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Abstract
The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second

because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity

of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols

using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex prepa-

ration procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and

potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts

the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distin-

guish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation. Six independent batches were

prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of

spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input

for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with

sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers

prospects for cell identification using easily preparable silver nanoparticles.
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Introduction
Cytopathology is the histopathologic inspection of cells. Dyes,

such as hematoxylin for cell nuclei or eosin for cytoplasm, are

commonly used to stain cells with subsequent microscopic

assessment by pathologists. Complementary tools are immuno-

cytochemistry, which uses fluorescence-labeled antibodies

against cellular antigens, and flow cytometry, which combines
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several detection channels based on light scattering, absorption

and fluorescence with microfluidic flow systems.

Raman spectroscopy has been proposed as promising technique

for cell characterization and cell identification because of its

high chemical specificity under label-free and non-destructive

conditions [1,2]. Raman spectroscopy is based on inelastic light

scattering from molecular bonds. It probes the molecular vibra-

tions of all cellular biomolecules, such as nucleic acids, pro-

teins, lipids and carbohydrates and provides chemical finger-

print spectra of cells. The throughput of spontaneous Raman

spectroscopy for cell classification is limited to the range of one

cell per second by the inherently low efficiency of the inelastic

scattering process of photons and the resultant low signal inten-

sity. Compared to modern flow cytometers with a throughput of

thousands cells per second, this severely restricts the applicabil-

ity of Raman spectroscopy in this field. This limitation can be

overcome by signal-enhancement approaches including surface-

enhanced Raman scattering (SERS), resonance Raman scat-

tering, coherent anti-Stokes Raman scattering and stimulated

Raman scattering [3]. For the analysis of liquids, SERS is the

most frequently applied approach and has been used for analyte

detection in the submicromolar range [4,5]. SERS fingerprint

spectra of molecules are generated when incident light excites

localized surface plasmons on nanometer-sized metallic struc-

tures. A strong electromagnetic field is then created near the

metallic surface and enhances the Raman scattering of nearby

molecules. The plasmonic properties of SERS-active nanoparti-

cles depend on the preparation conditions, the type of metal, the

size and the shape of these nanoparticles [6-10], and their

aggregation state [11,12]. Increasing the size of nanoparticle

aggregates shifts the excitation wavelength to the near-IR

region and therefore longer excitation wavelengths can be used

for SERS measurements.

SERS was also suggested for cell identification [13,14]. While

the signal intensity is similar to that of fluorescence emission,

SERS nanoparticles do not suffer from photobleaching and

offer a high multiplex capability due to narrow band widths.

Enhancement of Raman signal of cells can be realized by

(1) various techniques of nanoparticles delivery into cells, such

as spontaneous uptake, microinjection, electroporation [15-20]

or (2) binding of antibody-functionalized nanoparticles to spe-

cific antigens [21-23]. The disadvantages of approach (1)

include the poor reproducibility due to nonspecific binding of

nanoparticles, the long time needed for nanoparticles uptake by

cells, and the heterogeneity of nanoparticles inside cells. Ap-

proach (2) is complicated because of complex protocols for

nanoparticle preparation with Raman reporters, protective shells

and antibodies. Furthermore, approach (2) cannot be consid-

ered to be label-free anymore. In the context of microbial iden-

tification, bacterial cells were lysed by sonication, and the bac-

terial lysate were mixed with nanoparticles to allow interaction

between nanoparticles and bacterial biomolecules [24]. This

gave very reproducible SERS spectra.

The current study transfers this SERS approach to distinguish

four human cancer cell lines. These cell lines are two liver

cancer cell lines (HepG2 isolated from liver tissue of a male

patient with well differentiated hepatocellular carcinoma and

SK-Hep1 received from ascetic fluid of a patient with adenocar-

cinoma of the liver), one breast cancer cell line (MCF-7 ob-

tained from a female patient) and one human pancreatic ductal

adenocarcinoma cell line (Capan-1). A protocol was developed

to disrupt the cell walls by sonication and to allow for the inter-

action of silver nanoparticles with the released cellular biomole-

cules. The measured SERS spectra from six different batches

were subjected to a support vector machine (SVM) to train clas-

sification models. The sensitivities, specificities and accuracies

of the SVM model were calculated by cross-validation schemes.

This proof-of-principle demonstrates that non-functionalized,

easy-to-prepare silver nanoparticles give reproducible SERS

spectra that can be used for the identification of human cancer

cells.

Results and Discussion
The absorption band of silver (Ag) nanoparticles corresponds to

the maximum of the plasmon resonance which is near 415 nm

(Figure 1a). Shifting the plasmon resonance of our nanoparti-

cles to the near-IR spectral region was achieved by aggregation

using potassium chloride (KCl). When nanoparticles aggregate,

they become electronically coupled, which results in a change

of the surface plasmon resonance compared to individual parti-

cles. Figure 1b shows the effect of adding KCl to Ag nanoparti-

cles on the optical absorption characteristics. The aggregated

nanoparticles have a broad absorption band that allowed for

SERS measurements with an excitation laser at 785 nm.

The size and shape of Ag nanoparticles were also analyzed by

electron microscopy. Transmission electron microscopy (TEM)

images and scanning electron microscopy (SEM) images of

silver nanoparticles are compared in Figure 2a and b. The aver-

age size of the Ag nanoparticles was determined to be around

50 nm with a high degree of polydispersity in size ranging from

10 to 100 nm. The Ag nanoparticles do not tend to aggregate to

a single specific shape after adding KCl. Instead, they form dif-

ferent shapes from spheres to rods. The cells, before and after

sonication, were mixed with Ag nanoparticles and SEM images

were recorded to better understand the diffusion of nanoparti-

cles inside the cells. Nanoparticles represented by light spots are

shown on the surface of a cell wall in Figure 2c and during

interaction with cellular biomolecules in Figure 2d.
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Figure 2: (a) Scanning electron microscopy (SEM) image of silver nanoparticles. The nanoparticles have a high degree of polydispersity in size
ranging from 10 to 100 nm with an average size close to 50 nm. (b) Transmission electron microscopy image of silver nanoparticles showing their pre-
dominantly spherical shape and polydispersity in size. (c) SEM image of intact cells mixed with nanoparticles showing the distribution of nanoparticles
on the surface of the cell. (d) SEM image of cell lysate mixed with nanoparticles showing released cellular biomolecules with nanoparticles after
disruption of cell membrane.

Figure 1: UV–vis absorption spectra of (a) silver nanoparticles with an
absorption band at 415 nm and (b) solution of silver nanoparticles and
potassium chloride. The absorption band of aggregated nanoparticles
was shifted to near infrared region.

Cellular biomolecules including nucleic acids, proteins, carbo-

hydrates and lipids are released after disruption of the cell mem-

branes and can interact with nanoparticles. The spectral bands

obtained from SERS measurements can then be assigned to bio-

molecules of cell nucleus and the cytoplasm. The raw spectra

were baseline-subtracted and normalized. Figure 3 shows the

processed mean SERS spectra and the standard deviation for

each of the four cell lines Capan-1, HepG2, MCF-7 and

Sk-Hep1. The band at 660 cm−1 is assigned to carboxylate [25].

Spectral contributions of adenine from nucleic acids and

metabolites appear at 723 and 1339 cm−1 and can be assigned to

adenine ring-breathing modes [18,26,27]. Protein vibrations

contribute to the band at 900 cm−1. The bands at 800 and

960 cm−1 can be assigned to CN stretching vibrations. Carbo-

hydrates are represented by bands in the spectral region of

1000–1100 cm−1. The bands at 1289 cm−1 and 1660 cm−1 can

be assigned to the amide III and amide I vibrational modes of

peptide bonds in proteins, respectively [18,26,28]. The band at

1450 cm−1 arises from CH2 deformation vibrations of all bio-

molecules. The bands at 2923 and 2952 cm−1 can be assigned to

CH2 and CH3 stretching vibrations of all biomolecules

[24,26,28]. The reproducibility of these spectra was tested by

measuring the SERS spectra from six batches of the four cell

lines. The small standard deviation values proved the high

reproducibility.
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Figure 3: Preprocessed mean SERS spectra and standard deviations
of the different cell lines. Labeled bands are assigned to cellular bio-
molecules including nucleic acids, proteins and carbohydrates. The
low standard deviation values (represented by the red shadow) em-
phasize the high reproducibility of the technique.

It is evident from Figure 3 that the SERS spectra of the indi-

vidual cell lines are highly similar and the cell lines cannot

easily be distinguished by univariate analysis of single bands or

band ratios. Therefore, multivariate classification was applied

for differentiation of the cell lines. Prior to multivariate classifi-

cation the data size was reduced by principal component analy-

sis (PCA). Figure 4 shows the first four principal components

(PCs) that described 89% of the variances of the data set re-

quired for cell line differentiation. PC1 loadings showed nega-

tive bands in the fingerprint range from 600 to 1200 cm−1 and

positive signals from 2800 to 3000 cm−1. The most pronounced

spectral features were (i) positive bands near 660, 900 and

2900 cm−1 in PC2 loadings, (ii) a derivative-like feature at

660 cm−1 and negative bands near 723 and 1339 cm−1 in PC3

loadings, and (iii) negative band near 660 and derivative-like

feature near 900 cm−1 in PC4 loadings. In general, we did not

notice a significant difference in the amide content inside the

four cell lines. The main differences were assigned to vibra-

tions of nucleic acids, CH2/3 from the whole cell contents and

the carboxylate moieties.

Figure 4: First four principal components used for the support vector
machine model. These loadings represent 89% of data variance be-
tween MCF-7, Capan-1, SK-Hep1 and HepG2 cell lines.

The score values of the first four PCs are plotted in Figure 5.

Based on four PCs the main variations between the four cell

lines were explained, and cells could be differentiated. Nega-

tive PC1 scores separated the spectra of the MCF-7 cell line

from the spectra of the other cell lines having positive PC1

score values. PC2, PC3 and PC4 distinguished Capan-1,

SK-Hep1 and Hep-G2.

The first four PCs were used as input for classification based on

support vector machines (SVM). The SVM model was trained

with three batches of cell lines and then tested with three differ-

ent batches of the same cell lines. This allowed for 20 different

batch permutations for validation and gave a reliable unbiased

classification model. The test was run 20 times and the sensi-

tivity, specificity and accuracy of the SVM model in each run

were calculated. Table 1 shows the number of spectra that were

classified correctly for each cell line in the 20 tests. Of 939 trial

tests of Capan-1 spectra, the SVM model was able to identify

the spectra correctly as Capan-1 cells 906 times with
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Figure 5: Score values of first four principal components of different cell lines. The four cell lines, MCF-7 (red circle), Capan-1 (blue plus sign),
SK-Hep1 (green cross) and HepG2 (black star) are distinguished based on the first four PCs.

Table 2: Mean sensitivity, specificity and accuracy values of support vector machine model for each cell line (in percentage).

cell line
Capan-1 HepG2 MCF-7 SK-Hep1

mean sensitivity % 96.5 ± 4.4 89.4 ± 10.5 100 97.8 ± 2.9
mean specificity % 96.7 ± 3.7 99.8 ± 0.5 98.8 ± 1.7 99.2 ± 1.2
accuracy % 96.7 97.1 99.1 98.8

Table 1: Results of the identification of different cell lines. The support
vector machine model (SVM) model was trained with spectra taken
from three different batches of each cell line and tested with data taken
from the remaining three batches. The SVM model was run for 20 dif-
ferent permutations.

sample cell line identified by SVM as
Capan-1 HepG2 MCF-7 SK-Hep1

Capan-1 906 6 3 24
HepG2 74 898 33 0
MCF-7 0 0 932 0
SK-Hep1 22 0 0 980

96.7% accuracy. In case of Hep-G2 cells the model was able to

correctly identify the spectra 898 times out of 1005 trials with

97.1% accuracy. The MCF-7 cell line was identified correctly

in all 932 test trials with a very high accuracy of 99.1%. The

identification of Sk-Hep1 cell line was true in 980 times out of

1002 trials with 98.8% accuracy.

Table 2 summarizes the mean values of the sensitivity, speci-

ficity and accuracy plus the deviation of each value. The highest

mean sensitivity value of 100% was obtained in the case of

MCF-7 cell line as the PC1 includes most of information about
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variations between MCF-7 cells versus Capan-1, HepG2 and

SK-Hep1 cells. The lowest sensitivity value was obtained in the

case of HepG2 cell line with 89.4%. The maximum and

minimum mean specificity values are 99.8% in case of HepG2

and 96.7% in case of Capan-1. These results confirm the ability

to detect the molecular variations between the different tumor

cell lines based on the SERS spectra of cell lysates mixed with

nanoparticles and SVM-based classification.

Conclusion
Four different human tumor cell lines, Capan-1, HepG2,

Sk-Hep1 and MCF-7, were lysed using ultrasonication and then

mixed with aggregated silver nanoparticles. The reproducibility

of SERS spectra was demonstrated by preparing six batches and

measuring them under the same conditions. The values of stan-

dard deviation, calculated for different batches, were small.

PCA was performed to reduce the size of the data and assess

variations between the four cell lines. Four PCs were used as

input to a SVM model to classify these cell lines. Leave-three-

batches-out cross validation was performed to test the stability

of the SVM model. The SVM model was able to identify the

different cell lines from each other with very high accuracy,

sensitivity and specificity. The accuracy values were 96.7%,

97.1%, 99.1% and 98.8% for identification of Capan-1, HepG2,

MCF-7 and Sk-Hep1, respectively. These values agree with

classification results based on Raman spectra [29]. Compared to

Raman spectra of intact cells, the SERS spectra of cell lysates

contain fewer bands whose intensities are enhanced. More im-

portantly, the variations in SERS spectra between different cells

are also enhanced that contribute to accurate and stable classifi-

cation.

The presented approach is a rapid, easy, efficient, highly reli-

able and specific strategy to identify and classify different

human cancer cell lines without need for complex sample prep-

aration procedures. To reduce the sample volume and measure-

ment time towards few milliseconds, and automate mixing of

solvents and acquisition of SERS spectra, this approach will be

transferred to a droplet-based microfluidic lab-on-chip device

[24]. After delivery of non-functionalized nanoparticles into

cells [20], the SERS approach can also increase the throughput

of tumor cell recognition in microfluidic chips at continuous

flow [30]. With exposure times in the millisecond range, SERS

assessment of millions of cells comes within reach in the future.

A possible scenario for screening of millions of blood cells and

enumeration of rare circulating tumor cells in blood of cancer

patients is a combination of all approaches mentioned above:

generation of droplets with single cells in a microfluidic chip,

addition of cell lysis buffer, nanoparticles and activation salt,

mixing of all solvents and collection of SERS spectra for classi-

fication.

Experimental
Nanoparticle preparation
Silver nitrate (ACS reagent, ≥99%), sodium hydroxide,

hydroxylamine hydrochloride (reagent plus, 99%) and potas-

sium chloride were purchased from Sigma–Aldrich. Distilled

water was used for all preparations. The silver nanoparticle col-

loids were synthesized according to the protocol described by

Leopold and Lendl [31]. Briefly, 1 mM silver nitrate was added

to a solution of 1.5 mM hydroxylamine hydrochloride and

3 mM sodium hydroxide. The whole mixture was stirred during

the addition of the silver nitrate. As a sign of a successful prepa-

ration the color of the solution changed from grey to yellow.

The silver colloids were then preserved in the refrigerator

at 4 °C. 1 M of KCl was prepared in distilled water. The

preparation procedure can be performed quickly and at room

temperature.

Nanoparticle characterization
Transmission electron microscopy (TEM): 5 µL of the parti-

cle dispersion were deposited on a carbon-coated 400 mesh

copper grid. After 1 min of adsorption the excess liquid was

blotted off with filter paper. Dried samples were then examined

by a JEM 1400 (JEOL, Tokyo, Japan) transmission electron

microscope.

Scanning electron microscopy (SEM): Measurements were

performed by a field emission microscope JSM-6300F (JEOL,

Tokyo, Japan). The energy of the exciting electrons was 5 keV.

Beside the detector for secondary electrons (SEI) the system is

equipped with different detector types (semiconductor and

YAG) for backscattered electrons.

Spectrophotometry: The UV–vis spectra of silver nanoparti-

cles and KCl-aggregated silver nanoparticles were measured in

the spectral range of 200–800 nm with a Jasco V-670 diode

UV–vis spectrophotometer (Hachioji, Tokyo, Japan) using

plastic cuvettes (Brand GmbH Wertheim Germany) of 1 cm

light path.

Cell cultivation
Liver cancer cell lines (HepG2 and SK-Hep1) were cultivated

in RPMI 1640 liquid medium with 20 mM HEPES, stable gluta-

mine (FG 1235, Biochrom AG, Germany), 10% fetal bovine

serum (10099-133, Life Technologies, Germany) together with

100 units/mL of penicillin and 100 µg/mL of streptomycin

(15140, Gibco®, Life Technologies GmbH, Germany). Cultiva-

tion of MCF-7 breast cancer cells was performed in RPMI 1640

with 2.0 g/L NaHCO3 (F 1215, Biochrom AG, Germany) and

40 mg/L folic acid (F7876, Sigma–Aldrich, Germany) with the

same amount of fetal bovine serum, penicillin and streptomycin

as described above for liver cells. The pancreatic cancer cell
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line Capan-1 was cultured in IMDM medium (12440-053, Life

Technologies, Germany) complemented with 20% fetal bovine

serum (10099-133, Life Technologies, Germany), 100 units/mL

of penicillin and 100 µg/mL of streptomycin (15140, Gibco®,

Life Technologies GmbH, Germany). The cells were main-

tained in an incubator at 37 °C, 90% humidity and 5% carbon

dioxide in air. 75 cm2 cell culture flasks (658170; Greiner Bio-

One GmbH, Germany) were used for cultivation of the cell

lines. Every two or three days the medium was changed until

approximately 100% confluence was reached. Cells were de-

tached from the substrate by a 0.05% of trypsin–EDTA solu-

tion (L2143; Biochrom AG, Germany) and fast frozen at

−20 °C. The final number of cells in each flask was around

107 cells/mL, which was confirmed by cell counting, using

Neubauer Chamber (0.0025 mm2; Marienfied, Germany). In

order to prove the reproducibility of our experiments six

batches of each of the four cell lines were prepared. The optical

density of different cell lines were measured using Eppendorf

Biophotometer plus. The optical density of 0.25 was correlated

to an averaged cell number of 107 cells/mL.

Cell sonication
Cells were sonicated using an ultrasonic probe system (Bran-

delin SONOPULS HD 2070) with a maximum output power of

70 W. This sonication technique helps disrupting the cell mem-

branes and allows for an interaction of released cell compo-

nents with the silver nanoparticles. The probe was inserted

inside an Eppendorf tube containing 1 mL of the cells in PBS

solution. The sonication was applied in 3 cycles of 15 s each

and 5 s break in between with a power set to 20%. The cell

lysate was then transferred to a new tube and stored until further

processing in a freezer.

Raman spectroscopy and SERS measure-
ments
SERS measurements were performed on a commercial Raman

microscopy system (Holoprobe, Kaiser Optical system, USA).

This system consists of a multi-mode diode laser with 785 nm

excitation wavelength (Invictus NIR laser), an f/1.8 spectro-

graph with a holographic transmission grating (Kaiser Optical

system, USA), and a Peltier-cooled back-illuminated deep-

depletion CCD detector (iDus420, Andor, Ireland). The micro-

scope was coupled to the Raman system with fibers of 65 µm

core diameter. A 10×/0.25 objective lens (Leica, Germany) was

used for all SERS measurements. The laser wavelength was cal-

ibrated using cyclohexane. The system was intensity calibrated

using a white light source. The laser power was fixed at 50 mW

with an acquisition time of 5 s. Each batch was lysed and

divided into eight to ten samples. 100 µL of the silver nanopar-

ticles were mixed with 100 µL KCl as aggregating agent, and

then 100 µL of cell lysate were added to the mixture with a final

ratio of 1:1:1. 200 µL solution was filled in vials that were cut

from 0.2 mL 96-well thin wall thermal cycler plates, and the

laser beam was focused on the surface of the mixture. One spec-

trum was collected from each sample. The experiments were

repeated using six batches for each cell line and the repro-

ducibility was tested by calculating the standard deviation from

the mean spectra.

Data analysis
The intensity-corrected SERS spectra were exported to Matlab

(The Mathworks, USA) and pre-processed before the evalua-

tion of the spectral classification models. The imported spectra

were corrected for the dark current and the constant voltage bias

by subtracting a smoothed dark spectrum. The resulting spectra

were corrected for the polynomial background arising from

residual excitation light using the penalized least squares-based

Whittaker smoother algorithm outlined by Eilers [32]. The

background corrected data was cropped to a low-wavenumber

region between 500 and 1800 cm−1 and a high-wavenumber

region between 2828 and 3028 cm−1. Both regions were

combined and area-normalized relative to the spectral wave-

number region. Spectral classification was performed by

support vector machines (SVM) with a linear kernel, using the

libSVM Matlab library by Chang [33]. The classification was

performed batch-wise; three batches were used to build a model

and the remaining three batches were used for testing. With six

total batches 20 different batch permutations were used for

model building and for model testing. Before performing the

SVM-based classification the dimensionality of the data set was

reduced by principal component analysis (PCA) for the three

batches, where on average the first four principal components

(PCs) describe 89% of the data variance. The classification was

performed on the score values of the first four PCs. After

training the SVM model with the score values of the training

batches the spectra of the test batches were projected onto the

four loading vectors created by the training batches, and the re-

sulting score values were used as the test set. The confusion

matrices established after testing each batch permutation were

summed up.
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