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Abstract

Objective—The combination of phenomic data from electronic health records (EHR) and clinical 

data repositories with dense biological data has enabled genomic and pharmacogenomic discovery, 

a first step toward precision medicine. Computational methods for the identification of clinical 

phenotypes from EHR data will advance our understanding of disease risk and drug response, and 

support the practice of precision medicine on a national scale.

Methods—Based on our experience within three national research networks, we summarize the 

broad approaches to clinical phenotyping and highlight the important role of these networks in the 

progression of high-throughput phenotyping and precision medicine. We provide supporting 

literature in the form of a non-systematic review.

Results—The practice of clinical phenotyping is evolving to meet the growing demand for 

scalable, portable, and data driven methods and tools. The resources required for traditional 

phenotyping algorithms from expert defined rules are significant. In contrast, machine learning 

approaches that rely on data patterns will require fewer clinical domain experts and resources.

Conclusions—Machine learning approaches that generate phenotype definitions from patient 

features and clinical profiles will result in truly computational phenotypes, derived from data 

rather than experts. Research networks and phenotype developers should cooperate to develop 
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methods, collaboration platforms, and data standards that will enable computational phenotyping 

and truly modernize biomedical research and precision medicine.
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Machine learning; Clinical phenotyping; Electronic health records; Networked research; Precision 
medicine

1. Introduction

The national Precision Medicine Initiative aims to enroll one million members in a national 

cohort that will integrate data from biospecimens, sensor and mobile technologies, and 

health-care, largely from electronic health record (EHR) data, to advance biomedical 

discovery and improve health [1]. The realization of this vision will require efficient and 

effective methods to convert data from EHRs into specific and reliable phenotype 

characterizations that can be used to predict an individual’s risk of disease or response to 

drug therapy.

Phenotypes are the measurable biological, behavioral and clinical markers of a condition or 

disease. The process of deriving research-grade phenotypes from clinical data using 

computer-executable algorithms is called computational phenotyping (phenotyping for 

short) [2]. Phenotyping includes a range of approaches from finding a phenotype using 

expert-derived rules and those phenotypes emerging from novel computational methods that 

potentially represent new clinical entities. The widespread adoption of EHRs will increase 

the reliance on phenotyping for a number of activities, including genomic studies of disease 

and drug response, clinical predictive modeling, pragmatic clinical trials, and healthcare 

quality measurement. Current methods face bottlenecks for development, implementation, 

sharability, and the ability to derive novel, not-foreseen findings. We provide a survey of the 

approaches to computational phenotyping and challenges experienced by several national 

research networks with which we are affiliated, and provide supporting literature in the form 

of a non-systematic review. The aim of this paper is to provide a summary of the approaches 

and tools that clinical research networks are using to realize the scale of high-throughput 

computational phenotyping. Based on the common challenges faced by these networks, we 

suggest cultural change and resources that will be needed to support computational 

phenotyping on a grand scale and advance data-driven precision medicine research.

2. National networks and phenotyping activity

A number of national research and public health surveillance networks have leveraged data 

from EHRs for defining conditions and risk. The Electronic Medical Records & Genomics 

(eMERGE) Network, formed in 2007 and arguably the pioneer of computational 

phenotyping, has investigated more than 40 phenotypes for genomic studies using 

algorithms that combine billing codes, medication data, laboratory and test results, and 

natural language processing of clinical notes [3,4]. Sites from the Pharmacogenomics 

Research Network (PGRN) have used EHR data to identify genetic predictors of drug-

response phenotypes across multiple sites [5–7]. The Mini-Sentinel surveillance initiative, 

funded by the U.S. Food and Drug Administration, uses phenotype algorithms to define 
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conditions from administrative data from 18 national health plans to identify adverse drug 

outcomes [8–15]. In addition, provider networks use computational phenotyping to identify 

patients with particular conditions for health services or population-level research. These 

include the Health Care Systems Research Network, formerly known as the HMO Research 

Network, and the Observational Medical Outcomes Partnership (OMOP) [16], now part of 

the Observational Health Data Sciences and Informatics (OHDSI) collaborative [17].

A number of disease-specific research networks and multi-site registries have developed and 

validated EHR-based phenotype definitions for specific conditions [18,19]. In the National 

Institutes of Health’s Health Care Systems Research Collaboratory, a number of multi-site 

pragmatic clinical trial demonstration projects are using computable phenotypes for cohort 

identification, development of interventions, and study outcomes [20–22] More recently, the 

Patient Centered Outcomes Research Institute funded the National Patient-Centered Clinical 

Research Network (PCORnet) to conduct comparative effectiveness studies across 13 

Clinical Data Research Networks and 21 Patient Powered Research Networks [23]. 

Partnering institutions are expected to support up to 200 queries in the next few years, 

signifying the imminent need for high-throughput and reproducible phenotyping methods.

Although the aforementioned research networks have unique objectives and constraints, they 

share common challenges related to the use of clinical data for research, including 

heterogeneous EHR systems, a lack of standardized data, concerns about data completeness 

and inherent biases, and variation in medical diagnosis, procedures, treatments, and data 

documentation across providers, organizations, and regions. In response, several networks 

have published methodological guides for data quality assurance [24–29].

3. Evolution of phenotyping methods

Research networks by their very nature require scalable approaches that can be implemented 

quickly with reproducible performance characteristics in multiple settings and information 

systems. There are several broad classes of methods to computational phenotyping that are 

continuously improving.

The use of expert-defined rules is most widely adopted method for phenotyping, and this 

approach was used for the early phenotypes developed from the eMERGE network, such as 

type 2 diabetes [30] and cataracts [31]. This approach begins with the manual development 

of an algorithm – often using Boolean logic, scoring thresholds, or a decision tree – based on 

domain expertise. The logic is then iteratively enhanced through validation and chart review 

on EHR data. Advantages of this approach are that it yields human-interpretable algorithms, 

which can be portable to other sites [32], and the number of charts needed to review to train/

validate an algorithm can be lower. However, the effort and time for developing the 

algorithms can be significant, requiring clinical and informatics knowledge, and this 

approach cannot be used to identify phenotypes not first envisioned by a researcher.

Machine learning methods rely on data patterns to develop the phenotype definitions, and 

can reduce the effort required from clinical domain experts. Supervised learning aims to 

construct classifiers to differentiate cases (positive for the phenotype) and controls (negative 

Richesson et al. Page 3

Artif Intell Med. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the phenotype). The high level steps involve (1) characterizing patients as feature 

vectors, (2) determining the class label (case vs. control) for each patient, (3) building and 

optimizing the classifier. Typically the number of charts reviewed is higher than required for 

rule-based algorithms, a time-consuming task requiring domain experts. Chen et al. explored 

active learning as a more efficient labeling process, demonstrating reduction in the number 

of cases needed [33]. However, machine learning classification models can be difficult to 

interpret, require significant training data, and may not transfer well to other sites, as a 

model may learn features that are unique to an institution (e.g., physician name, local note 

type, or clinical unit). Yu et al. extracted clinical features from publicly-available knowledge 

sources to develop more “interpretable” machine learning algorithms that performed as well 

as or better than expert-derived algorithms [34].

Unsupervised learning provides approaches to cluster EHR data into patient groups 

corresponding to phenotypes or subtypes. Unsupervised learning does not require expert 

labels, which tremendously reduces the time needed for manual chart review. However, the 

validation of the resulting phenotypic groups is challenging, as no clear ground truth on 

those groups are given. While these methods require very large volumes of training data, 

they do not carry costs of manually labeling individuals as cases or controls. Various tensor 

factorization methods have been developed for unsupervised phenotyping [35–37]. Deep 

learning is another approach which has successfully identified patterns in clinical data 

representing distinct phenotypes [38].

Because important relevant clinical data is included in narrative clinical notes rather than 

structured data elements or standardized coding systems, natural language processing 

methods can be used to extract phenotypes from clinical notes [39,40] and to process data 

for more advanced machine learning techniques. Phenotype definitions including general 

purpose natural language processing (NLP) tools [41–43] have accelerated the widespread 

use of NLP, which is an important component of some complex phenotypes [44].

4. Toward a future of higher throughput phenotyping

The planned Precision Medicine Initiative study will require higher-throughput, more easily 

shared computational approaches than have been demonstrated to date. Scalable precision 

medicine will require clinical phenotypes that can be rapidly developed, executed in high 

volume, and easily adapted to new sites with high algorithm reliability (Fig. 1).

The vision of rapid, portable phenotyping implies that multiple providers and applications 

can reuse computational methods and definitional logic, enhanced by accessible repositories 

for phenotyping logic and methods. While individual research networks undoubtedly have 

infrastructure for sharing, national repositories for definitions and methods will enable 

cooperation across networks. The Phenotype Knowledge Base (PheKB) is one such 

knowledge resource for phenotyping methods, which hosts algorithms from eMERGE, 

PCORnet, PGRN, and other sites and networks [45]. Many algorithms on PheKB have been 

validated by multiple sites [28].
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Several tools have been developed to simplify “EHR-wide” analyses. These include 

groupings of billing codes into meaningful phenotypes, such as done by the Agency for 

Healthcare Research and Quality’s Clinical Classifications Software [46,47] or the 

phenome-wide association study (PheWAS) tools [3,48–50]. PheWAS approaches have been 

used for a number of genomics and clinical studies, including recent studying leveraging 

text. Data driven approaches leveraging PheWAS have also elucidated sub-classifications of 

phenotypes, such as for rheumatoid arthritis and autism [51]. Other resources, such as 

mapping medications to their indications or adverse effects [52,53], offer aids to building 

algorithms. Mo et al. offer desiderata for computable representations of EHR-driven 

phenotype algorithms [54].

The implementation of phenotypes (in multisite clinical or research networks) can be 

accelerated by using harmonized clinical data. One approach is the use of a common data 
model (CDM) to create a common set of definitions, formats, and allowable values for data 

elements from heterogeneous EHRs. A number of different CDMs are used by different 

research networks for different purposes, including the OMOP CDM [55] adopted by 

OHDSI [17], the Mini-sentinel data model [56], the PCORnet CDM [57]. Other clinical data 

models include the Health Level Seven (HL7) virtual medical record (vMR) model for 

clinical decision support [58,59], OpenEHR Archetypes [60,61], and the HL7 Detailed 

Clinical Models [62,63]. An important consideration is that most CDMs are limited to the 

types of data they include, and unstructured or ad hoc structured data types are often 

excluded. Thus, many of the phenotype algorithms executed within eMERGE and 

potentially as a part of precision medicine are not fully addressable via existing CDMs. 

Novel combinations that facilitate the use of a CDM in tandem with custom applications of 

NLP or other cohort selection tools will be needed.

For rapid authoring, the Phenotype Execution Modeling Architecture (PhEMA) project is a 

phenotyping algorithm authoring and execution platform [64] designed to streamline the 

process for developing computer-readable, rule-based phenotyping algorithms that can be 

shared as executable representations between different sites. By creating a common 

representation model for phenotypes (such as the Quality Data Model from the National 

Quality Forum), PhEMA could enable a common language to be used against a variety of 

CDMs and EHR systems [65]. Other tests of computable phenotyping approaches have 

leveraged the Konstanz Information Miner (KNIME) [66,67] or Drools [68]. The recent 

desiderata recommend use of a common data model, and the use standardized terminologies 

and ontologies, and facilitate reuse of value sets [54].

5. Discussion

This survey represents the opinions of authors based upon our experience with 

computational phenotyping within several national research networks, and does not 

represent a systematic review or national consensus. However, the research networks we 

represent are leveraging deep multidisciplinary expertise and collective resources to develop 

new methods and tools for computational phenotyping across heterogeneous organizations, 

data systems, and populations. These methods promise to significantly advance the 

identification of disease cohorts and the quantification of an individual’s risk for disease or 
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drug toxicity, and provide path for rapid translational of research findings in healthcare 

delivery.

The number of national initiatives and activities focused on the use of clinical data is 

promising, but effective realization of precision medicine on a grand scale will require 

higher-throughput computational phenotyping. Machine learning approaches have great 

potential to transform our understanding of disease by allowing phenotypes to be defined by 

what patients present with, rather than by what research experts know or believe. This will 

result in truly computational phenotypes, derived from data rather than experts. We might 

never get to full confidence in the output of a purely machine-generated phenotype, but a 

goal instead could be to get to a well characterized phenotype, complete with a confidence 

level or interval, based on the data availability and quality, and the specific use case where it 

can be applied. New tools will facilitate faster development and implementation of 

computational phenotyping and lead to more nuanced understanding of “phenotypes.” [69] 

The latter is a primary goal of precision medicine, to achieve a deeper understanding of 

diseases and drug response that allow tailoring of therapy toward better health on the basis 

of clinical and molecular data. In the future, this goal will be enhanced with synergy and 

harmonization with phenotypes and phenotypic traits defined the biology community [70].

In parallel, national incentives for quality measurement and reporting are driving the 

development of standardized approaches for deriving research-grade phenotypes from EHR 

data to advance precision medicine. The future alignment between research phenotyping and 

quality improvement efforts will enable further efficiencies for both domains. This should 

include libraries of phenotype definitions, annotated by use case and data required, that can 

easily be discovered by implementers working in genomic research, precision medicine, or 

healthcare quality measurement. The next step – and the greater challenge – is to build a 

culture and supporting infrastructure to share the knowledge and tools that can advance all 

these efforts. Clinical research networks and phenotype developers should cooperate to 

develop methods, collaboration platforms, and data standards that will enable high-

throughput phenotyping to be implemented across millions of individuals, for a spectrum of 

use cases from personalized medicine to drug safety surveillance and population health. 

Successful synergy between clinical research networks, providers, and national initiatives 

will truly modernize computational phenotyping, biomedical research, precision medicine, 

and health outcomes.
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Fig. 1. 
The evolution of computational phenotyping methods and the key biomedical applications 

that needs high-throughput phenotyping.
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