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Abstract

Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. 

These fluctuations span from early development, to cyclic changes associated with the menstrual 

or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline 

at reproductive senescence. While the transition to reproductive senescence is not yet fully 

understood, the vast majority of mammals experience this spontaneous, natural phenomenon with 

age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, 

and its transition, involves significant and enduring physiological changes, including considerably 

altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, 

including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet 

and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian 

hormone levels, and aging and reproductive senescence are both associated with changes in 

memory performance. This review explores how menopause is related to cognitive aging, and 

discusses some of the key neural systems and molecular factors altered with age and reproductive 

hormone level changes, with an emphasis on brain regions important for learning and memory.

Keywords

Estrogen; Androgen; Progesterone; Cholinergic; GABAergic; ERK; Aging; Learning; Memory; 
Cognition; Gonadotropins; Brain; Ovarian; Hormone; Steroid

1. Introduction to menopause and the aging brain: The endocrine-brain-

aging triad

During aging, humans and other animals commonly experience cognitive changes. 

Neurobiological alterations concomitant with aging can impact brain regions that are critical 

for the regulation of attention, learning, and memory processes, such as the frontal cortex, 
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basal forebrain, and hippocampal formation. In females, changes in cognitive function 

during midlife are often associated with reproductive senescence. Reproductive senescence 

occurs in women when the finite ovarian follicle pool is depleted. Women are born with all 

of the immature ovarian follicles they will ever have; it has been estimated that human 

females have over half a million immature ova at birth (Gougeon, 2010; Wallace and Kelsey, 

2010). Approximately 400 of these immature follicles fully mature and are ovulated 

throughout the reproductive life stage between puberty and menopause, and as such, over 

99% of follicles undergo atresia, or programmed cell death. This normal apoptotic process 

begins at birth and continues until the follicle pool is exhausted around the fifth decade of 

life (Hsueh et al., 1994).

During the reproductive life stage, the ovary is the main synthesis site of circulating sex 

steroid hormones, including estrogens, progesterone, and androgens. Estrogens are primarily 

synthesized by growing ovarian follicles, progesterone predominantly by the corpus luteum 

after ovulation and in small amounts by growing follicles, and androgens by both ovarian 

interstitial tissue and the adrenal glands. The production and regulation of these hormones 

are mediated by the hypothalamic-pituitary-gonadal (HPG) axis. The feedback loop includes 

the hypothalamus, which produces and releases gonadotropin releasing hormone (GnRH) 

into the anterior pituitary gland, initiating the synthesis and secretion of the gonadotropins 

follicle stimulating hormone (FSH) and luteinizing hormone (LH). FSH and LH are two key 

hormone regulators of ovarian follicle development and the ovarian cycle. Once the follicle 

pool is depleted through natural atresia and ovulation, the ovaries do not generate a sufficient 

amount of estrogens and progesterone to sustain the normal uterine cycle. Although the 

natural transition to reproductive senescence is not completely understood, it is clear that it 

is not an abrupt event; rather, it is thought that when a critical threshold of remaining ovarian 

follicles is reached, women begin to experience the transitional phase to menopause, which 

involves intermittent ovulatory cycles, significant fluctuations in ovarian hormone levels, 

and variable but rising FSH and LH levels. This process culminates with an eventual 

cessation of menses and infertility, referred to as menopause, and occurs at the average age 

of 51–52 in women (Hoffman et al., 2012; NAMS, 2014). This gradual menopause transition 

may last up to ten years prior to the final menstrual period, signaling the end of the 

reproductive life stage (Harlow et al., 2013). In addition to these physiological changes, 

women often report undesirable symptoms including hot flashes, genitourinary symptoms, 

and changes in sleep, mood, and memory during the menopause transition (Sullivan Mitchell 

and Fugate Woods, 2001; Weber et al., 2013; Weber and Mapstone, 2009).

How, then, do these factors associated with menopause relate to the brain and behavior? 

Basic science research on the role of hormones and behavior began as early as the mid 19th 

century with Arnold Berthold’s classic experiments evaluating the role of the testes in sex 

behaviors in roosters, which showed that castration decreased aggression and male sex 

behaviors. He found that when he surgically implanted testes back into the rooster’s 

abdominal cavity, they reestablished a blood supply, and both aggressive and sexual behavior 

were also reinstated (Berthold, 1849). From these experiments, Berthold hypothesized that a 

substance was secreted from the testes into the bloodstreamto trigger these behaviors. It was 

not until some fifty years later that the term “hormone” was coined and defined by William 

Bayliss and Ernest Starling. By the 1930’s and 40’s, Dr. Frank Beach began his influential 
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work on early life hormone manipulations and rodent sexual behavior. Beach and colleagues 

systematically manipulated sex hormone exposure by surgically removing the gonads of 

male and female rats and observing altered sex behaviors. He also found that phenotypic sex 

behaviors (e.g. mounting male sex behavior, lordosis female sex behavior) could be altered 

or induced by the manipulation of sex hormones in males and females (Beach, 1942, 1941). 

In the decades following these landmark studies, researchers went on to recognize the role of 

sex hormones and their influence on the brain with regard to sexual differentiation and 

neuroendocrine modulation of reproduction, including the discovery of the sexually 

dimorphic nucleus of the preoptic area, and how the size of this brain region can be altered 

depending on early life gonadal hormone exposures (Gorski, 1972; Gorski et al., 1978). 

Additionally, the role of estrogen as an activator of female-typical sexual behavior early in 

life was noted in Dr. Christina Williams’ research, showing that administering a 

supraphysiological dose of estradiol benzoate to rat pups as young as 4–6 days old 

facilitated the expression of lordosis (a receptive behavior) and of ear wiggling (a proceptive 

behavior) (Williams, 1987). The McEwen laboratory found that male pups that were 

administered an aromatase inhibitor, which prevents the metabolic conversion of androgens 

to estrogens, exhibited lordosis behavior in addition to phenotypic male sex behaviors in 

adulthood. When these aromatase inhibitor-treated males were gonadectomized as adults 

and subsequently administered estradiol benzoate and progesterone, they also exhibited 

lordosis and proceptive behaviors, suggesting the mechanisms driving phenotypic female 

sex behaviors can develop independently of male sex behaviors (Davis et al., 1979). Through 

the decades, research has shown that just as the male brain is actively masculinized by sex 

steroids, the female brain is actively feminized by sex steroids (Fitch and Denenberg, 1998); 

this has been exemplified for gross brain structure (Bimonte et al., 2000a, 2000b), cortical 

ultrastructure (Kim and Juraska, 1997), as well as behavior (Stewart and Cygan, 1980; 

Zimmerberg and Farley, 1993). These findings moved the field forward by challenging the 

traditional tenet that estrogens have a passive role in sexual differentiation of the brain. Since 

this time, the field of neuroendocrinology and aging has learned that the role of circulating 

ovarian hormones is not limited to reproductive functions and behaviors, and the brain areas 

that mediate them, but also extends to modulating memory and other cognitive processes, as 

well as their related brain regions. In fact, we have learned that in addition to impacts on 

brain health, the effects of estrogens, progestogens, and androgens on the body are diverse 

and manifold, including, but not limited to, influences on cardiovascular and bone health 

(Engler-Chiurazzi et al., 2016; Turgeon et al., 2006; Wise et al., 2009).

While acknowledging that sex steroid hormones have an impact on a myriad of systems with 

important functional and health outcomes, this review will focus on the brain and cognition. 

That sex hormones and gonadotropins could impact non-reproductive domains of the brain 

and behavior is not unexpected given the discovery of mechanisms which could mediate 

such effects. Indeed, there are steroid hormone and gonadotropin receptors in many areas of 

the brain, including the hippocampus and frontal cortex, two brain regions that are critical 

for effective memory functioning in everyday life. These memory functions include spatial, 

working, and reference memory. Spatial memory is hippocampal dependent and involves the 

use of distal cues to navigate through an environment. Working memory depends on both the 

frontal cortex and hippocampus, and is a type of short-term memory that involves updating 
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information. For example, working memory requires manipulating information, such as 

mental arithmetic. Reference memory is a form of long-term memory that remains 

consistent across time; for example, one would utilize reference memory to navigate the 

route driven from home to work each day (Bimonte-Nelson et al., 2015). A substantial 

amount of research, from which key findings are highlighted and explored below, has been 

dedicated to elucidating the cognitive effects of ovarian hormones, particularly estrogens, 

and how changes in circulating hormones can impact the brain and behavior across the 

lifespan (See Fig. 1).

2. On the role of midlife changes in ovarian hormones, gonadotropins, and 

cognitive function

2.1. Estrogen and progesterone as the traditional key ovarian hormone players

As aging ensues, female mammals typically experience a cessation of reproductive capacity 

in mid- to end- of life. Most animals are not long-lived following reproductive senescence; 

humans are one of the unique exceptions to this rule. People are living longer than ever 

before, with the average female lifespan surpassing 81 years in developed countries such as 

the United States (Murray et al., 2015). However, the age at menopause does not seem to be 

changing with increased longevity (Sherwin, 2003). This means that women are now living 

in a postmenopausal state, with significantly reduced circulating ovarian hormone levels, for 

a substantial part of their lives. This underscores the need to understand the effects of aging 

and related hormone loss on the body, including on the brain and its function.

There has been ample research, both in basic science and human realms, suggesting that the 

loss of ovarian hormones has a negative impact on a variety of body systems. These adverse 

effects are especially robust when an abrupt hormone loss occurs, such as that associated 

with ovariectomy (Ovx; the surgical removal of the ovaries). Ovarian hormone loss is 

associated with a decline in cognitive function both in humans (Nappi et al., 1999; Rocca et 

al., 2007; Sherwin, 2003) as well as in animal models (Daniel, 2013; Frick, 2015; Koebele 

and Bimonte-Nelson, 2015; Korol and Pisani, 2015; Luine, 2014). Animal models have 

provided an excellent framework to elucidate the effects of ovarian hormones on the brain 

and behavior. For example, seminal preclinical work in the field of neuroendocrinology, 

aging, and cognition has shown that Ovx impairs spatial memory performance, and that 

subsequent estrogen treatment can improve memory performance following Ovx, at least for 

a period of time (Bimonte and Denenberg, 1999; Bohacek et al., 2008; Savonenko and 

Markowska, 2003; Talboom et al., 2008; Wallace et al., 2006). Interestingly, transient 17β-

estradiol treatment after Ovx can enhance memory performance, as well as increase 

hippocampal choline acetyltransferase (ChAT; the synthesizing enzyme for acetylcholine) 

and estrogen receptor alpha (ERα) levels, even after the estrogen treatment has been 

terminated (Rodgers et al., 2010). However, timing of 17β-estradiol replacement is critical; 

spatial memory performance was improved only when hormone treatment was initiated 

immediately after Ovx, but not after five months of hormone deprivation (Daniel et al., 

2006). It is also notable that estrogen replacement following Ovx is more efficacious in 

young and middle-aged animals than in aged animals (Diz-Chaves et al., 2012; Savonenko 

and Markowska, 2003), and that chronic estrogen treatment can improve cognitive 
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performance, but only after priming with a cyclic regimen of 17β-estradiol injections 

(Markowska and Savonenko, 2002). Moreover, animals’ responsiveness to the enhancing 

effects of 17β-estradiol or estradiol benzoate changes with age (Foster et al., 2003; Talboom 

et al., 2008),which may be related to estrogen receptor expression in the hippocampus 

(Foster, 2012). ERα and ERβ are associated with a range of intracellular signaling 

molecules that are rapidly activated in the presence of estrogens. Remarkably, Ovx animals 

receiving hippocampal lentivirus injection of ERα, which increases ERα expression, 

displayed enhanced spatial working memory, even in the absence of high circulating 

estrogen levels (Foster et al., 2008; Witty et al., 2012). Lentiviral delivery of ERα to the 

hippocampus also increased phosphorylated extracellular regulated kinases (ERK1/2; 

discussed in more detail below) in rats, suggesting that signal transduction pathways 

important for learning and memory are, in part, moderated by estrogen receptor expression 

and activity (Witty et al., 2012). Taken together, these novel findings indicate that serum 

estrogen levels alone cannot necessarily dictate or predict cognitive outcomes; they are part 

of a complex and interactive system involving many cellular and molecular mechanisms that 

impact memory performance in a collaborative fashion.

Further elaborating on this tenet, estrogens do not operate on the brain and body in isolation. 

Progestogens are a class of steroid hormones that include endogenous progesterone and 

synthetic progestins that bind to the progesterone receptor. Progesterone is an important 

component of the reproductive cycle, and is especially critical for the maintenance of 

pregnancy. In a non-pregnant female, the main release of progesterone occurs during the 

endogenous female reproductive cycle from the corpus luteum after ovulation. With 

follicular depletion and ensuing menopause, corpora lutea formation is attenuated, and 

therefore there is a lack of elevated progesterone. In a broad context, the scientific study 

regarding the impact of the shifts in progesterone across the female lifespan is important 

because of the systematic and rapid alterations in progesterone levels across the regular 

reproductive cycle in adulthood, markedly elevated levels with pregnancy, as well as the 

decreased levels that occur into old age. Determining the impact of progestogens on the 

brain and other systems is crucial, given the wide use of bioidentical and synthetic 

progestogens in hormone therapies and contraceptives. The effects of progestogens 

specifically on the brain and its functions is a growing area of research; in fact, the work is 

yielding strong evidence that progestogens have marked impacts on brain areas integral to 

many reproductive and non-reproductive behaviors, including translating effects to 

cognition.

Interestingly, our laboratory has found that the beneficial effects of estrogen treatment on 

spatial memory can be reversed by concomitant progesterone administration (Bimonte-

Nelson et al., 2006), and that administering the synthetic progestin medroxyprogesterone 

acetate (MPA) to Ovx rats impaired performance on a spatial working memory task (Braden 

et al., 2011, 2010). However, it seems that progestins are not unequivocally harmful to 

cognition. Our laboratory and others have recently demonstrated that different classes of 

synthetic progestins commonly used in HT formulations, including levonorgestrel and 

norethindrone acetate, can have differential effects on spatial memory performance 

compared to MPA (Braden et al., 2016; Gambacciani et al., 2003; Simone et al., 2015; 

Tierney et al., 2009).While MPA administration has been shown to produce detrimental, 
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long-lasting cognitive impairments (Braden et al., 2011, 2010), and norethindrone acetate 

dose-dependently impaired spatial memory, levonorgestrel has been shown to have a null or 

even enhancing effect on spatial memory performance (Braden et al., 2016). In the context 

of translational research, finding a null effect of a progestin is a better outcome than the 

generally detrimental effects of MPA; that is, it is preferable for women to use a progestin 

that will have no effect or a beneficial effect on memory, rather than utilize a known 

cognitively impairing option like MPA. Thus, these novel findings regarding the differential 

effects of progestogens on cognition warrant further investigation into progestin type, dose, 

and timing of treatment to produce an optimal brain aging profile while maintaining the 

important protective effects that progestogens provide for other body systems.

Notably, the age at which ovarian hormone changes occur is also an important factor in 

cognitive outcomes. Some research shows that women who experience surgical menopause 

prior to natural, transitional menopause onset have poorer verbal memory scores and may 

have a greater risk for developing cognitive impairments, as well as dementia, later in life 

(Nappi et al., 1999; Rocca et al., 2007). Our laboratory recently extended these findings 

using the 4-vinylcyclohexene diepoxide transitional menopause rodent model, which acts by 

chemically inducing ovarian follicular depletion to produce an ovarian and hormone profile 

similar to women undergoing the transition to menopause (Koebele and Bimonte-Nelson, 

2016).We found that animals that underwent the transition to menopause in young adulthood 

exhibited working memory impairments compared to normally aging adult rats, whereas 

transitionally menopausal middle-aged rats performed similarly to middle-aged control rats. 

These memory impairments were evident early in the menopause transition, particularly 

when working memory load was taxed (Koebele et al., 2017). These cumulative findings 

suggest that it is not only essential to consider hormone type, timing, and dosing regimen, 

but also an individual’s reproductive history and status, as well as age, as important factors 

for understanding the potential of hormone therapy to have neuroprotective effects.

2.2. Androstenedione: long ignored but not unimportant

Androstenedione is an androgen synthesized by the adrenal glands and interstitial ovarian 

tissue, as well as by the thecal cells of maturing follicles. The aromatase enzyme converts 

androstenedione to estrone and 17β-estradiol; androstenedione can also be converted to 

testosterone via the enzyme17β-HSD; both of these androgens and their metabolites can 

impact the brain and cognition (Bimonte-Nelson et al., 2003; Camp et al., 2012; Mennenga 

et al., 2015b). In the context of menopause, research shows that, while estrogen and 

progesterone production declines substantially with reproductive senescence, the 

postmenopausal ovary continues to produce androgens in rodents (Mayer, 2004) and in 

humans (Fogle et al., 2007). In fact, it has been estimated that in the postmenopausal state, 

the ovaries continue to produce about 30% of the circulating androstenedione levels and 

50% of total testosterone levels (Vermeulen, 1976). Recent research in postmenopausal 

women shows that exogenous testosterone can enhance memory (Davis et al., 2014; Davison 

et al., 2011), but endogenous testosterone levels may differentially impact cognition, such 

that a lower testosterone to estrogen ratio is better for memory performance (Ryan et al., 

2012). Thus, the cognitive effects of androgens likely depend on a woman’s background 
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hormone profile in the postmenopausal state, and should be taken into consideration when 

interpreting the effects of ovarian hormones on cognitive outcomes.

Although the effects of endogenous and exogenous estrogens and progestogens have been 

the focus of research related to cognitive function, the role of androgens (particularly 

androstenedione) in learning and memory remains somewhat elusive, and not as well 

defined as estrogens and progestogens. Our laboratory has shown that in a transitional 

menopause rat model, animals with higher naturally circulating androstenedione levels 

tended to make more working memory errors on the water radial-arm maze (Acosta et al., 

2009). Given that androgens can convert to estrogens, we recognized this novel finding 

could inform important innovations in the realm of hormone therapy options for women. 

Thus, intrigued by this correlation, we continued to explore the role of androstenedione on 

memory in the middle-aged female rat. We found that in middle-aged Ovx rats, a high dose 

of androstenedione impaired spatial working memory and reference memory (Camp et al., 

2012). Androstenedione can be aromatized to estrone, an estrogen that we have shown to 

impair memory in the Ovx rat model (Engler-Chiurazzi et al., 2012). Consequently, our 

laboratory systematically evaluated whether the apparent detrimental effects of 

androstenedione on memory were due to binding to the androgen receptor or 

androstenedione’s conversion to estrone via the aromatase enzyme. Results indicated that 

blocking aromatase enzymatic activity via anastrozole reversed androstenedione-induced 

spatial memory impairments in young Ovx rats, but blocking the androgen receptor did not 

prevent detrimental effects on memory, suggesting that the conversion of androstenedione to 

estrone influences cognitive performance (Mennenga et al., 2015b). Collectively, these 

findings point to a crucial role of androgens, a long ignored yet ostensibly critical factor in 

understanding the role of the hormone milieu on cognition in the menopausal woman. 

Future research should continue to focus on understanding how circulating androgen levels 

impact the brain and body of aging women, and how maintaining a “golden ratio” of 

androgens to estrogens may be key to preserving cognition in the postmenopausal life stage.

2.3. What about those gonadotropins? Cognitive effects of LH and FSH during menopause 
and aging

The reproductive system in females is regulated by communication and interactions with 

numerous hormones from the hypothalamus, pituitary, and ovaries. Thus, ovarian-derived 

steroids, such as estrogens, progesterone, and androgens, are not the only hormones to 

become dysregulated with age and reproductive senescence. Research in recent years has 

indicated that changes in gonadotropins, namely FSH and LH, have a major role in cognitive 

changes and risk factors for developing age-related neurodegenerative disorders. FSH and 

LH are glycoprotein hormones released from the anterior pituitary, and they each have 

critical effects on body growth and maturation, as well as reproductive functions. FSH is 

released to stimulate the growth of immature ovarian follicles, resulting in a gradual rise in 

circulating estrogen levels during the first half of the cycle. Once estrogen levels reach a 

certain threshold, an LH surge occurs, which triggers ovulation and concurrently initiates 

corpus luteum development from the remaining ovarian follicle, which produces 

progesterone in preparation for egg fertilization. Once the follicle pool falls below a critical 

threshold, typically in midlife, the normal feedback from the ovaries to the hypothalamus 
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and pituitary becomes disrupted. Thought to be a compensatory mechanism, increased FSH 

and LH levels are released in the system’s attempt to stimulate normal follicular growth and 

ovulation. Seminal work from the laboratories of Dr. Andrea Gore and Dr. Phyllis Wise has 

provided evidence that perturbations in the cyclic release of GnRH and subsequent release of 

gonadotropins occur before alterations in regular estrous or menstrual cyclicity becomes 

apparent, and that changes in N-methyl-D-aspartate (NMDA) receptor function may play a 

key role in disrupted GnRH release and feedback (Gore et al., 2000a; Gore et al., 2000b; 

Scarborough and Wise, 1990; Wise, 1982).

Some human research suggests that it is the alterations in gonadotropin levels, over and 

above declines in circulating ovarian hormone levels, that result in the cognitive changes 

observed during aging (Webber et al., 2005). In fact, higher circulating FSH and LH levels 

have been associated with neurodegenerative disease and pathologies in clinical populations 

(Bowen et al., 2002, 2000; Short et al., 2001). Basic science research using rodent models 

has further substantiated this tenet. For example, Dr. Gemma Casadesus and colleagues 

found that transgenic mice that overexpress LH receptors performed poorly on a 

hippocampal-dependent Y-maze task, while LH receptor knock out mice were not impaired, 

despite increased circulating LH levels (Casadesus et al., 2007). Furthermore, this group has 

shown that pharmacologically down-regulating serum LH improves cognitive performance 

after Ovx in wildtype and a triple transgenic mouse model of Alzheimer’s disease (Blair et 

al., 2016; Palm et al., 2014); in wild type animals, decreasing LH serum levels benefitted 

memory performance, even after exogenous 17β-estradiol treatment was no longer effective 

in enhancing memory following Ovx (Blair et al., 2016). In addition, our laboratory has 

shown an inverted-U association between LH levels and cognitive performance in middle-

aged female rats. Specifically, for animals with their ovaries (sham and follicle-deplete via 

experimental induction), higher LH levels were associated with poorer memory 

performance. Conversely, for Ovx animals, higher LH levels tended to be associated with 

better memory performance (Acosta et al., 2009). It is clear that in addition to circulating 

steroid ovarian hormone levels, gonadotropins also play a part in mediating cognitive 

performance, and these effects likely depend on background hormone milieu. Overall, these 

exciting findings point to novel pathways to explore to fully understand the impact of a 

dysregulated hypothalamic-pituitary-ovarian feedback loop, especially regarding the 

transition to reproductive senescence as related to the trajectory of cognitive aging.

3. Aging, ovarian hormones, and altered neural systems

The brain is a highly plastic organ. It adapts and changes throughout the lifespan, constantly 

revising and redacting information in order to adjust to an organism’s ever changing 

environment. Neural systems and biochemical mediators are affected by many factors that 

are modified with age and interactions with the environment. A fundamental factor 

influencing the brain beginning early in life is sex steroid hormones. It is well established 

that androgens and estrogens play a key role in organizing the developing brain, and set it up 

to respond in a particular way following sexual maturity of an organism. Many of these 

neural systems and molecular pathways that are impacted by age and reproductive hormones 

are also associated with learning and memory processes. Here, we focus upon the 

cholinergic and GABAergic systems, which are two of the most well-studied neural systems 
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critical for learning and memory processes that are concomitantly impacted by age and 

ovarian hormones. The effects of age and altered ovarian hormone levels on dendritric 

morphology, as well as ERK1/2 signaling, a ERα-linked signaling pathway, are also 

discussed.

3.1. The cholinergic system

Age and ovarian hormones, both endogenously circulating and exogenously administered, 

impact a myriad of factors in the brain, including, but not limited to, growth factors (e.g., 

neurotropins), the inflammatory response, the immune response, mitochondrial function, and 

the cholinergic system. The latter involves the neurotransmitter acetylcholine, which also 

has diverse functions on the brain. One of acetylcholine’s significant functions is to act as a 

key regulator of learning and memory consolidation. The basal forebrain is a primary 

synthesis site for acetylcholine in the mammalian forebrain. It is known that there are long-

range projections from the basal forebrain to the frontal cortex as well as the hippocampus, 

crucial brain structures for learning and memory consolidation. Beginning in the 1980’s, 

landmark research has indicated that age impacts morphology and functionality of the 

brain’s cholinergic system. For example, aged animals showed a decline in ChAT and 

acetylcholinesterase (AChE; the enzyme that breaks down acetylcholine) activity in the 

basal forebrain and hippocampus (Springer et al., 1987). Recently, the Bizon laboratory 

reported a decreased number of ChAT-immunoreactive (ChAT+) basal forebrain neurons in 

aged males rats compared to young adult male rats (Bañuelos et al., 2013). By examining 

p75NTR expression, a growth factor receptor that often co-localizes with cholinergic 

neurons, Veng and colleagues reported a reduction in density and presence of healthy 

cholinergic neurons in both aged male and female rats compared to younger animals (Veng 

et al., 2003). Aged males exhibited smaller cholinergic neuron somas compared to younger 

males, while aged females did not show a reduction in mean soma size (Veng et al., 2003). 

In addition to age-related alterations in cholinergic neurons, Ovx has been associated with a 

decline in ChAT activity, while subsequent 17β-estradiol administration restored ChAT 

activity in the female rat basal forebrain and projection sites into the frontal cortex and CA1 

region of the hippocampus (Gibbs, 1994; Luine, 1985; Singh et al., 1994). Further, lesions to 

the medial septum and vertical/diagonal bands of the basal forebrain resulted in impaired 

spatial memory performance and prevented the memory enhancing effects of 17β-estradiol 

(Gibbs, 2002; Hagan et al., 1988). It is important to note that age and ovarian hormone loss 

do not necessarily affect the number of ChAT-producing neurons in the basal forebrain, but 

do impact the functional integrity of the cholinergic system (Gibbs, 2003). Recently, it has 

been shown that GPR30, a membrane bound G-protein coupled estrogen receptor distinct 

from ERα and ERβ, exhibits co-localization with basal forebrain cholinergic neurons and 

likely mediates some of estrogens’ effects on both basal forebrain cholinergic integrity and 

resulting cognitive outcomes (Hammond et al., 2011; Hammond and Gibbs, 2011; Ping et 

al., 2008). Thus, ovarian-derived hormones likely play a significant role in the 

neuroendocrine modulation of the cholinergic-hippocampal pathway. Most research on this 

subject has been evaluated in the Ovx model, where the ovaries, which are the endogenous 

source of circulating gonadal hormones, are surgically removed, and subsequent exogenous 

hormone therapy is administered. The effects of estrogens on cholinergic neurons in the 

basal forebrain are not always consistent, however. For example, many studies have shown 
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that after Ovx, exogenous administration of 17β-estradiol can increase ChAT+ neurons in 

the basal forebrain (Engler-Chiurazzi et al., 2012; Gibbs, 1997); it is of note that other 

estrogen types initiate varied effects on this measurement. Indeed, tonic administration of 

estrone, a weaker metabolite of 17β-estradiol, failed to impact ChAT+ neurons in the rat 

basal forebrain (Engler-Chiurazzi et al., 2012), and the synthetic estrogen used in oral 

contraceptives, ethinyl estradiol, decreased the number of ChAT+ neurons in the basal 

forebrain following chronic administration in an Ovx rat model (Mennenga et al., 2015a). 

These diverse effects of estrogens on one system highlight the complexity of estrogens’ 

actions in the brain, and underscore the importance of taking multiple factors into account 

when assessing estrogens’ effects on the brain and other body systems, such as type of 

estrogen, dose, route of administration, and timing of administration (for review, see 

Koebele and Bimonte-Nelson, 2015).

3.2. The GABAergic system

Adding complexity to understanding the system, many cholinergic projections from the 

basal forebrain synapse onto ɣ-aminobutyric acid (GABA) ergic cortical neurons; GABA is 

the primary inhibitory neurotransmitter in the brain and an important neuromodulator for 

normal cognitive processes, including hippocampal and cortical function. Acetylcholine 

release onto these GABAergic neurons in the hippocampus may modulate hippocampal theta 

wave oscillations through both direct and indirect pathways; these hippocampal theta 

rhythms play a role in regulating memory consolidation and synaptic plasticity (Dannenberg 

et al., 2015). The basal forebrain also has long-range GABAergic projections to the frontal 

cortex and hippocampus, both of which are thought to play a regulatory role in normal 

neural activity. Among its many roles, GABA signaling in the brain is a key regulatory 

factor in normal memory formation and maintenance (Kalueff and Nutt, 1997; Katz and 

Liebler, 1978). Inhibitory GABAergic neurons and signaling appear to become dysregulated 

with aging (Shetty and Turner, 1998; Stanley and Shetty, 2004). Animal models with altered 

GABA signaling, both systematically and with normal aging, show altered cognition with 

changes to the system, both in relation to cognitive aging and other psychiatric disorders 

(Bañuelos et al., 2013; McQuail et al., 2015). For example, the Bizon laboratory found that 

younger animals had better performance on the probe trial of the spatial reference memory 

Morris water maze compared to aged rats. The basal forebrain was immunohistochemically 

processed for ChAT and glutamate decarboxylase 67 (GAD67; the synthesizing enzyme for 

GABA). For GAD67-immunoreactive (GAD67+) neurons, there was no overall difference 

between young and aged rats. However, when aged rats were sub-classified into spatially- 

unimpaired and impaired groups, aged-spatially-impaired rats were found to have 

significantly more GAD67 + neurons compared to both young and aged-spatially-

unimpaired animals. Further, this group showed a negative correlation with spatial memory 

performance in aged rats, such that a greater number of GAD67 + neurons was associated 

with poorer memory performance (Bañuelos et al., 2013). This laboratory also recently 

found that aged male rats have impaired performance on a set-shifting task, and that poorer 

performance on this task was associated with fewer GABA(B) receptors in the medial 

prefrontal cortex of the aged animals, but not the young animals. Directly infusing a 

GABA(B) receptor agonist into this brain region enhanced performance on the set shifting 
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task for the aged animals (Beas et al., 2016), suggesting that cognitive changes with age are 

in part modulated by GABAergic signaling.

In addition to age-related changes in the GABAergic system and subsequent memory 

performance, ovarian hormones influence the GABAergic system. While some research 

suggests that 17β-estradiol can influence GABAergic signaling in the hippocampus 

(Wójtowicz and Mozrzymas, 2010), the majority of studies thus far have focused on the role 

of progesterone and GABAergic functioning. For example, our laboratory and others have 

shown that progesterone decreased GAD65 + 67 protein levels in the hippocampus and 

increased GAD65 + 67 protein levels in the entorhinal cortex (Braden et al., 2010) as well as 

decreased GAD activity in several brain regions, including the dorsal hippocampus, as 

measured by kinetic studies (Wallis and Luttge, 1980). Furthermore, an in situ hybridization 

study revealed that 12 h after treatment, progesterone, but not MPA, reduced hippocampal 

mRNA expression of the α4 subunit of the GABA(A) receptor (Pazol et al., 2009), 

suggesting that different progestogens can have variable impacts on the GABAergic system. 

We recently showed that in a middle-age Ovx rat model, progesterone administration 

resulted in transient working memory impairments on a spatial memory task, but 

concomitant delivery of bicuculline, a GABA(A) receptor antagonist, obviated these 

memory impairments (Braden et al., 2015). Finally, the recent finding that cholinergic 

neurons may also co-release GABA adds an additional level of complexity wherein the full 

impact on cognitive function has yet to be determined (Tritsch et al., 2016). Nonetheless, 

whether there are sex differences in how GABAergic circuitry and signaling are affected by 

aging, as well as how endogenous alterations and exogenous administrations of other sex 

steroid hormone levels impact this system, remains somewhat elusive and warrants further 

investigation.

3.3. MAPK/ERK1/2 signaling pathway

A wide range of intracellular pathways and kinases are known to be important for normal 

learning and memory processes (Giese and Mizuno, 2013), many of which are recruited 

downstream of estrogen receptor activation. One pathway in particular, the extracellular 

signal-regulated kinases, known as ERK1/2, p44/42, and classical mitogen-activated protein 

kinases (MAPKs; in humans, ERK1 = MAPK3), has diverse functions in regulating learning 

and memory (Atkins et al., 1998; Bozon et al., 2003; Fasano and Brambilla, 2011). Estrogen 

receptors are thought to activate ERK1/2 via production of cyclic adenosine monophosphate 

(cAMP) and/or interactions with growth factor receptors. Age-related brain changes in 

ERK1/2 signal transduction have not yet been extensively studied; however, one experiment 

found that aged male rats had decreased ERK1/2 activity in the cortex compared to younger 

rats (Zhen et al., 1999). Further investigations into how aging alters ERK1/2 signaling are 

necessary to elucidate whether aberrant signal transduction has functional consequences on 

cognitive outcomes across the lifespan. Given that ERK1/2 is ubiquitously expressed 

throughout the brain and other organs, it is important to evaluate potential age-related 

changes in multiple cognitive brain regions, as well as consider sex, age, and hormone status 

as factors influencing ERK1/2 expression and signaling. Indeed, in recent years, 17β-

estradiol has been proposed to regulate ERK1/2 activity in both in vitro and in vivo studies. 

Dr. Karyn Frick’s laboratory has demonstrated that intraperitoneal injections and 
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intracerebroventricular or hippocampal infusions of 17β-estradiol activated ERK2 and 

enhanced object recognition memory (Fernandez et al., 2008; Frick, 2015; Lewis et al., 

2008). Temporal parameters may impact the outcome of estrogen effects on this system; in 

aged Ovx rats, the amount of time since Ovx (and therefore ovarian hormone deprivation) 

impacted subsequent effects of 17β-estradiol on ERK1/2 phosphorylation, which were 

dependent upon brain region (Pinceti et al., 2016). Additionally, findings from Dr. Thomas 

Foster’s laboratory revealed that ERα lentivirus injection directly into the hippocampus of 

middle-aged Ovx rats (i.e. animals with low endogenous estrogen levels) increased ERK1/2 

phosphorylation and enhanced memory performance (Witty et al., 2012), suggesting that 

estrogen receptor activity, and possibly brain-derived estrogens, can activate and alter signal 

transduction pathways critical for learning and memory formation. These novel findings 

point to ERK1/2 signaling as another important biochemical mediator to investigate in the 

context of aging-and menopause- related brain changes. The interactions between ERK1/2 

and the multitude of other hormone-linked pathways on learning and memory processes are 

only beginning to be explored. Further investigations in this newer field of how ovarian 

hormone fluctuations and aging impact these biochemical signaling pathways are currently 

underway.

3.4. Age- and ovarian hormone- influenced structural brain changes

In addition to the age- and menopause- related alterations observed in many neural systems 

and signaling pathways, the field is beginning to understand how aging and the ovarian 

hormone milieu impact the brain and other systems at the structural level. While neuron 

number does not necessarily decline in a healthy aging brain, age-related alterations in 

dendritic length (Pyapali and Turner, 1996), branching (Markham et al., 2005), and spine 

density and synapses (Adams et al., 2010; Geinisman et al., 1992) occur in several species, 

including rodents and non-human primates; these changes are seen in many brain regions, 

including those that regulate cognitive processes (Dickstein et al., 2013). Ovarian hormones 

can also affect dendritic morphology, and these alterations are sex-specific. For example, 

Miranda and colleagues demonstrated that aged Ovx rats showed decreased dendritic spine 

density in the dentate gyrus of the hippocampus compared to younger Ovx females deprived 

of hormones short-term; however, short-term estrogen administration, even in old age, 

increased spine density to the level of an adult female, and long-term estrogen replacement 

did not affect spines. Males did not show the same pattern of responsiveness to hormone 

deprivation and subsequent estradiol benzoate administration, suggesting that estrogen 

effects on dendritic spines are both sex- and time- dependent (Miranda et al., 1999). 

Furthermore, 17β-estradiol administration immediately after Ovx increased CA1 apical 

spines and enhanced memory performance, but if 17β-estradiol was given after 10 weeks of 

hormone deprivation, these morphological and behavioral changes were not as pronounced, 

again suggesting that temporal dynamics of estrogen administration matter for memory 

effects (McLaughlin et al., 2008). Middle-aged, ovary intact female rats showed impaired 

object recognition memory and a significant decrease in apical dendritic spines in pyramidal 

neurons within the CA1 regions of the hippocampus compared to young rats, but no 

differences in basal dendritic spines or pyramidal neurons in the CA3 region were apparent 

(Luine et al., 2011). Estrogen and progesterone likely regulate dendritic spines through 

NMDA receptors (Woolley and McEwen, 1994), and it is noted that there is natural variation 
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in dendritic spines across the estrous cycle (Woolley and McEwen, 1993). These studies 

collectively indicate that both aging and ovarian hormone fluctuations have the capacity to 

trigger structural brain changes at multiple levels, and that there is marked plasticity both 

during aging and across the reproductive cycle; this is true even though we note that the 

extent and efficacy of this plasticity likely waxes and wanes across the lifespan. It is possible 

that organizational effects not only occur during early development, but that reorganizational 

events also exist across the lifespan as natural, significant fluctuations in ovarian hormones 

occur, such as with puberty, pregnancy, and menopause.

4. Conclusions and future directions for understanding the complex 

interactions among female reproductive hormones, age, and 

neurobiological alterations underlying cognitive processes

Accumulating evidence points to roles for both age and reproductive hormones on the brain 

and behavior throughout life. Knowledge about the complex interactions within this 

endocrine-brain-aging triad is growing in breadth and depth as scientific discoveries are 

made, and continuing this work will yield new insights into how these paths meet and 

influence each other. Given the continuously increasing average human lifespan, it is more 

important than ever for the field of neuroendocrinology and aging to better understand how 

aging and the long-lasting changes in gonadal hormones and gonadotropins that occur in 

midlife affect the neural circuits and molecular mechanisms related to learning and memory. 

Thus far, discoveries have included multiple neural systems, domains of function, and 

biochemical mediators, such as the basal forebrain-hippocampal cholinergic pathway, 

GABAergic transmission, ERK1/2 signal transduction, and structural brain changes. It is of 

particular interest to understand how the neurobiological and neurochemical changes 

associated with menopause and aging alter the underlying circuitry of cognitive pathways, 

and if these systems compensate by using alternative mechanisms or undergo a rewiring to 

return to homeostasis as aging occurs. Elucidating the changes in these molecular 

mechanisms with age and ovarian hormone milieu in a systematic and demonstrable fashion 

will yield insight into how and when the brain responds to endogenous hormone changes as 

well as to potential exogenous hormone treatment. This will, in turn, drive progress forward 

toward development and optimization of opportunities and choices for women undergoing 

the transition to menopause that not only addresses the undesirable symptoms associated 

with menopause, but also that potentially prevents, attenuates, or postpones the onset of 

cognitive or affective changes for at-risk women during aging. In order to move toward this 

realm of discovery, it should be recognized that female reproductive hormones, including 

sex steroids and gonadotropins, have a powerful impact on many complex and interactive 

neural systems that influence cognitive outcomes throughout life. Indeed, it seems that 

exposure to these hormones, whether transient or long-lasting, can change the course of 

future responses and brain health.
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Abbreviations

ChAT choline acetyltransferase

AChE acetylcholinesterase

BF basal forebrain

Ovx ovariectomy

GAD glutamate decarboxylase

GABA ɣ-aminobutyric acid

ERK extracellular regulated kinases

MPA medroxyprogesterone acetate

ER estrogen receptor

LH luteinizing hormone

FSH follicle stimulating hormone

HSD hydroxysteroid dehydrogenase

HPG hypothalamic-pituitary-gonadal

GnRH gonadotropin releasing hormone
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Fig. 1. 
Literature demonstrating the discoveries of brain changes in regions that regulate cognitive 

processes, and that are sensitive to both aging and ovarian hormones. ChAT=choline 

acetyltransferase; AChE=acetylcholinesterase; BF=basal forebrain; Ovx=ovariectomy; 

GAD=glutamate decarboxylase; GABA=ɣ-aminobutyric acid; ERK=extracellular regulated 

kinases; MPA = medroxyprogesterone acetate; ER = estrogen receptor.
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