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Abstract

Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records 

(EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and 

phenotypes) using only data collected as a by-product of typical health care. In addition to disease 

and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and 

developing reverse genetics approaches such as phenome-wide association studies (PheWASs). 

PheWASs are designed to survey which of many phenotypes may be associated with a given 

genetic variant. PheWAS methods have been validated through replication of hundreds of known 

genotype-phenotype associations, and their use has differentiated between true pleiotropy and 

clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and 

may also help repurpose medications. PheWAS methods have also proven to be useful with 

research-collected data. Future efforts that integrate broad, robust collection of phenotype data 

(e.g., EHR data) with purpose-collected research data in combination with a greater understanding 

of EHR data will create a rich resource for increasingly more efficient and detailed genome-

phenome analysis to usher in new discoveries in precision medicine.
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INTRODUCTION

The ultimate goal of genomic investigation is to determine the molecular drivers underlying 

human traits and diseases. Discovery of the genomic basis of disease proceeded slowly until 

the publication of the first human reference genome sequence in 2003 and has dramatically 
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accelerated in the last decade with the advent of increasingly efficient methods of 

interrogating the human genome. Large-scale, hypothesis-free methods for studying 

genomic variants—notably genome-wide association studies (GWASs) and technologies 

such as whole-genome and whole-exome sequencing—have led to numerous discoveries of 

the genomic bases of both rare and common diseases. Typically, these methods have focused 

on a single disease or a small set of diseases at a time in order to answer specific research 

questions, and traditional data sets with genetic data have ascertained a limited number of 

phenotypes to allow for study. In cohort studies, phenotypes are carefully and accurately 

ascertained but may have limited longitudinal information and are expensive to accrue.

In the mid-to-late 2000s, a few health care systems began to collect patient biospecimens, 

typically DNA, linked to electronic health record (EHR) data. The promise of these 

resources led to the funding of the Electronic Medical Records and Genomics (eMERGE) 

network in 2007 by the National Human Genome Research Institute (NHGRI) (23, 40). By 

2010, the first successful genomic studies using EHR data had demonstrated that these data, 

collected as a by-product of clinical care, could be used to replicate known genomic 

associations using a conventional phenotype-to-genotype study design. They also pointed to 

a new class of study: the phenome-wide association study (PheWAS). Foreshadowed in 

earlier commentaries (22, 31), PheWAS is a reverse genetics approach that begins with a 

genotype and then systematically queries a large number of phenotypes (Figure 1). The 

PheWAS method was first demonstrated with EHR data in a 2010 study that used a 

systematic approach to replicate known associations (18). Subsequent studies have explored 

larger populations, richer and different modalities of phenotype definitions, and the use of 

PheWAS techniques with collections of research data (i.e., non-EHR data).

The explosion of US and international biobanking efforts portends an exciting future in 

which massive amounts of EHR data, linked to genomic and other molecular data, will 

become available for millions of individuals. In addition to their use by the ten eMERGE 

network institutions, EHR data have been included in the UK Biobank (73) and China 

Kadoorie Biobank (6) and form the major source of longitudinal phenome information in the 

Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (36), the US 

Department of Veterans Affairs’ Million Veteran Program (MVP) (http://

www.research.va.gov/mvp), and the forthcoming US Precision Medicine Initiative Cohort 

Program (62). In the past five years, investigators using PheWAS methods have discovered 

numerous new associations, validated others, and uncovered true pleiotropy in the human 

genome. Phenome-wide approaches may also lead to new understandings of biology, 

uncover new therapeutic targets and predictions of side effects, and add to our understanding 

of diseases and prognosis.

This article reviews the use of EHR data for genomic research, PheWAS methods and 

applications, and prospects for the future use of phenome-wide approaches to advance our 

understanding of human disease. Additionally, we review some of the current challenges and 

future opportunities for PheWAS methods.
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ELECTRONIC HEALTH RECORDS AS A TOOL FOR GENOMIC 

INVESTIGATION

EHR systems were initially designed to facilitate patient registration, transaction processing, 

and billing rather than to create a persistent record of clinical care. However, the capacity of 

these systems quickly grew as they became a clinical tool for recording, communicating, and 

securing care. The availability of clinical data combined with algorithms led to improved 

care through computerized decision support, diagnostic aids, population surveillance and 

health management, and improved compliance with recommendations. The earliest 

computerized decision support systems were being used to improve care before personal 

computers were commonly available (41, 43). The aggregation of robust, longitudinal 

clinical records and large populations quickly gave rise to the potential of EHRs as a tool for 

clinical research as well (42, 82). Much of this research has been done using administrative 

(billing) data, but other projects highlight the advantages of using detailed laboratory or 

narrative data (e.g., from physician notes or radiology reports) to tailor antibiotic therapy, 

identify medication side effects (44), or examine the impact of physical exam findings (15) 

and laboratory results (39).

EHR-based genomic research, however, is a more recent practice, with the first successful 

study published in 2010 (79). To be useful for genomic research, EHR data must be linked to 

a biospecimen resource. The scale of genomic research, often involving thousands or even 

tens of thousands of individuals, requires automated methods to accrue such samples. Many 

such efforts have been undertaken by single institutions or networks (e.g., Vanderbilt 

University, Kaiser Permanente, and Geisinger Health System), and broader national efforts 

have also been explored (e.g., the UK Biobank, China Kadoorie Biobank, and MVP). Each 

of these biobanks contains EHR data of varying depths, and several of them (e.g., the UK 

Biobank) collect robust participant-collected phenotypic data as well.

Among the research cohorts using EHR data, the sites of the eMERGE network have been 

among the most prolific in conducting genomic research studies based solely on EHR data. 

An initial study using Vanderbilt’s DNA biobank, BioVU, deployed algorithms to identify 

individual cases and controls for five diseases [multiple sclerosis, rheumatoid arthritis (RA), 

Crohn’s disease, type 2 diabetes, and atrial fibrillation] and tested for replication with 21 

single-nucleotide polymorphisms (SNPs) already known to be associated with these diseases 

(66). All adequately powered associations were replicated, and each disease was represented 

among these replications. GWASs conducted by eMERGE researchers identified 

associations with red and white blood cell indices, type 2 diabetes, cardiac conduction, 

dementia, and platelet size and volume, among others (10). EHR data linked to extant 

genotypes were evaluated for a novel phenotype of primary hypothyroidism, which 

identified a new genetic locus, forkhead box E1 (FOXE1), associated with this disease (17). 

This final result demonstrates that, once genotyped for a given condition, the samples could 

be reused to identify associations with other conditions, which considerably extends the 

utility of these types of cohorts.

EHR data also have proven utility for studying drug-response traits. Such traits, especially 

adverse drug reactions, require longitudinal data, can require large population sizes, and may 

Denny et al. Page 3

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2017 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have potentially lethal outcomes, making prospective assessment essential. EHR data have 

been used to replicate known associations with clopidogrel drug response (13) and warfarin 

stable dose (64). Novel drug-response associations have been identified using EHR data for 

vancomycin stable dose (74), bleeding events associated with chronic warfarin use (34), 

heparin-induced thrombocytopenia (32), and angiotensin-converting enzyme (ACE) 

inhibitor–induced cough (49). A large meta-analysis combined both clinical trial data and 

EHR data to identify genetic loci associated with the cholesterol-lowering effect of statins, 

demonstrating that EHR and trial data can be combined and show similar effects for 

pharmacologic endpoints (61). Importantly, process analyses suggest that EHRs can be 

faster, more efficient, and more cost effective than traditional research models for 

pharmacogenetic analyses (2).

These studies form a carefully validated and diverse story of the use of EHR-linked biobanks 

for genomic research. They also help elucidate EHR data elements that compose the EHR 

phenome for study via PheWAS methods, which are discussed in the following sections.

FINDING RESEARCH-GRADE PHENOTYPES IN ELECTRONIC HEALTH 

RECORDS

Research from the eMERGE network has demonstrated the effectiveness of an iterative 

approach to creating research-quality phenotypes, a finding that has been corroborated by 

experiences at other sites and within other networks (54, 79). The development of more than 

40 of these phenotypes through eMERGE has shown that high-quality phenotypes tend to 

leverage multiple classes of EHR data, including four major types of EHR data: billing 

codes [from the International Classification of Diseases (ICD) and Current Procedural 

Terminology (CPT)], medication histories, laboratory and test results, and clinical narratives 

(14, 79). The latter three data types often require text mining and/or natural language 

processing methods (see below) to extract meaningful and structured information from the 

narrative text often found in these types of clinical data. Each of these five elements contains 

a wealth of information, as summarized in Table 1.

Natural language processing is the application of computer algorithms to abstract 

computable “facts” from unstructured narrative documents (e.g., clinical notes, 

electrocardiogram interpretations, or radiology reports). To be useful, medical natural 

language processing often involves recognizing medical concepts from narrative text and 

matching them to controlled vocabularies such as the Systematized Nomenclature of 

Medicine (SNOMED) or Unified Medical Language System (UMLS) (29), the latter of 

which is an interlingua of more than 100 distinct controlled vocabularies, including 

SNOMED. Both SNOMED and UMLS group like terms (e.g., congestive heart failure and 

its abbreviation, CHF) into single concepts. Natural language processing algorithms have 

also been devised to accurately determine concept negation (e.g., “no chest pain”) (5), detect 

about whom a concept refers (e.g., “her father had a myocardial infarction”) (19, 26), and 

extract detailed medication signature information (e.g., “metformin 500 mg bid”) (83).

Among these phenotype elements, ICD diagnostic billing codes remain the most commonly 

used element in electronic phenotype algorithms. Combining these codes with medication 
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exposures or laboratory results can improve the positive predictive value of a phenotype 

algorithm without significantly altering sensitivity (i.e., the true positive rate) (66, 80). 

Certain phenotypes, however, are not expressed within billing codes and can be found only 

via natural language processing, in laboratory data, or by combining multiple elements. 

These include the drug-related traits discussed above, endophenotypes (such as detailed 

electrographic traits or red blood cell size), or specific diseases that may not be adequately 

represented by billing codes.

METHODS AND VALIDATION FOR PHENOME-WIDE ASSOCIATION 

STUDIES IN ELECTRONIC HEALTH RECORDS

The essential process in a PheWAS is to identify a large list of phenotypes, ideally collected 

systematically (and not restricted to phenotypes of predefined interest). Transformations 

may need to be performed on the phenotype data to generate cases and controls, after which 

the sets of cases and controls are tested for SNPs using analyses similar to those in other 

genetic studies (Figure 2).

Although the majority of PheWAS investigations have been performed with EHR data, other 

cohorts with robustly collected observational data can be used (these are discussed in more 

detail in the next section). Having a broad set of phenotypes collected by a method unbiased 

toward prespecified outcome classes is essential, as narrow groups of phenotypes or 

preselected phenotype domains limit the ability of PheWASs to discover truly novel and 

unexpected associations. A clinical trial may collect large numbers of variables, but they 

may also all be closely related to the outcomes of interest to the trial.

To date, the most common data modality used for PheWASs has leveraged billing 

information in the form of ICD codes from either the ninth edition (ICD9, used in the United 

States until October 2015) or the tenth edition (ICD10, generally used internationally and in 

the United States after October 2015). This is likely due to the ubiquity of these codes in 

EHR systems, their generally robust coverage of human disease, and their ease of use, 

particularly in cross-institutional studies. Despite concerns about their accuracy, given that 

they are typically collected to facilitate remuneration, ICD codes have proven to be effective 

for PheWASs.

ICD codes were used in the first demonstration of the PheWAS method in 2010, in which 

6,005 individuals in an EHR-linked biobank were assigned case or control status for 744 

phenotypes using a custom grouping of ICD9 codes (18). These 744 derived phenotypes 

have become known as phecodes. The individuals were genotyped for five SNPs with known 

genetic associations. For example, the ICD9 code system includes multiple type 1 and type 2 

diabetes codes (all in the 250.* range). Each phecode has a control definition that specifies 

similar conditions that should not be present in controls. Thus, for the type 2 diabetes 

phecode, individuals with any of the diabetes codes or related codes such as secondary 

diabetes mellitus (249.*) or other abnormal blood glucose (790.29) cannot serve as controls 

because these individuals may indeed have diabetes. Another example of disparate ICD 

codes aggregated into a single phecode is tuberculosis, which occurs in ICD9 codes 010 to 

018 (primary tuberculosis), 137 (late effects of tuberculosis), and 647.3 (tuberculosis 
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complicating the peripartum period). Figure 3 shows an example of these mappings. After a 

set of phenotypes (cases and controls) are identified, the PheWAS approach is to test each 

phenotype serially against a given genotype in much the same manner as GWAS tests many 

genetic variants against a single phenotype (Figure 1). In this initial PheWAS, four of the 

seven previously known associations were replicated, thus demonstrating the potential of the 

method. The results also highlighted several potential novel associations, one of which 

(erythematous conditions, which included rosacea) was subsequently replicated (28).

Since the 2010 study (18), the PheWAS approach has been revised to include more than 

1,700 hierarchical phecodes by (a) including personal history and accident codes (the V and 

E codes in the ICD9 coding schema); (b) redesigning the code system to include hierarchical 

relationships, such that one phenotype could be a parent of another child phenotype (e.g., 

cardiac arrhythmias is a parent of atrial fibrillation, atrial flutter, and other arrhythmias); and 

(c) including more granular phenotypes in the coding system (e.g., type 1 diabetes with 

ketoacidosis, which has a parent phenotype of type 1 diabetes) (16). The development of 

parent hierarchical phenotypes included the creation of phenotypes not present in the ICD9 

billing hierarchy, such as inflammatory bowel disease as the parent phenotype for Crohn’s 

disease and ulcerative colitis. The example in Figure 3 is of the current hierarchy (version 

1.2, downloadable from http://phewascatalog.org). Versions of this hierarchical code 

grouping have been used for many PheWASs, including those involving children (51, 52) 

and adults (4, 11, 12, 16–18, 48, 53, 67, 70), for subtyping disease (see below) (21), and for 

other uses (84).

PheWASs can also be performed using raw, ungrouped ICD codes. Based on studies at the 

Marshfield Clinic, Hebbring et al. (28) published the second PheWAS, using data from the 

Personalized Medicine Research Project’s EHR-linked biobank to performed a PheWAS on 

HLA-DRB1*1501, a variant also tested in the first PheWAS. This study used raw ICD9 

codes and ICD9 codes grouped into their natural three-digit groupings (e.g., 250.01 → 250). 

Their results replicated known associations, validated another association suggested in the 

first PheWAS (erythematous conditions, as mentioned above), and provided evidence that 

the approach is transportable.

Neuraz et al. (53) at the Hôpital Européen Georges-Pompidou mapped ICD10 codes to phe-

codes to correlate thiopurine methyltransferase (TPMT) activity with phenotypes in patients 

with inflammatory bowel disease, noting that those with increased TPMT activity were more 

likely to have outcomes associated with inadequate treatment with thiopurine 

immunosuppressants. They found that mapping ICD10 codes to the original phecode 

groupings, via an intermediate step of mapping ICD10 to ICD9 codes, yielded more 

informative results compared with using the “natural” ICD10 groupings.

Pathak et al. (57) demonstrated another method of grouping ICD9 codes for a PheWAS—the 

Agency for Healthcare Research and Quality’s Clinical Classifications Software (CCS) (9). 

They leveraged semantic web technologies to identify patients matching known eMERGE 

case/control phenotype definitions and then mapped ICD9 codes to 285 mutually exclusive 

diagnoses and 231 procedure categories. CCS supports both single-level groupings and 727 

multilevel hierarchical groupings. The CCS code mappings aggregate at higher levels than 
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phecodes, which results in more general child concepts. For example, although there are 

separate phecodes for type 1 and type 2 diabetes, CCS groups these codes together under 3.2 

(diabetes mellitus without complication) and 3.3 (diabetes mellitus with complications). 

Several common diseases that are represented among phecodes (e.g., gastroesophageal 

reflux disease) are grouped into nonspecific CCS groupings (e.g., other esophageal 

disorders).

Studies have demonstrated that requiring multiple instances of a diagnosis code on different 

days (because a given billing code can occur multiple times during the same visit, for 

instance, to pay for both a visit and a laboratory test) improved the precision of the 

phenotypes in PheWASs. In an analysis of ten diseases, using two or more ICD codes (billed 

on different days) improved the average positive predictive value from 0.71 to 0.84 (80). 

These results echo findings implicit in several phenotype algorithms that use ICD code 

counts as a feature [e.g., for Crohn’s disease (66), peripheral artery disease, and RA (38)], 

and other research studies on administrative data have also implemented such code count 

thresholds. As a result, most PheWAS analyses have required two or three of the matching 

ICD codes within a code grouping (i.e., a phecode) to be considered a case for that 

phenotype. In this approach, individuals with fewer than the target number of codes for a 

given phenotype are considered neither a case nor a control and thus are excluded from the 

association test.

A systematic validation of the PheWAS method to replicate known associations tested all 

known GWAS-discovered associations that were reported in the NHGRI GWAS catalog at 

the time (16). This PheWAS of 3,141 SNPs in 13,835 individuals of European ancestry 

replicated 210 of 751 (28%) known SNP-disease associations, including 66% (51 of 77) of 

the associations for which the analysis was adequately powered (Figure 4). Using a 

reference standard derived from phenotypes reported in the NHGRI GWAS catalog, the area 

under the receiver operator characteristic curve for the PheWAS approach was 0.83.

PheWASs can be implemented using billing codes in several ways. The original PheWAS 

was performed using a Perl program, although this is no longer supported in favor of a 

package for the R statistical language, which can support a variety of different phenotypes, 

both continuous and categorical independent variables (e.g., for PheWASs of laboratory 

values and other nongenetic input), more advanced statistical approaches, and graphical 

outputs (4). The mappings of billing codes to phecodes and the R PheWAS package are 

available at http://phewascatalog.org. The R PheWAS package can generate cases and 

controls for PheWAS phenotypes according to prior published code mappings and can also 

support alternative ones, and users can specify their own code count threshold to instantiate 

cases (e.g., requiring three matching codes on different days to be a case).

PheWAS-View (60) and PhenoGram (81) are stand-alone programs that can graphically 

represent PheWAS results for given genetic variants and along chromosomal ideograms, 

respectively. The R PheWAS package also enables some simple graphical displays of results. 

Additionally, standard genetic analysis tools such as PLINK and PLATO also support the 

testing of multiple phenotypes against genotypes (24, 63).
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DISCOVERIES USING PHENOME-WIDE ASSOCIATION STUDIES

Early PheWAS analyses were primarily designed not to reveal new findings but to develop 

the methodology and validate the approach. In the process of developing methods, several 

studies noted new associations at nonsignificant thresholds; statistical challenges in analysis 

of PheWAS data are discussed below. More recently, larger PheWASs have yielded new 

discoveries. The PheWAS examining known NHGRI GWAS catalog variants identified 63 

new associations surpassing a false discovery rate of <0.1; 6 of 7 were replicated with a 

separate EHR-linked data set using physician-validated natural language processing–based 

phenotype algorithms (16). Novel associations included interferon regulatory factor 4 (IRF4) 

variants with actinic keratosis (p = 4.1 × 10−26), telomerase reverse transcriptase (TERT) 

variants with seborrheic keratosis (p = 1.6 × 10−7), and IRF4 and tyrosinase (TYR) variants 

with nonmelanoma skin cancers (p < 3 × 10−10). This PheWAS also made it clear that IRF4 
is associated with multiple phenotypes associated with skin pigmentation (Figure 5). A 

recent analysis replicated these associations with actinic keratosis and extended the study 

with a full body skin examination (30). Adjusting the analysis for pigmentation suggested a 

pleiotropic effect of IRF4, TYR, and melanocortin 1 receptor (MC1R) on both pigmentation 

and processes that lead to actinic keratosis, a precancerous skin lesion.

Most PheWASs have been performed using common genetic variants. Ye et al. (85) 

performed a PheWAS on stop-gain and stop-loss variants, identifying a nonsense variant in 

age-related maculopathy susceptibility 2 (ARMS2; rs2736911) associated with age-related 

macular degeneration. A large study of 2,476 variants in pediatric populations replicated 

several known associations and identified new associations between variants near NEDD4 
family–interacting protein 1 (NDFIP1) and mental retardation, between phospholipase C–
like 1 (PLCL1) and developmental delays, and between a cluster of SNPs in the interleukin 
5 (IL5)–IL13 region and eosinophilic esophagitis (51). Other new discoveries have been 

made in conjunction with GWASs and through observational cohorts (both discussed in 

more detail below).

Simonti et al. (71) used the PheWAS method to explore the phenotypic influence of 

Neandertal admixture in modern humans. The authors tested alleles derived from a 

Neandertal lineage in 28,416 adults and found associations with neurologic, psychiatric, 

immunologic, and dermatologic phenotypes. Individual Neandertal alleles were associated 

with hypercoagulable states and tobacco use. In addition to performing individual SNP 

association tests, this study explored the aggregate influence of Neandertal alleles on diverse 

phenotypes using mixed linear models, demonstrating associations with depression and 

actinic keratosis. Overall, Neandertal alleles were associated with more neurologic and 

psychiatric phenotypes and fewer digestive phenotypes than randomly chosen SNPs. This 

study highlights unexpected use of clinically annotated data sets to investigate basic science 

questions—in this case, evolutionary biology.
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USING PHENOME-WIDE ASSOCIATON STUDIES IN CONJUNCTION WITH 

GENOME-WIDE ASSOCIATION STUDIES

One use of the PheWAS method is to better characterize genetic variants discovered via a 

GWAS for a given trait or disease. Along these lines, investigators performed a GWAS of 

cardiac conduction in heart-healthy individuals and then analyzed 23 variants associated 

with cardiac conduction duration using the PheWAS method (67). This PheWAS 

demonstrated that SNPs in the sodium channel, voltage gated, type X alpha subunit 
(SCN10A) gene also predict future development of atrial fibrillation. A time-to-event 

analysis with a Cox proportional hazards model verified this finding in the original, heart-

healthy population. Shameer et al. (70) performed a GWAS of platelet count and size, noting 

that these genetic variants had pleiotropic associations with myocardial infarction, 

autoimmune diseases, and hematologic disorders. Similarly, PheWASs have been used to 

confirm GWAS results for hypothyroidism (17) and herpes zoster (13). Table 2 summarizes 

these associations and their findings.

Before 2014, many studies had identified associations between intronic variants in the fat 
mass and obesity associated (FTO) gene and obesity, which is also associated with type 2 

diabetes. Cronin et al. (11) used a PheWAS to investigate exonic and intronic FTO variants. 

Only SNPs in linkage disequilibrium with the known intronic obesity-associated SNP were 

associated with obesity; other variants had weak associations with non-obesity-related traits. 

Conclusive studies published in 2014 and 2015 demonstrated that the presence of these 

intronic variants was associated with obesity via regulation of Iroquois homeobox 3 (IRX3) 

and IRX5, not via a change in function in FTO itself (7, 72).

USING PHENOME-WIDE ASSOCIATION STUDIES TO DEFINE 

COMORBIDITIES AND PRECISION SUBSETS OF DISEASE

Phenome-wide analyses of EHR data are not limited to using genetic data as the input 

function. The availability of a curated human phenome enables PheWASs to identify 

comorbidities associated with a given trait or disease (1, 21), to identify associations with 

laboratory results (39, 53, 75, 77), to identify subtypes of diseases using the PheWAS as a 

vector of defined comorbidities (21), and to enable population-based health-service-type 

research.

The ability to rapidly and comprehensively characterize individuals’ disease profiles over 

time enables rapid characterization of a population for potential subtypes of disease. Doshi-

Velez et al. (21) at Harvard Medical School found differential comorbidity landscapes 

among autism spectrum disorder patients. Repeating this process at Vanderbilt identified the 

same subgroups of autism spectrum patients, as represented in Figure 6.

PheWASs may also be used to explore the relationship between traits and clinical outcomes. 

Boland et al. (1) at Columbia University used a PheWAS method to find comorbid 

conditions associated with periodontal disease, noting associations with diabetes, 

hypertension, and hypercholesterolemia. This group later performed a PheWAS with birth 

month as the independent variable and analyzed for subsequent development of diseases, 

Denny et al. Page 9

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2017 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



finding that the lifetime disease risk of 55 diseases was affected by birth month. Liao et al. 

(39) used a PheWAS to investigate associations with autoantibodies. Warner & Alterovitz 

(75) applied the PheWAS method to discover specific ranges of white blood cell counts that 

were correlated with specific diseases. Other studies by Warner and colleagues noted 

diseases predicting longer lengths of stay (77) and treatment-related complications of 

multiple myeloma (76).

In one experiment showing genetic differences between disease subclasses, Li et al. (37) 

used topological analyses of diverse clinical comorbidities (using CCS codes) of type 2 

diabetes patients to identify three distinct groups of diabetic patients. One subtype clustered 

the commonly associated type 2 diabetes complications of nephropathy and retinopathy, 

whereas the other two contained malignancies and cardiovascular disease, among other 

diseases. Importantly, they identified distinct SNPs and genes associated with each disease 

subtype. Such results would need to be replicated but provide an important demonstration 

that genetic risk could suggest future comorbid disease risk or define new disease subtypes 

that could lead to personalized treatment and monitoring.

PHENOME-WIDE ASSOCIATION STUDIES MAY PREDICT APPROPRIATE 

MEDICATION AND ADVERSE DRUG REACTIONS

The cost of generating new therapeutics has risen dramatically over the past 60 years, with 

each new drug costing approximately 80 times as much in 2010 as it did in 1960, in 

inflation-adjusted terms (69). Thus, the promise of high-throughput computational 

approaches to drug discovery and repurposing is attractive.

A growing body of evidence suggests that genetic association data for a given disease may 

predict drug targets for that disease. Sanseau et al. (68) found that 15.6% of genes identified 

in GWASs are existing drug targets (compared with 5.7% of the genome as a whole). In 

support of this finding, a multiethnic GWAS of 103,638 cases and controls for RA noted 101 

risk loci; these loci identified 18 of 27 current RA drug target genes directly or via protein-

protein interactions and identified three approved cancer medications that may be active 

against RA (56).

Existing evidence for currently marketed drugs further suggests the validity of using genetic 

variants (especially loss-of-function variants) to predict effective drug targets. Perhaps the 

best known example of this is proprotein convertase subtilisin/kexin type 9 (PCSK9). Loss-

of-function variants in PCSK9 dramatically reduce low-density lipoprotein cholesterol and 

coronary disease (8), and medications inhibiting PCSK9 that were developed after these 

genetic studies have proven very effective at reducing low-density lipoprotein cholesterol 

and recently won regulatory approval. Similar studies have shown that ezetimibe, via loss-

of-function variants in its target Niemann-Pick C1–like 1 (NPC1L1), should also reduce the 

risk of coronary disease (50). A randomized clinical trial recently validated this association 

(3).

Thus, evidence suggests that PheWASs may be able to identify disease indications and 

possible adverse drug effects for a target gene (e.g., one for which an agonist or inhibitor has 
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been developed). As a proof of concept, Diogo et al. (20) sequenced candidate immunogenes 

to discover variants predisposing to RA, identifying loss-of-function variants in tyrosine 
kinase 2 (TYK2) associated with RA. The authors then studied these loss-of-function 

variants in 29,377 individuals via a PheWAS, replicating protective associations with RA. 

Potential side effects of TYK2 inhibition could be identified by phenotypes whose risk was 

increased by these variants. The strongest risk phenotype was pneumonia (odds ratio = 1.54, 

p = 0.004), which was not significant but nonetheless could represent a side effect of TYK2 
inhibition.

In a broad-scale test of the potential for PheWASs to uncover drug indications, Rastegar-

Mojarad et al. (65) evaluated the online PheWAS catalog (16) for medications that could 

potentially be repurposed. They used DrugBank to link genes from drug targets to the genes 

studied in the PheWAS catalog, then looked for co-occurrence between the drug and disease 

in MEDLINE abstracts and clinical trial data. By permutation analysis, they found that the 

PheWAS results significantly enhanced the probability of finding MEDLINE evidence for 

the indication. Overall, they identified 127 known drug-indication pairs and 2,583 strongly 

supported drug-indication pairs, significantly more than were found in the NHGRI GWAS 

catalog using similar methods.

PHENOME-WIDE ASSOCIATION STUDIES USING NON–ELECTRONIC 

HEALTH RECORD PHENOTYPES

The PheWAS methodology of simultaneously testing many phenotypes for individual SNPs 

has also been applied to non-EHR-based, population-based studies with predefined 

phenotypes. The first such framework and pipeline to leverage research data for a PheWAS 

was in the Population Architecture Using Genomics and Epidemiology (PAGE) network, 

which comprises diverse populations collected from research cohorts with research-collected 

phenotypes (59). Pendergrass et al. (58) later studied more than 70,061 individuals across 

the PAGE network using 4,706 phenotypes. They noted 33 novel phenotypes at p < 0.01 in 

two or more PAGE sites. Other studies have looked at mitochondrial SNPs (46), human 

immunodeficiency virus (HIV) clinical trial data (47), and multiethnic populations within 

the National Health and Nutrition Examination Survey (NHANES) (25). Collectively, these 

studies have shown the value of the systematic analysis of research-collected data to 

discover novel associations and better characterize existing ones.

Mendelian randomization is an approach by which genetic variants are used as an instrument 

variable to test whether an association between an exposure or trait and an outcome is causal 

or not. For example, this approach has demonstrated that low-density lipoprotein levels are 

causally associated with cardiovascular disease, whereas high-density lipoprotein levels are 

likely not causal. Millard et al. (45) used a PheWAS approach as a modality for performing 

Mendelian randomization among phenotypes potentially associated with body mass index 

(BMI). They evaluated the association of 172 phenotypic outcomes from an observational 

cohort with a BMI genetic risk score and found that 21 of the 172 (12%) were associated 

with the genetic BMI risk at p < 0.05. Among the strongest associations were lipid levels 

and blood pressure, validating that high BMI is indeed causal for these outcomes.
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PheWASs using EHR and non-EHR research data highlight both advantages and 

disadvantages of each approach. Research data are often systematically collected, typically 

at prescribed intervals, from the population. The protocols for obtaining laboratory 

measurements, phenotype information, and disease definitions are standardized across sites, 

which is not true of EHR data. Despite these quality differences, research studies using EHR 

data consistently align with those from traditional research studies, as detailed above, 

including through phenome-wide approaches. A disadvantage of research phenotypes is that 

they are often limited to those considered of value to the research questions being asked. 

Thus, phenomes explored in research studies are often not as broad or as balanced as those 

collected via EHRs. Additionally, although EHR data are often not generated at regularly 

scheduled intervals, the frequency of contact in health care settings is often greater, and the 

number of observations may be much greater. For example, it would not be unusual for a 

single patient’s EHR to include hundreds or thousands of blood pressure measurements—far 

more than would be expected for a participant in a typical prospective research study. 

Finally, research studies may explore measurements (e.g., skin fold thickness), phenotypes 

(e.g., hair color), and analytes (e.g., trans fatty acid levels) not routinely acquired for EHRs. 

However, EHRs do routinely include robust and expensive testing that is not feasible except 

in the costliest of research studies.

Given the complementary nature of EHR and research-collected data—where a weakness in 

one approach is compensated by a strength in the other—one ought not consider these 

approaches to data collection mutually exclusive. Indeed, future studies, such as those 

envisioned with the US Precision Medicine Initiative Cohort Program, will likely 

incorporate both routine collection of EHR data and systematic collection of participant-

provided research data.

CHALLENGES AND LIMITATIONS FOR PHENOME-WIDE ASSOCIATION 

STUDIES

PheWAS approaches are limited by several challenges. One of the biggest is achieving 

statistical significance given the large number of multiple hypotheses tested, especially when 

many genetic variants are tested. Although the number of phenotypes is relatively small 

compared with the number of possible genotypes tested in a typical GWAS, the Bonferroni 

correction grows with respect to the number of phenotypes (on the order of 103) × genotypes 

(on the order of 106) tested. Using less aggregated code systems (such as raw ICD codes) 

produces even more phenotypes, although the increase is typically less than a factor of 10. 

However, just as many genotypes are in linkage disequilibrium and thus not truly 

independent, many phenotypes are highly correlated. Taking this lack of independence into 

consideration may ease overly stringent correction thresholds. To this end, we must attain a 

deeper understanding of the true number of independent phenotypes. Methods such as 

principal component analysis have been used to discover the size of the phenotype space, but 

more work is required (11).

Another challenge (and opportunity) is to develop methods that can distinguish 

pseudopleiotropy from true pleiotropy. Pseudopleiotropy can be defined as differences along 
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a causal pathway, such as intronic FTO variants associating with type 2 diabetes via their 

effect on obesity (11) or a SNP influencing lung cancer and chronic obstructive pulmonary 

disease via its effect on smoking behavior. In these situations, PheWASs have a distinct 

advantage over traditional GWASs in that multiple phenotypes can be tested simultaneously 

in the same population and then mutually adjusted for in order to identify true independent 

associations. This process is analogous to that used to interpret GWAS data in which SNPs 

may be tested for independence within a linkage disequilibrium block. Tests for 

independence have been conducted in prior PheWAS investigations to separate signals that 

were truly pleiotropic from those sharing clinical comorbidity (16, 17).

Another challenge is the accuracy of the phenotypes derived via PheWASs, especially for 

EHR data. Much prior work using EHR data has used purpose-defined and validated 

phenotyping algorithms; the PheWAS approach uses approximate methods that will 

necessarily vary in their precision. Combining multiple data sources and further refinements 

in the applied methods should improve performance (80), although this hypothesis has not 

been tested on a broad scale.

FUTURE DIRECTIONS

To date, PheWAS methods have been deployed primarily using billing code data. However, 

other rich clinical data are contained within EHRs, including laboratory tests, reports and 

imaging studies, and narrative documents such as clinical notes. A brief survey of the nearly 

215,000 individuals in BioVU shows that the average person has 94 ICD9 codes but 132 

clinical notes, 601 drug references, 596 laboratory tests, and 10 radiographic tests over a 

mean follow-up period of 5.7 years. A total of 5,948 distinct lab tests are included in BioVU. 

Thus, it is evident that a richer EHR phenome is available for investigation than has been 

explored. Combining these elements from EHR systems could prove highly informative by 

providing insights into the pathology of phenotypes and allowing the dissection of 

pleiotropy and pseudopleiotropy. Indeed, detailed results from expensive testing, such as 

imaging tests and cardiovascular procedures, although collected nonrandomly, provide an 

exciting modality to expand the types of information available for research.

Efforts to utilize greater portions of EHRs have been undertaken. In the first demonstration 

of the value of EHR text data, Hebbring et al. (27) identified 23,384 one- to four-word 

phrases occurring in clinical narratives that matched to medical concepts in the UMLS. In 

this approach, which they called a TextWAS, they replicated known associations for five 

SNPs with similar performance to using ICD9 codes for these diseases. Their approach 

highlighted certain other possible phenotypes seen via narratives that have not been part of 

prior PheWAS analyses, such as medications (e.g., Visudyne, a drug used to treat age-related 

macular degeneration, is associated with rs1061170, an age-related macular degeneration 

risk SNP). However, their work also highlights some of the remaining challenges of using 

text data, including difficulties related to identifying controls, a lack of term specificity, and 

textual ambiguity. For example, certain top-ranked text strings lacked clinical specificity, 

such as “of atrial” for rs220733 (associated with atrial fibrillation) and “spondylitis” for 

rs9501572 (associated with ankylosing spondylitis). Use of natural language processing 
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tools to map text to concepts and incorporate negation detection and section tagging will 

ameliorate some of these concerns, but much work remains to be done.

The best results will likely come from combining multiple modalities of information into a 

single phenomic system. For example, a highly accurate algorithm for type 2 diabetes 

includes billing codes, laboratory results, and medication data (35), and resources have been 

created that link medications to their diseases (78). Similar resources do not yet exist for 

laboratory data and the logic necessary to link them. However, the systematic combination 

of data classes and their logic likely will not prove trivial. For example, although a fasting 

glucose exceeding 126 mg/dL may be part of the common diabetes definition, most fasting 

blood glucose values included in EHRs may not truly be fasting.

CONCLUSIONS

Numerous studies have demonstrated the value of using EHR data for genomic research. An 

outgrowth of research on this dense clinical data set was the observation that such data allow 

exploration of diverse phenotypes through phenomic scans, which have been fruitful in 

discovering new associations and differentiating between genetic pleiotropy and clinical 

comorbidity. The key use of PheWASs is investigating genetic variants of interest, derived 

either from another genomic study or through primary genomic investigation (e.g., 

cataloging the impact of nonsense variants). Such investigations hold promise for 

accelerating drug discovery. In addition, investigations such as PheWASs have opened up the 

possibility of subdividing the phenome, leading to a more nuanced and genetically informed 

classification of disease.

Goals such as disease redefinition and drug discovery are among those envisioned for the US 

Precision Medicine Initiative Cohort Program. This program will merge longitudinal EHR 

data with participant-generated research data collection, opening up new possibilities for 

joint phenomic approaches and enabling PheWASs on much larger populations than has 

heretofore been possible.

Currently, the disease and trait phenome has been the most explored. However, EHRs 

contain many more rich traits, including signs and symptoms from narrative documents, 

medication treatments, laboratory results, and image-defined traits. These phenotypes may 

form more elemental components of diseases than our current syndrome-oriented disease 

classifications, which are rooted in millennia of clinical observation.
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Figure 1. 
Genome-wide association studies (GWASs) versus phenome-wide association studies 

(PheWASs). Whereas GWASs usually study a single target phenotype across many 

genotypes (usually more than 500,000), PheWASs start with a single target genotype (or 

other independent variable) and analyze many phenotypes (usually more than 1,000). 

Adapted with permission from Reference 16 with permission from Nature Biotechnology.
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Figure 2. 
Phenome-wide association studies (PheWASs). A PheWAS begins with identification of a 

genetic variant of interest, such as a single-nucleotide polymorphism (SNP). For a PheWAS 

using electronic health records (EHRs), phenotypes are then extracted, and transformations 

are often made to map raw EHR data to defined cases and controls for analysis. A typical 

transformation would take ~14,000 diagnostic billing codes and identify ~1,600 distinct case 

phenotypes, each matched to a control group. A PheWAS analysis is then performed to test 

for associations between the SNP and each phenotype, using typical statistical genetics 

methods.
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Figure 3. 
Phecode mappings of codes from the ninth edition of the International Classification of 

Diseases (ICD9). In this example, the individual has five unique ICD9 codes that map to two 

phenome-wide association study (PheWAS) phecodes. The circled numbers indicate the 

number of occurrences of each code in the individual’s electronic health record (EHR). 

Typically, a code must be billed two or three times in order to be considered a case for the 

phecode.
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Figure 4. 
Replication of known single-nucleotide polymorphism (SNP)–phenotype associations by a 

phenome-wide association study (PheWAS). Each point represents a distinct SNP tested for 

the phenotype indicated. The numbers in parentheses represent the sample size within the 

PheWAS data set. The vertical blue line represents p = 0.05. Adapted from Reference 16 

with permission from Nature Biotechnology.
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Figure 5. 
A phenotype-wide association study (PheWAS) plot of rs12203592 in IRF4. The horizontal 

red line indicates a Bonferroni correction for the number of phenotypes tested in this 

PheWAS (p = 0.05/1,358 = 3.7 × 10−5); the horizontal blue line indicates p = 0.05. The 

analysis shows that this single-nucleotide polymorphism is associated with several 

phenotypes related to sun exposure, such as actinic keratosis, basal cell carcinomas, 

osteopenia, and solar dermatitis (sunburns); these were new discoveries in this PheWAS. 

Figure drawn using data derived from Reference 16 with permission from Nature 
Biotechnology.
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Figure 6. 
Clustering of autism spectrum disorders (ASDs) based on phenome-wide association study 

(PheWAS) comorbidities in a Vanderbilt study. This study used the approach applied in 

Reference 21 to identify different subpopulations of ASD patients by their comorbidities. 

Unsupervised hierarchical clustering was performed on all individuals identified as having 

an ASD. The five identified clusters are represented by the types of codes found in each 

cluster. For example, cluster 2 identifies 10.2% of patients with an ASD, and nearly all of 

these individuals had a psychiatric phecode. In cluster 3, 80% of the individuals had a 

seizure phecode.
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Table 2

Phenome-wide association studies (PheWASs) used as an adjunct to genome-wide association studies 

(GWASs)

Study GWAS phenotype GWAS-identified loci PheWAS finding from GWAS loci

Denny et al. 2011 (17) Hypothyroidism FOXE1 Hypothyroidism, Hashimoto’s 
thyroiditis, goiter

Denny et al. 2013 (16) NHGRI GWAS catalog associations 
(numerous)

3,141 SNPs 63 novel results, including actinic 
keratosis

Ritchie et al. 2013 (67) QRS duration in normal hearts SCN10A (and other loci) SCN10A also associated with atrial 
fibrillation; other loci not

Shameer et al. 2014 
(70)

Platelet count and volume 5 regions influencing count and 
8 influencing volume

Myocardial infarction, autoimmune 
disorders, hematologic disorders

Karol et al. 2015 (33) Steroid-associated osteonecrosis GRIN3A Several ischemic vascular phenotypes

Namjou et al. 2015 
(52)

Liver function tests 5 loci, including UGT1A and 
TA7

Suggestive association between TA7 
and cerebral ischemia

Crosslin et al. 2015 
(12)

Herpes zoster HCP5 Herpes zoster and suggestive 
associations with other inflammatory 
diseases

Abbreviations: NHGRI, National Human Genome Research Institute; SNP, single-nucleotide polymorphism.
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