had a sig-

nificant association with an Indian population but not in a Brazilian population. Interestingly,

Table 1. (Continued)

Gene Locus Previous evidence of

linkage with JME

SNP JME/

Control

Association Population Ethnicity

control

Quality

scolre

Study

HLA 6p21 JME (OMIM 608816) DQB1* 0603

and 0604

24/24 Yes European PB 6 Greenberg, 1996 [34]

93/93 No European PB 7 Le Hellard, 1999 [75]

HLA 6p21 JME (OMIM 608816) DRB1* 1301 and

1302

62/77 No German PB 10 Sander, 1997 [36]

93/93 No European PB 7 Le Hellard, 1999 [75]

24/24 Yes European PB 6 Greenberg, 1996 [34]

KCNJ10 1q23.2 No rs1130183 124/284 No Chinese PB 9 Guo, 2015 [73]

218/660 Yes German PB 12 Lenzen, 2005 [51]

Abbreviations SNP, single nucleotide polymorphism; JME, Juvenile Mioclonic Epilepsy; BRD2, Bromodomain Containing 2; CHRNA4, cholinergic

receptor, nicotinic alpha 4; CX36, connexin-36; GABRB3, gamma-aminobutyric acid type A receptor beta3 subunit; GRM4, glutamate receptor,

metabotropic 4; KCNN3, potassium channel, calcium activated intermediate/small conductance subfamily N alpha, member 3; TAP1, transporter 1, ATP-

binding cassette; GABRG2, gamma-aminobutyric acid (GABA) A receptor, gamma 2; HLA-DQB1, major histocompatibility complex, class II, DQ beta 1;

HLA-DRB1, major histocompatibility complex, class II, DR beta 1; KCNJ10, potassium channel, inwardly rectifying subfamily J, member 10; PB: Population-

based; FB: Family-based; GC: Genomic control.

https://doi.org/10.1371/journal.pone.0179629.t001
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the allele and genotype frequencies of these polymorphisms show wide variation between the

populations investigated, suggesting a role for ethnic differences in the distribution of this vari-

ant[63]. In these cases, the lack of replication could be caused by differences in the genetic

structure of populations investigated. Population stratification could exist between treatment

and control populations, even in well-designed studies. Such stratification could lead to spuri-

ous associations between a disease and genes that are biologically unrelated to the disease. In

almost all the studies included in our sample, the only method to minimize stratification was

by sampling and matching cases and controls from the same geographic region. Only four

studies applied a complementary method by using genetic markers[52,53,56,57]. Thus, unde-

tected population stratification could also be a cause of non-replicable studies[87–89], espe-

cially if the variant studied has variable penetrance and allele frequencies in different

populations[90].

Phenotype definition: the lack of diagnosis based on rigid standards or objective biomarkers

is a critical issue in the genetic analysis of JME[12] and may explain the divergent results

found in this study. Most of the studies classified patients according to those suggested by the

Commission on Classification and Terminology of the International League Against Epilepsy

[2] in their Proposal for Revised Classification of Epilepsies and Epileptic Syndromes from

1989. In this document, the League described a group of signs and symptoms to identify a JME

patient, but did not establish a “diagnostic protocol. Thus, even though most researchers fol-

lowed the ILAE clinical criteria, inconsistent interpretation of clinical parameters and electro-

graphic findings could still contribute to the divergent results. For example, Balan et al.[71]

only used abnormal findings on EEG recordings to support JME diagnosis, while Gitaı́ et al.

[63] included generalized spike-wave discharges in their diagnosis. Moreover, JME is a hetero-

geneous electroclinical epilepsy syndrome[91,92]. Few studies have used a tight endopheno-

type criterion, grouping patients by seizure type, diurnal preferential seizure occurrence or

electroencephalogram pattern. Thus, the clinical entities classified as JME display many differ-

entiable symptoms[93] that may well reflect different underlying genetic influences. There is a

subset of JME patients, for example, who evolved from childhood absence epilepsy (CAE)[6].

If samples are not divided into subclinical categories, the genetic signal may be masked. A

more effective strategy to elucidate genetic markers associated with JME could be to narrowly

and consistently identify phenotypes representing specific JME endophenotypes [94–97].

Thus, because of the difficulty in controlling genetic heterogeneity and all possible con-

founders across studies, the failure of replication does not prove a false-positive result.

Although independent replication of association has been a normative criterion for weighing

evidence, Pal et al.[98] suggest that evidence should also be judge by integrating results from

different experimental approaches, including linkage analysis and mutation screening. Indeed,

a positive allelic association found in a locus of prior linkage is more likely to be real[98,99].

Returning to the case of variants in BRD2, EJM1, a major JME susceptibility locus, was discov-

ered by linkage analysis of three separate family collection[36,100–103]. In 2003, Pal et al.[83]

suggested that BRD2 is responsible for the EJM1 linkage peak and that the rs3918149 (among

others) variant is a risk factor for JME. The positive association of this variant with JME was

confirmed by independent familial and populational-based case-control studies[77,83]. Fur-

thermore, BRD2 (but not rs3918149) was associated with photoparoxysmal response (PPR)

[104]. Therefore, although the relationship between BRD2 and JME has not been replicated

across some populations[54,60,77] convergent evidence supports BRD2 contributions to epi-

leptogenesis. In fact, functional assays with heterozygous BRD2 knockout mice showed an

increase in seizure susceptibility to flurothyl and the occurrence of spontaneous seizures in

female mice[105]. In this review, out of 39 variants with positive associations, 23 are located in
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areas linked to JME. An absence of replication for these polymorphisms, therefore, should not

prevent their incorporation in functional studies.

Beyond the rs3918149 in BRD2, only two other polymorphisms showed significant associa-

tions with JME (rs2029461 in GRM4 and rs3743123 in CX36) which were replicated in at least

one independent study. In fact, these studies showed higher quality scores. For example, to

avoid the confounding effect of population admixture in case-control studies, at least, one of

these studies applied a genomic control approach[52] or carried out a family-based association

study in parent–child-trios[46,67,83]. CX36 is an integral membrane protein of neuronal gap

junction channels that has a significant role in epileptogenesis[106–108]. rs3743123 is a C.T

transition (c.588C.T) within exon two that has not been classified as biologically important.

Two independent studies showed that subjects with the T/T genotype at position 588 had a sig-

nificantly increased risk of JME in a German population (OR 4.3; 95% CI 1.49 to 12.3) and a

mix of other European (OR1.62; 95% CI 1.02–2.57) populations. The GRM4 encoding the

group III metabotropic glutamate receptor 4 (mGluR4) and several studies have indicated a

functional importance for this gene in the genesis of epilepsy[109–111]. rs2029461 is an A/G

change located in the 5‘UTR. The minor allele (G) showed significant association with the

JME phenotype in both Caucasian and Indian populations. Interestingly, both CX36 and

GRM4 genes are located in two major susceptibility loci (EJM2) for JME: regions 15q14 and

6p21, respectively, and were therefore originally chosen as gene candidate due to positional

and functional criteria. However, the mechanisms by which rs3743123 and rs2029461 predis-

pose individuals to developing JME remain obscure.

JME susceptibility

Despite intense research over the last decades, there is relatively weak evidence for the involve-

ment of most of the variants investigated in JME susceptibility. Even in a more systematic

investigation by using GWAS, the findings are not particularly encouraging. In fact, the single

GWAS study only identified rs12059546 (located in the gene encoding the M3 muscarinic ace-

tylcholine receptor (CHRM3)) as having genome-wide significance with JME. However, this

positive association was not replicated in a case/control study performed in a Chinese popula-

tion[112].

This apparent lack of progress may be caused by several confounding issues, including the

paradigm that epilepsy is a channelopathy[113]. We observed that the majority of candidate

gene studies (64%) had investigated variants in gene coding ion channels or proteins directly

related to synapses transmission. These findings clearly indicate that the search for JME related

genes has been narrowed by the assumption that the underlying cause of epilepsy is channel

gene dysfunction. However, it is highly likely that epilepsies result from an interaction between

genetic variants with different functional roles. A recent study using exome sequencing fol-

lowed by large-scale genotyping of individuals with IGE provided a candidate list of epilepsy-

susceptibility variants that was not limited to genes encoding ion channels or ion channel

modifiers[114]. Clearly, further studies are necessary to confirm that these variants are genu-

inely contributing to JME susceptibility.

Although individual or genome-wide association analyses offer a powerful strategy for

identifying common variants of a complex disease, such as JME, major influences on disease

expression caused by rare alleles are often missed. Advances in genomic technologies can

expand our understanding of the genetics of JME[95]. For example, Mefford et al.[94] detected

several rare copy number variants (CNVs) in JME patients as well as in several other epilepsy

types by using whole-genome oligonucleotide array comparative genomic hybridization still a

lack evidence of causality between these variants and JME.
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Other studies have showed that many of these genomic structural variants are potential risk

factors for JME, but are present only in 3% of patients[96]. With the advent of next-generation

sequencing technologies (NGS) that allow whole-genome or whole-exome sequencing, there

will be an unprecedented increase in the identification of multiple rare DNA variations that

may be associated with particular phenotypes[97]. However, to date, the only NGS study of

individuals with JME suggests that moderately rare variants (frequency range of 0.06%–0.3%)

with intermediate effects do not play a significant role in JME risk or the development of other

IGE subtypes. Moreover, no single rare variant was detected exclusively in JME patients that

could account for more than 1% of cases. This high genetic heterogeneity might help explain

the numerous unsuccessful attempts to find JME susceptibility genes. Alternatively, JME heri-

tability could be epigenetic, including changes in methylation patterns of genome and his-

tones. Such changes could affect susceptibility to and development/maintenance of epilepsy.

In fact, the detection of epigenetic modifications observed in both animal models and tissues

from patients with temporal lobe epilepsy are encouraging a new line of research that may con-

tribute substantially to our knowledge of epilepsy susceptibility[115]. The significant challenge

is how to apply these approaches to investigate risk factors in IGE epilepsy, such as JME.

Conclusions

Considerable effort has been expended over the last 40 years to identify JME causative/suscep-

tibility genes. Here, we provided an updated synthesis of the accumulating findings of genetic

association studies and JME. The combined studies provided data on 229 polymorphisms in

(or near) 55 different genes. Nevertheless, only three polymorphisms (rs2029461 SNP in

GRM4; rs3743123 in CX36 and rs3918149 in BRD2) have been associated with JME in, at least,

two independent gene candidate investigations. The lack of success in replicating the results is

related to various aspects, including limitations of experimental design, endophenotypes,

channelopathy issues and genetic heterogeneity. Therefore, scientists should go beyond repli-

cation criteria and draw on convergent evidence across different study designs. Such an inte-

gration of results from different experimental approaches combined with epigenetics and

genomic technology could lead us to a more comprehensive evaluation of the current state of

JME susceptibility.
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6. Martı́nez-Juárez IE, Alonso ME, Medina MT, Durón RM, Bailey JN, López-Ruiz M, et al. Juvenile myo-
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graphic features in patients with juvenile myoclonic epilepsy. Epilepsia. 2005; 46: 1668–76. https://doi.

org/10.1111/j.1528-1167.2005.00262.x PMID: 16190941

10. PavlovićM, JovićN, Pekmezović T. Antiepileptic drugs withdrawal in patients with idiopathic general-

ized epilepsy. Seizure. 2011; 20: 520–5. https://doi.org/10.1016/j.seizure.2011.03.007 PMID:

21493107

11. Kjeldsen MJ, Corey LA, Solaas MH, Friis ML, Harris JR, Kyvik KO, et al. Genetic factors in seizures: a

population-based study of 47,626 US, Norwegian and Danish twin pairs. Twin Res Hum Genet. 2005;

8: 138–47. https://doi.org/10.1375/1832427053738836 PMID: 15901477

12. Greenberg DA, Pal DK. The state of the art in the genetic analysis of the epilepsies. Curr Neurol Neu-

rosci Rep. 2007; 7: 320–8. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

2039773&tool=pmcentrez&rendertype=abstract PMID: 17618539

13. Steinlein OK. Gene polymorphisms and their role in epilepsy treatment and prognosis. Naunyn

Schmiedebergs Arch Pharmacol. 2010; 382: 109–18. https://doi.org/10.1007/s00210-010-0531-8

PMID: 20556360

Systematic review of genetic association studies in Juvenile Myoclonic Epilepsy

PLOS ONE | https://doi.org/10.1371/journal.pone.0179629 June 21, 2017 11 / 17

https://doi.org/10.1016/j.yebeh.2013.01.002
http://www.ncbi.nlm.nih.gov/pubmed/23756475
http://www.ncbi.nlm.nih.gov/pubmed/2502382
http://www.ncbi.nlm.nih.gov/pubmed/2502382
https://doi.org/10.1111/j.1528-1167.2010.02522.x
https://doi.org/10.1111/j.1528-1167.2010.02522.x
http://www.ncbi.nlm.nih.gov/pubmed/20196795
https://doi.org/10.1016/j.yebeh.2012.06.024
http://www.ncbi.nlm.nih.gov/pubmed/23756473
http://www.ncbi.nlm.nih.gov/pubmed/6422321
http://www.ncbi.nlm.nih.gov/pubmed/6422321
https://doi.org/10.1093/brain/awl048
http://www.ncbi.nlm.nih.gov/pubmed/16520331
https://doi.org/10.4103/1817-1745.117835
https://doi.org/10.4103/1817-1745.117835
http://www.ncbi.nlm.nih.gov/pubmed/24082923
https://doi.org/10.1111/j.1528-1167.2005.00330.x
http://www.ncbi.nlm.nih.gov/pubmed/16302869
https://doi.org/10.1111/j.1528-1167.2005.00262.x
https://doi.org/10.1111/j.1528-1167.2005.00262.x
http://www.ncbi.nlm.nih.gov/pubmed/16190941
https://doi.org/10.1016/j.seizure.2011.03.007
http://www.ncbi.nlm.nih.gov/pubmed/21493107
https://doi.org/10.1375/1832427053738836
http://www.ncbi.nlm.nih.gov/pubmed/15901477
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2039773&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2039773&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618539
https://doi.org/10.1007/s00210-010-0531-8
http://www.ncbi.nlm.nih.gov/pubmed/20556360
https://doi.org/10.1371/journal.pone.0179629


14. Escayg A, De Waard M, Lee DD, Bichet D, Wolf P, Mayer T, et al. Coding and noncoding variation of

the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epi-

lepsy and episodic ataxia. Am J Hum Genet. 2000; 66: 1531–9. https://doi.org/10.1086/302909 PMID:

10762541

15. Kapoor A, Satishchandra P, Ratnapriya R, Reddy R, Kadandale J, Shankar SK, et al. An idiopathic

epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing

receptor gene. Ann Neurol. 2008; 64: 158–67. https://doi.org/10.1002/ana.21428 PMID: 18756473

16. Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, et al. Mutation of GABRA1 in an autoso-

mal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002; 31: 184–9. https://doi.org/10.

1038/ng885 PMID: 11992121

17. Dibbens LM, Feng H-J, Richards MC, Harkin LA, Hodgson BL, Scott D, et al. GABRD encoding a pro-

tein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies.

Hum Mol Genet. 2004; 13: 1315–9. https://doi.org/10.1093/hmg/ddh146 PMID: 15115768

18. Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, et al. Mutations in EFHC1 cause

juvenile myoclonic epilepsy. Nat Genet. 2004; 36: 842–9. https://doi.org/10.1038/ng1393 PMID:

15258581

19. Medina MT, Suzuki T, Alonso ME, Durón RM, Martı́nez-Juárez IE, Bailey JN, et al. Novel mutations in
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51. Lenzen KP, Heils A, Lorenz S, Hempelmann A, Höfels S, Lohoff FW, et al. Supportive evidence for an

allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy.

Epilepsy Res. 2005; 63: 113–8. https://doi.org/10.1016/j.eplepsyres.2005.01.002 PMID: 15725393

52. Hempelmann A, Heils A, Sander T. Confirmatory evidence for an association of the connexin-36 gene

with juvenile myoclonic epilepsy. Epilepsy Res. 2006; 71: 223–8. https://doi.org/10.1016/j.eplepsyres.

2006.06.021 PMID: 16876983

Systematic review of genetic association studies in Juvenile Myoclonic Epilepsy

PLOS ONE | https://doi.org/10.1371/journal.pone.0179629 June 21, 2017 13 / 17

http://www.ncbi.nlm.nih.gov/pubmed/8797474
http://www.ncbi.nlm.nih.gov/pubmed/9129713
http://www.ncbi.nlm.nih.gov/pubmed/9305351
http://www.ncbi.nlm.nih.gov/pubmed/9305351
http://www.ncbi.nlm.nih.gov/pubmed/9259383
http://www.ncbi.nlm.nih.gov/pubmed/10463851
http://www.ncbi.nlm.nih.gov/pubmed/10402495
http://www.ncbi.nlm.nih.gov/pubmed/10094433
http://www.ncbi.nlm.nih.gov/pubmed/10759301
https://doi.org/10.1002/ajmg.1488
http://www.ncbi.nlm.nih.gov/pubmed/11496371
https://doi.org/10.1038/sj.ejhg.5200896
https://doi.org/10.1038/sj.ejhg.5200896
http://www.ncbi.nlm.nih.gov/pubmed/12461694
http://www.ncbi.nlm.nih.gov/pubmed/12458027
http://www.ncbi.nlm.nih.gov/pubmed/12049805
https://doi.org/10.1002/ajmg.b.20024
http://www.ncbi.nlm.nih.gov/pubmed/14582146
https://doi.org/10.1136/jmg.2003.017954
https://doi.org/10.1136/jmg.2003.017954
http://www.ncbi.nlm.nih.gov/pubmed/15235036
https://doi.org/10.1136/jmg.2004.023812
http://www.ncbi.nlm.nih.gov/pubmed/15863675
https://doi.org/10.1016/j.eplepsyres.2005.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16112844
https://doi.org/10.1016/j.eplepsyres.2005.04.005
http://www.ncbi.nlm.nih.gov/pubmed/16023832
https://doi.org/10.1016/j.eplepsyres.2005.01.002
http://www.ncbi.nlm.nih.gov/pubmed/15725393
https://doi.org/10.1016/j.eplepsyres.2006.06.021
https://doi.org/10.1016/j.eplepsyres.2006.06.021
http://www.ncbi.nlm.nih.gov/pubmed/16876983
https://doi.org/10.1371/journal.pone.0179629


53. Lorenz S, Heils A, Taylor KP, Gehrmann A, Muhle H, Gresch M, et al. Candidate gene analysis of the

succinic semialdehyde dehydrogenase gene (ALDH5A1) in patients with idiopathic generalized epi-

lepsy and photosensitivity. Neurosci Lett. 2006; 397: 234–9. https://doi.org/10.1016/j.neulet.2005.12.

030 PMID: 16406321

54. de Kovel CGF, Pinto D, de Haan GJ, Kasteleijn-Nolst Trenité DG, Lindhout D, Koeleman BPC. Associ-
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