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A B S T R A C T

Background: Diagnostic uncertainty in ALS has serious management implications and delays recruitment into
clinical trials. Emerging evidence of presymptomatic disease-burden provides the rationale to develop diagnostic
applications based on the evaluation of in-vivo pathological patterns early in the disease.
Objectives: To outline and test a diagnostic classification approach based on an array of complementary imaging
metrics in key disease-associated anatomical structures.
Methods: Data from 75 ALS patients and 75 healthy controls were randomly allocated in a ‘training’ and ‘va-
lidation’ cohort. Spatial masks were created for anatomical foci which best discriminate patients from controls in
the ‘training sample’. In a virtual ‘brain biopsy’, data was then retrieved from these key disease-associated brain
regions. White matter diffusivity indices, grey matter T1-signal intensity values and basal ganglia volumes were
evaluated as predictor variables in a canonical discriminant function.
Results: Following predictor variable selection, a classification specificity of 85.5% and sensitivity of 89.1% was
achieved in the training sample and 90% specificity and 90% sensitivity in the validation sample.
Discussion: This study evaluates disease-associated imaging measures in a dummy diagnostic application.
Although larger samples will be required for robust validation, the study confirms the potential of multimodal
quantitative imaging in future clinical applications.

1. Introduction

Patients with ALS often describe tripping, intermittent slurred
speech, muscle cramping, leg stiffness years before their formal diag-
nosis. Delays in diagnosis compromises timely enrolment in clinical
trials, and limit the neuroprotective potential of new therapeutic
agents. It is now also widely recognized that a long presymptomatic
phase precedes symptom manifestation (Eisen et al., 2014). The few
existing presymptomatic studies ALS confirm that the pathological
changes can be captured well before symptom onset (Carew et al.,
2011). The diagnosis of ALS remains primarily clinical, despite the
unprecedented advances in quantitative neuroimaging and the uniquely
specific imaging signature of ALS. After years of descriptive MRI studies
in ALS, a number of studies have now emerged outlining diagnostic and
prognostic applications based on pattern recognition (Bede and
Hardiman, 2014). While methods of machine learning and data mining
have been extensively used in marketing, information technology,
banking, traffic control and metrology, they have only been recently

applied to neurodegeneration (Orru et al., 2012). Many of the pio-
neering radiology studies come from cancer screening applications
developed for the automated detection of malignancies. The automated
analysis of imaging data of neurodegenerative conditions poses unique
methodological challenges. Age-related variability, overlap of several
neurodegenerative conditions, co-existing vascular white matter al-
terations are just some of the confounders. The most commonly used
statistical approaches in neurodegeneration include logistic regression
and support vector machines. Discriminant function analysis allows the
determination of probability of group membership based on predictor
variables. While the assumptions of discriminant analysis may be less
flexible than those of logistic regression, it offers relatively high clas-
sification accuracy.

We hypothesized that based on the distinct neuroimaging signature
of ALS a robust diagnostic framework can be outlined using dis-
criminant function analysis. Our objective was to describe a diagnostic
classification approach which incorporates multiple, ALS-defining,
cortical, basal ganglia and white matter measures. The overarching
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hypothesis of this study is that ‘data biopsies’ from blinded data sets can
be used to accurately categorize individual participants as patients or
controls based on normative and disease-specific training data.

2. Methods

All participants of this prospective biomarker study provided in-
formed consent in accordance with the Medical Ethics Approval of the
project (Beaumont Hospital, Dublin, Ireland). ALS patients and controls
were randomly allocated in a ‘training group’ and a ‘testing group’ for
validation. In total, 55 ALS patients and 55 controls were allocated to
the ‘training group’ and 20 patients and 20 controls to the ‘testing
group’. Healthy controls have been specifically recruited for this ALS
biomarker study. The demographic and clinical profile of study parti-
cipants are presented in Table 1. The participants of the training and
validation cohorts were matched for age, gender and education.

2.1. Methods overview

The schematic overview of the development of the diagnostic pro-
tocol is presented in Fig. 1. First, comparative analyses were carried out
between the patients and controls of the training group to establish core
ALS-associated patterns of degeneration. Whole-brain tract-based spa-
tial statistics (TBSS), voxel based morphometry and basal ganglia vo-
lumetrics were carried out correcting for age and gender, the methods
of which have been described previously described (Bede et al., 2013a;
Bede et al., 2015; Bede et al., 2013b; Bede et al., 2013c). Additionally,
the volumes of brain stem, left and right thalamus, caudate, pallidum,
hippocampus, amygdala, putamen and accumbens nuclei were com-
pared between the controls and ALS patients of the training group
correcting for age. The main ‘disease-defining’ anatomical structures
identified by these comparisons included the corticospinal tracts (CST),
corpus callosum (CC), primary motor cortex (PMC), thalamus, caudate
nuclei, accumbens nuclei, amygdala and the hippocampus. Accord-
ingly, region-of-interest (ROIs) anatomical maps were created for these
structures, including voxels which showed statistically significant dif-
ferences between patients and controls in the corticospinal tracts,
corpus callosum, and precentral gyrus.

Imaging data of both the training and testing groups have been
spatially co-registered to the MNI reference system and averaged MR
metrics were retrieved from each participant in the above ROIs. In
summary, our standardized ‘virtual brain biopsy’ consisted of retrieving
quantitative MRI metrics from key, ALS-associated brain regions in
each participant which were then evaluated in a discriminant function
model. The outcomes of the initial comparisons and the atlas-based ROI
masks created based on these contrasts are presented in Fig. 2.

2.2. MRI pulse sequence descriptions

MR data were acquired on a 3 Tesla Philips Achieva system with a
gradient strength of 80 mT/m and slew rate of 200 T/m/s using an 8-
channel receive-only head coil. T1-weighted images were obtained
using a three-dimensional inversion recovery prepared spoiled gradient
recalled echo (IR-SPGR) sequence with FOV = 256 × 256 × 160 mm,
spatial resolution = 1 mm3, TR/TE = 8.5/3.9 ms, TI = 1060 ms, flip

Table 1
The demographic and clinical profile of participants.

Diagnosis Training cohort Validation cohort p - value

ALS Healthy
controls

ALS Healthy
controls

n 55 55 20 20
Age

(Mean/
St.Dev.)

59.745/
9.4579

60.309/
9.1528

63.850/
8.1323

57.700/
10.2346

0.202

Gender
(Male/
Female)

34/21 28/27 14/6 9/11 0.278

ALSFRS-r
(Mean/
St.Dev.)

38.29/
5.398

37.80/
5.854

0.734

Disease
duration
(Mean/
St.Dev.)

23.65/
7.399

24.65/
6.409

0.596

Fig. 1. A schematic outline of model develop-
ment, testing and validation.
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angle = 8°, SENSE factor = 1.5. DTI images were acquired using a
spin-echo planar imaging (SE-EPI) sequence with a 32-direction
Stejskal-Tanner diffusion encoding scheme: FOV = 245 × 245 ×
150 mm, 60 slices with no interslice gap, TR/TE = 7639/59 ms, SENSE
factor = 2.5, b-values = 0, 1100 s/mm2, with SPIR fat suppression and
dynamic stabilization in an acquisition time of 5 min 41 s.

2.3. MRI processing pipelines

Raw diffusion tensor imaging data sets underwent eddy current
corrections, motion correction and brain-tissue extraction using
FMRIB's software library (FSL) (Smith et al., 2004). A diffusion tensor
model was then fitted, generating maps of axial diffusivity (AD), radial
diffusivity (RD) and fractional anisotropy (FA). Tract-based spatial
statistics (TBSS) and permutation-based nonparametric inference was
used for group comparisons in a study-specific white matter template
applying the threshold-free cluster enhancement (TFCE) method (Smith
et al., 2006; Smith and Nichols, 2009). The comparisons of the ALS
patients and healthy controls of the ‘training group’ were corrected for
age and gender and statistical significance was set at p < 0.05 FWE.

Grey matter analyses were carried out using voxel based morpho-
metry (VBM) tool box if FMRIB's software library (FSL) (Douaud et al.,
2007). Following brain extraction, and tissue-type segmentation, grey
matter partial volume images were aligned to the Montreal Neurolo-
gical Institute 152 standard space. The grey matter partial volume es-
timates were non-linearly co-registered to a study-specific template,
modulated by a Jacobian field warp and smoothed with an isotropic
Gaussian kernel with a sigma of 3 mm. The TFCE method and

permutation-based nonparametric inference was used for the compar-
isons of the ALS patients and healthy controls of the ‘training group’,
which were corrected for age and gender and statistical significance
was set at p < 0.05 FWE.

2.4. Basal ganglia volumes

Volumes of subcortical structures were estimated using the sub-
cortical segmentation and registration tool FIRST, part of the FMRIB's
Software Library (FSL). T1-weighted structural data first underwent
brain extraction and the resulting images were individually verified.
FSL-FIRST uses a two-stage affine registration algorithm of the input T1
data sets to MNI152 (Montreal Neurological Institute 152) standard
space; first a standard 12 degrees of freedom registration, then a 12
degrees of freedom registration to a MNI152 sub-cortical mask. A
model-based approach is used by FSL-FIRST for the segmentation of
subcortical structures. The models incorporated in FIRST are con-
structed from manually segmented images from 336 subjects provided
by the Center for Morphometric Analysis (CMA), MGH, Boston.
Registration and segmentation were individually reviewed and visually
verified for all subjects. Following registration and segmentation, sub-
cortical mesh and volumetric outputs were generated by FSL-FIRST
using automatic boundary corrections.

2.5. Region of interest maps

The grey matter region of interest (ROI) for the left and right pri-
mary motor cortex was created based on the Harvard-Oxford

Fig. 2. A, Outcomes of initial contrasts between ALS patients and controls in the ‘training group’ highlighting key, disease-associated brain regions at p < 0.05 corrected for age and
gender. B, Region-of-interest (ROI) masks created based on the initial comparisons incorporating statistically significant voxels in the left corticospinal tract (red), right corticospinal tract
(turquoise), corpus callosum (yellow), left primary motor cortex (turquoise) and right primary motor cortex (gold). – Contrasts and ROI masks are shown for radial diffusivity values (RD),
axial diffusivity values (AD), fractional anisotropy values (FA) and grey matter (GM) signal intensity. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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probabilistic atlas(Desikan et al., 2006) and defined based on voxels of
the primary motor cortex which showed statistically significant differ-
ences at p < 0.05 between controls and patients in the ‘training’ co-
hort. White matter ROIs were defined based on the ICBM-DTI-81 white-
matter labels atlas (Mori et al., 2008; Oishi et al., 2008). White matter
ROIs were defined based on statistically significant differences in AD,
RD and FA between the controls and ALS patients of the ‘training co-
hort’ in left corticospinal tract, right corticospinal tract and corpus
callosum. While fractional anisotropy (FA) was evaluated, radial dif-
fusivity (RD) and axial diffusivity (AD) were regarded as superior pre-
dictor variable candidates. This is because, AD (λ1) and RD
((λ2 + λ3) / 2) are mathematically independent white matter metrics
and thought to reflect on axonal and myelin integrity respectively
(Budde et al., 2009; Song et al., 2005).

The initial list of candidate predictor variables included RD, AD and
FA in the left and right corticospinal tract and corpus callosum ROIs,
T1-signal intensity in the left and right motor cortex ROIs, the bilat-
erally averaged volumes the thalamus and caudate, left and right hip-
pocampus, nucleus accumbens, amygdala, brain stem and total in-
tracranial volume (ICV). Candidate predictor variables were excluded
from the model based on tests of equality of group means if Wilk's
lambda was not statistically significant. Predictor variables were also
excluded if they were highly correlated with each other in the pooled
within-groups matrices. Based on the evaluation of candidate pre-
dictors, the final variables in the model included the AD and RD of the
left and right CST and CC, left and right PMC ROIs, and volumes of the
left and right hippocampus and nucleus accumbens, the left amygdala,
and thalamus and caudate volumes (Table 2). The constant, canonical
discriminant function coefficients and group centroids were calculated
based on these variables. No leave-one-out cross-validation was per-
formed in the training group, as separate-groups covariance matrixes
were used. Classification accuracy was tested in the ‘training’ group and
in the independent validation sample separately to appraise the dis-
criminatory power and generalizability of the model.

3. Results

The canonical discriminant function reached an Eigen value of
0.871, a canonical correlation value of 0.682, Wilks lambda of 0.534,
Chi-square 62.983 and a significance of< 0.001. The model showed an
overall classification sensitivity of 89.1% and specificity of 85.5% in the
‘training’ group. In the ‘testing sample’ both sensitivity and specificity
reached 90%. Classification function outcomes, histograms and scatter
plots of discriminant score distributions are shown in Fig. 3.

4. Discussion

Neuroimaging in ALS has been very successful in characterizing
group-level, disease-specific changes (Agosta et al., 2010; Turner et al.,
2012; Prell and Grosskreutz, 2013; Bede et al., 2016), and also in de-
scribing phenotype (Bede et al., 2013a; Machts et al., 2015; Floeter
et al., 2014) and genotype-specific (Cistaro et al., 2014; Floeter et al.,
2016) neuroimaging signatures. More recently, ALS MRI studies cap-
tured presymptomatic imaging alterations (Carew et al., 2011; Benatar
and Wuu, 2012; Menke et al., 2016). Despite the significant advances in
group-level, cross-sectional (Muller et al., 2016) and longitudinal ana-
lyses (Menke et al., 2014; Agosta et al., 2009a) in neurodegenerative
conditions, the interpretation of single data sets remains methodologi-
cally challenging and a striking paucity of such studies persists in ALS
(Welsh et al., 2013; Foerster et al., 2013; Ben Bashat et al., 2011;
Schuster et al., 2016). From a biomarker perspective, the meaningful
interpretation of data from single individuals is paramount for the de-
velopment of viable clinical applications (Agosta et al., 2010; Turner
et al., 2013). In ALS, the gap between the number of ‘group-level’ de-
scriptive studies and ‘individual-level’ classification studies continues to
widen. Admittedly, ‘individual-level’ analyses require large training
and validation data sets, robust multicenter validation, but even small
pilot studies are surprisingly scarce in ALS.

The main limitation of the study lies in its sample size; however it
indicates that discriminant function analyses provide relatively accu-
rate diagnostic classification. The classification protocol outlined in this
study should to be replicated in larger data sets and tested using data
from multiple MRI platforms. Large imaging repositories such as that of
the neuroimaging society of ALS (NISALS) are invaluable resources to
test and validate such frameworks on multi-site data (Turner et al.,
2011). While our patients had relatively high ALSFRS-r, indicating
early stage disease, their disease duration was relatively long. The ac-
curate classification of patients with significant disability or long dis-
ease duration says relatively little about the sensitivity of a proposed
diagnostic algorithm. The validation of classification algorithms should
ideally be carried out using data from patients scanned immediately
after their diagnoses or presymptomatic mutation carriers. In this study,
we have outlined a binary classification approach integrating multiple
imaging indices from multiple anatomical sites. However, in order to
simulate real-life diagnostic dilemmas, multinomial (multiclass) follow-
up studies are required to evaluate algorithms distinguishing between
ALS patients, healthy individual and mimic conditions. Such studies
should ideally include conditions which are pathologically, clinically or
radiologically similar to ALS, for example hereditary spastic paraplegia
(HSP), primary lateral sclerosis (PLS), post-polio or Kennedy's patients.
(Querin et al., 2017) Another limitation of the study is that no quan-
titative spinal cord MR indices were included. Spinal measures are
likely to improve diagnostic classification further as they have been
previously shown to be sensitive longitudinal and prognostic markers in
ALS (Agosta et al., 2009b; El Mendili et al., 2015; El Mendili et al.,
2014; Bede et al., 2012).

A range of statistical methods are available to classify blinded data
in neurodegeneration, and each method is associated with unique ad-
vantages and limitations. Despite the relatively restrictive assumptions
of discriminant function analyses, the advantage of this approach is that
it readily integrates multiple measures, and provides diagnostic prob-
abilities in addition to discriminant scores. Until robust, multi-center
classification studies are published in ALS, it remains to be seen which
approach is best suited to reliably capture early pathological changes in
vivo. The concept of ROI-based, spatial reference system guided ‘data
biopsies’ is also applicable to longitudinal analyses and potentially for
the development of future monitoring markers.

Ethics approval and consent to participate

All participants provided written informed consent in accordance to

Table 2
Final predictor variables in the discriminant model following candidate predictor variable
evaluation. RD – radial diffusivity, AD – axial diffusivity.

Predictor variables after candidate predictor assessment and selection

Average RD in the “right RD corticospinal tract ROI”
Average RD in the “left RD corticospinal tract ROI”
Average RD in the “RD corpus callosum ROI”
Average AD in the “right AD corticospinal tract ROI”
Average AD in the “left AD corticospinal tract ROI”
Average AD in the “AD corpus callosum ROI”
T1-signal intensity in the “right motor cortex ROI”
T1-signal intensity in the “left motor cortex ROI”
Averaged volume of the left and right thalamus
Averaged volume of the left and right caudate
Volume of the left hippocampus
Volume of the right hippocampus
Volume of the left nucleus accumbens
Volume of the right nucleus accumbens
Volume of the left amygdala
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