Table 1. Physical and Chemical Properties of Investigated ROS Sensorsa.
sensor | λex [nm] | λem [nm] | concn [μM] | detected ROS | Φ [Gy–1] | Φ 4h [Gy–1] | ΔΦ%4h | cell permeable |
---|---|---|---|---|---|---|---|---|
C3C | 290 | 460 | 350 | HO• | 0.297 | 0.211 | 29 | N |
DHRh 123 | 500 | 530 | 200 | H2O2, ONOO–, NO | 0.538 | 0.307 | 43 | Y |
SOSG | 500 | 525 | 10 | 1O2 | 0.314 | 0.300 | 4.4 | N |
AMPLEX REDb | 570 | 585 | 100 | H2O2b | 1.55 | 0.697c | 55c | N |
DCFH-DA | 495 | 525 | 100 | H2O2, HO•, ROO• | 0.12 | 0.03 | 74 | Y |
APF | 485 | 515 | 10 | HO•,ClO–, ONOO– | 1.47 | 0.23 | 84 | Y |
ROS-Star 550 | 546 | 561 | 200 | HO•, O2•– | 0.12 | Y |
Φ, sensor sensitivity; Φ4h, sensitivity after 4 h; ΔΦ%4h, relative loss of sensitivity, i.e., instability. Linear regressions used to compute these data are reported in Figure S3. C3C, coumarin-3-carboxylic acid; DHRh 123, dihydrorhodamine 123; SOSG, singlet oxygen sensor green; DCFH-DA, 2′,7′-dichlorofluorescin diacetate; APF, aminophenyl fluorescein.
Interaction mediated by horseradish peroxidase (HRP).
Φ variation after 2 h only.