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Abstract: Single-molecule-localization-based super-resolution microscopic technologies, 
such as stochastic optical reconstruction microscopy (STORM), require lengthy runtimes. 
Compressed sensing (CS) can partially overcome this inherent disadvantage, but its effect on 
super-resolution reconstruction has not been thoroughly examined. In CS, measurement 
matrices play more important roles than reconstruction algorithms. Larger measurement 
matrices have better restricted isometry properties (RIPs). This paper proposes, analyzes, and 
compares uses of higher resolution cameras and interpolation to achieve better outcomes. 
Statistical results demonstrate that super-resolution reconstructions is significantly improved 
by interpolating low-resolution STORM raw images and using point-spread-function-based 
measurement matrices with better RIPs. The analysis of publically accessible experimental 
data confirms this conclusion. 
© 2017 Optical Society of America 

OCIS codes: (170.2520) Fluorescence microscopy; (100.6640) Superresolution; (100.3010) Image reconstruction 
techniques. 
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1. Introduction 

Optical microscopic techniques have played significant roles as tools for conducting cell 
studies. In recent years, developments in some microscopic techniques have broken the 
diffraction limit. These developments include reversible saturable optical linear fluorescence 
transitions (RESOLFT) [1], saturated structured illumination microscopy [2], stochastic 
optical reconstruction microscopy (STORM) [3,4], and (fluorescence) photoactivated 
localization microscopy ((f)PALM) [5–9]. Both STORM and (f)PALM are based on the 
imaging of sparsely distributed molecules and single-molecule localizations (SMLs). In these 
SML-based microscopic techniques, only a portion of the sparsely distributed molecules is 
imaged and localized in each raw image. Each final super-resolution image requires 
thousands of raw images [3,9,10]. Therefore, if more molecules can be identified and 
localized in each captured image, fewer raw images would be needed to generate the final 
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super-resolution image. However, in these conventional localization methods, the diffraction 
limit restricted the maximum density of fluorescent molecules in a raw image. Some recently 
developed approaches have increased this density limitation. These approaches include the 
Dominion Astrophysical Observatory stochastic optical reconstruction microscopy [11], the 
structured sparse model and Bayesian information criterion [12], and compressed sensing 
(CS) in two dimensions (2D) [13,14] and three dimensions (3D) [12,15,16]. Among these 
methods, CS can increase the maximum density of fluorescent molecules in a raw image, 
even if these fluorophores are not distributed so sparsely that their images overlap with one 
another. Moreover, CS offers many other advantages, such as quick and simple image 
acquisition and reconstruction, simple management of images, and high temporal and spatial 
resolution. 

To take full advantage of CS in SML-based microscopic techniques, one critical factor, 
namely, the restricted isometry property (RIP) of the CS measurement matrix based on the 
point-spread function (PSF), must be considered. However, the RIP of the PSF-based 
measurement matrix in previous CS-based methods [13,14] is not ideal for CS. Thus, the 
performance of CS was affected when it was applied to the image reconstruction of molecules 
with high density. A random matrix with a good RIP has been studied extensively in CS [17]. 
However, research on PSF-based measurement matrices is seldom reported. Currently, 
research on super-resolution imaging based on CS is more focused on specific applications 
and experiments, reconstruction algorithms in 2D [13] and 3D [16,18,19], and improvements 
to algorithm calculation speeds [14,20]. In the present paper, we propose a new processing 
method that uses interpolation and a PSF-based measurement matrix with lower coherence to 
yield a better RIP. Simulations and experimental results demonstrate that, compared to the CS 
method without interpolation or using a measurement matrix with higher coherence, the 
reconstruction results obtained using the proposed method are markedly better. 

2. Compressed sensing and super-resolution microscopic imaging 

The theory of CS asserts that if a signal x is sparse and the measurement matrix Φ satisfies 
the RIP, the signal x can be reconstructed exactly or approximately with high probability by 
solving 

 
0

min . . = ,s tx y Φx  (1) 

where NR∈x , y denotes the measurement data, MR∈y , Φ is the measurement matrix, 
M NR ×∈Φ , M < N, 

0
min x  is the objective function, and y = Φx is the constraint function. 

Compared with the Nyquist–Shannon sampling theorem, CS requires fewer measurement 
data [21–23]. If the objective function is 1min || ||x  rather than 0min || ||x , Eq. (1) is 

transformed to a convex optimization problem [24]. Super-resolution images can be treated as 
signals as well. 

Both better reconstruction algorithms [17] and better measurement matrices [25] can 
improve reconstruction results. When a measurement matrix has a good RIP, its columns and 
rows have good incoherence, its row and column norms are approximately equal, and the 
elements of columns and rows are random to a certain degree. The incoherence of columns 
plays a leading role in the RIP of the measurement matrix [25–29]. Existing research results 
indicate that a measurement matrix with good column incoherence can improve the 
reconstruction results of various reconstruction algorithms. However, lower-quality 
measurement matrices would lead to worse reconstruction results no matter which 
reconstruction algorithm was used. 

The PSF is the light-intensity distribution function at work in the image plane when light 
from an infinitely small point object passes through an optical system, such as a microscope 
[30]. The imaging process of the optical system is the convolution of the object function and 
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PSF. The one-dimensional vectors y and x consist of row-wise concatenations of the raw and 
super-resolution images, respectively. The measurement matrix Φ is determined by the PSF 
of the imaging system. The ith column of Φ corresponds to the acquired raw image only if 
one molecule emits fluoroscopic photons at the position index i of x [13]. 

The final super-resolution image can be reconstructed using CVX, a Matlab optimization 
package [31], with Eq. (1) in which the objective function is 1min || ||x . Thus, more 

fluorescent molecules can be activated simultaneously in real experiments compared to 
conventional STORM, and the requirements of sparse excitation and time-consuming 
imaging in conventional STORM can be avoided. Moreover, the number of acquired frames 
can be reduced [13]. Higher spatial and temporal resolution as well as greater acquisition and 
reconstruction efficiency of raw images are possible. 

Equation (1) is suitable for noiseless situations. If a raw image contains background noise, 
this equation should be replaced by Eq. (2). If there is background noise in a raw image, 
better reconstruction results can be acquired by adding a noise-related column vector in the 
measurement matrix Φ. All elements in the noise-related column vector are set to 1. 
Correspondingly, one additional element is introduced in x. The corresponding element in c is 
set to 0. The value of this extra element in x represents a uniform image background with no 
sparsity constraint imposed on it [13]. Thus, 

 
21

min . . ε 0,T
j is t and− < ⋅ ≥c x Φx y y x  (2) 

where the weight vector c is introduced to account for the differing contributions to the raw 
image from one single fluorescent molecule at different locations. The value of the ith 
element in c equals the summation of the ith column of Φ. The minimization term cTx is 
equivalent to a weighted L1 norm of x because x is non-negative [13]. In addition, ε is set to 
1.5 as the universal setting for this study’s analyses of simulated and real data, as modeled in 
Ref [13]. 

3. Point-spread-function-based measurement matrix and relational analysis 

The microscope used in Ref [13] was a Nikon Plan Apo VC. STORM raw images were 
recorded using an electron-multiplying charge-coupled device (EMCCD) camera (iXon 
DV897DCS-BV, Andor Technology Ltd., Belfast, Northern Ireland) with a 16-µm pixel size. 
Each pixel was divided into an 8 × 8 grid to support the acquisition of super-resolution 
images. A super-resolution image of 64 × 64 grids was reconstructed with the CVX 
optimization package [31] from a raw image of 7 × 7 pixels aligned with the central region of 
the 64 × 64 grids. The measurement matrix was ΦLR, and its size was 49 × 4096 because 49 = 
7 × 7 and 4096 = 64 × 64. When the STORM raw image was recorded with a high-resolution 
EMCCD camera (FA285-CL, Raptor Photonics, Larne, Northern Ireland) with an 8-µm pixel 
size or was interpolated, the corresponding measurement matrix was ΦLI_HR in which the size 
was 169 × 4096, where 169 = 13 × 13. If the resolution of the EMCCD camera were to be 
doubled again, the corresponding measurement matrix would be ΦHI in which the size was 
625 × 4096, where 625 = 25 × 25. 

Our simulation and real experiment were based on data obtained from the EPFL website 
[32]. The full width at half maximum (FWHM) of the PSF in the EPFL website was 258.2 
nm, and the effective pixel size of ΦLR was 100 nm. This paper’s code, experimental 
conditions, and parameters match those in Ref [13]. The only differences are in the variations 
of measurement matrices (ΦLI_HR and ΦHI), effective pixel size, and FWHM. All elements of 
the noise-related column vectors of ΦLI_HR and ΦHI are 1/4 and 1/16, respectively. ΦLR, 
ΦLI_HR, and ΦHI have 4097 real columns because a noise-related column was added. All 
detailed parameters are listed in Table 1. The grid sizes corresponding to ΦLR, ΦLI_HR, and 
ΦHI are 12.5nm. The super-resolution image sizes corresponding to ΦLR, ΦLI_HR, and ΦHI are 
64 × 64 grids. The raw image sizes corresponding to ΦLR, ΦLI_HR, and ΦHI are 7 × 7, 13 × 13 
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and 25 × 25 pixels, respectively. The effective pixel sizes corresponding to ΦLR, ΦLI_HR, and 
ΦHI are 100, 50 and 25nm, respectively. The measurement matrix sizes (without the noise-
related column) corresponding to ΦLR, ΦLI_HR, and ΦHI are 49 × 4096, 169 × 4096 and 625 × 
4096, respectively. 

CS theory implies that different measurement matrices have different RIPs. The 
measurement matrices ΦLR, ΦLI_HR, and ΦHI based on the EMCCD cameras of three different 
resolutions are studied here. 

Table 1. Parameters of Three Measurement Matrices, Raw Images and Super-resolution 
Images 

 ΦLR ΦLI_HR ΦHI 
|μmax| 0.999561 0.999394 0.999382 
Measurement matrix size 
(without the noise-related column) 

49 × 4096 169 × 4096 625 × 4096 

Elements of the noise-related column 1 1/4 1/16 
Raw image size 7 × 7 13 × 13 25 × 25 
Effective pixel size (nm) 100 50 25 
Super-resolution image size 64 × 64 64 × 64 64 × 64 
Grid size (nm) 12.5 12.5 12.5 

 
The column incoherence of ΦHI is the best, that of ΦLI_HR follows, and that of ΦLR is the 

worst, as listed in Table 1. The |μmax| of ΦLI_HR is less than that of ΦLR by 0.000167, and the 
|μmax| of ΦHI is less than that of ΦLI_HR by 0.000012. Therefore, according to CS theory, each 
of the reconstruction effects of ΦLR, ΦLI_HR, and ΦHI, in turn, should be better than the effect 
preceding it in that ranked order. 

Because of the high column coherence of the PSF-based measurement matrix ΦLR, its RIP 
is the worst. Hence, the reconstruction results based on ΦLR are not optimal. If a high-
resolution or super-high-resolution EMCCD camera was used, a better reconstruction effect 
could be expected. Therefore, we used the bicubic interpolation method with the high-
resolution and low-resolution STORM raw images based on ΦLI_HR and ΦLR, respectively, to 
simulate super-high-resolution and high-resolution STORM raw images based on ΦHI and 
ΦLI_HR. Then, the reconstruction effects were compared to validate this method 
experimentally. Because interpolation processing correspondingly increased the number of 
photons in the STORM raw images artificially, normalized processing was used to keep the 
number of photons unchanged in the STORM raw images. 

4. Comparison and analysis of reconstructed results based on different 
measurement matrices 

Figure 1 presents comparable results from four different situations: low resolution (LR), high 
resolution (HR), low interpolation (LI), and high interpolation (HI). The LR and HR results 
represent cases in which the STORM raw images were acquired using low-resolution and 
high-resolution EMCCD cameras, respectively, and reconstructed using the CVX package 
based on ΦLR and ΦLI_HR, respectively. The LI and HI results represent cases in which the raw 
STORM images were acquired with the same low-resolution and high-resolution EMCCD 
cameras used to obtain the LR and HR results, respectively, and interpolated and 
reconstructed using the CVX package based on ΦLI_HR and ΦHI. 

In CS, sparsity, defined as the number of fluorescence molecules, is used more often than 
molecule density because sparsity is related to the size of the measurement matrix. Sparsity is 
convenient for judging the reconstruction effect in CS. Hence, in Fig. 1, the x axis represents 
both molecule density and signal sparsity, and the y axes of Figs. 1(a) through 1(f) represent 
root-mean-square error (hereafter called localization precision), recall rate, precision, Jaccard 
index (JAC), SNR, and noise-to-signal ratio (NSR), respectively. 

The signal x is a sparse signal of the fluorescent molecules that follows the log–normal 
distribution (peak (i.e. the single-molecule photon counts which corresponds to the peak of 
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probability density function of the log-normal distribution): 3000; mean: 3896; standard 
deviation: 1700) [13]. The fluorescence signals of different molecule densities were tested 
500 times. For each simulation, we created a sample consisting of point-like emitters 
distributed both uniformly and randomly. STORM raw images with Poisson noise and 
background noise were simulated. The background was 70 and 18 photons per pixel for LR 
and HR, respectively. Then, the mean of the results for each density was calculated and 
plotted, as shown in Fig. 1. The reconstruction algorithm used in Ref [13], CVX, was 
employed here. 

 

Fig. 1. STORM image simulation analysis for LR, LI, HR, and HI based on CS and EPFL 
website data. The x axes represent molecule density and signal sparsity. (a) Comparison of 
measures of localization precision. (b) Comparison of recall rates. (c) Comparison of the JAC 
values. (d) Comparison of precision measures. (e) Comparison of SNRs. (f) Comparison of 
NSRs. 

In STORM, the raw image has a linear and shift-invariant relationship with the true 
molecule distribution. To model this relationship as in Eq. (2), a discrete grid is introduced to 
describe the molecule positions instead of using a list of molecule coordinates which is 
typically done to represent super-resolution images. The grid spacing (one-eighth the pixel 
size) is kept much smaller than the raw pixel size to ensure sufficient accuracy. In Eq. (2), 
both the raw image y, and the super-resolution image x are pixelated images. Unlike the 
single-molecule fitting method, compressed sensing algorithm does not directly return a list 
of molecule coordinates. Instead, it returns a pixelated super-resolution image. Hence, we 
convert the compressed sensing results into a list of molecule positions by identifying clusters 
of nonzero grid points, treating a group of adjacent nonzero grids as one identified molecule 
and calculating its ‘position’ from the center of mass [13]. 

Statistical measures of detection rates and localization precision were established by 
finding a pairing between the localized molecules and ground-truth molecules [33]. The 
nearest-neighbor search method was misleading if two ground-truth molecules were within 
the FWHM of the PSF. Hence, the Hungarian matching algorithm was used for detecting and 
matching molecules [34]. 

Each localized molecule that successfully paired with a ground-truth molecule was 
categorized as a true positive (TP). The remaining unpaired localized molecules were farther 
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than the FWHM, and they were assigned to the category of false positive (FP). The remaining 
ground-truth molecules not associated with any localized molecule received the category 
designation of false negative (FN). The detection rate involves the sensitivity (recall rate r), 
positive predictive value (precision p), and JAC [34]. Thus, 

 
TP TP TP

, = , JAC , and F1-score 2 .
FP+TP FN TP FN FP TP

p r
p r

p r

⋅= = = ⋅
+ + + +

     (3) 

Then, the formula for SNR is [34] 

 2
10

2

20 log ( )
R

SNR = ×
−
x

x x
 (4) 

where x is a real signal, NR∈x ; 
2
 is the norm, in general, of a vector; and Rx  denotes the 

reconstruction result of x. 
The reconstruction results of CS methods include not only the detection rate and 

localization precision but also the gray intensity, that is, the photon counts, of super-
resolution images. SNR indicates the overall quality of the reconstructed image. The SNR of 
the super-resolution image can be considered definitively better only if its detection rate, 
localization precision, and gray intensity are all improved. If only one factor shows 
improvement, the SNR may be better or worse. The SNR in CS is a better evaluation 
parameter than localization precision, r, p, and JAC. In contrast, gray-intensity information of 
super-resolution images in SML fields has either been discussed only briefly or been 
neglected [13,16,18]. Previous reports on SML fields describe in detail only the detection rate 
and localization precision. 

4.1 Comparison and analysis of reconstructed results based on the signal-to-noise 
ratio 

CS theory indicates that higher-quality measurement matrices can lead to better 
reconstruction results that are evaluated mainly by SNR. However, noise can lead to lower-
quality reconstruction results. Noise includes Poisson noise, background noise, and 
interpolation error if the raw image is interpolated. Because background noise is assumed to 
be uniform, and a noise-related column is added to the measurement matrix in Eq. (2), 
background noise cannot be regarded as noise. Thus, Fig. 1(f) depicts the noise-signal ratio 
(NSR) curves that originate from the expression 

 2

2

.noiNSR
−

=
y y

y
 (5) 

Here, in the LR and HR cases, the values of y are the real measurement data with 
background noise, and ynoi denotes the measurement data with both Poisson and background 
noise. In contrast, for the LI and HI cases, y denotes the real measurement data with 
background noise obtained with a higher-resolution camera compared to that used for 
obtaining ynoi, which denotes the measurement data with Poisson noise, background noise, 
and interpolation error. 

As Table 1 indicates, the measurement matrix ΦLI_HR of LI shows much higher-quality 
than does ΦLR. At the same time, the NSR of LR and LI are both similar and close, as shown 
in Fig. 1(f). Thus, the overall SNR of LI is much better than the SNR of LR, as Fig. 1(e) 
shows. The values of NSR of HR are much higher than the NSR of LI in Fig. 1(f), while the 
measurement matrices of LI and HR are the same, namely ΦLI_HR. Thus, the SNR of HR is 
lower than that of LI, as shown in Fig. 1(e). The measurement matrix ΦHI of HI is slightly 
better than ΦHI, while the values of NSR of HI are lower than those of NSR of HR, as Fig. 
1(f) shows. Thus, the SNR of HI is better than that of HR. These experimental results 
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demonstrate that higher-quality measurement matrices and lower noise can lead to better 
reconstruction results. The obtained results demonstrate that LI and HI are better than LR and 
HR. 

In Fig. 1(f), the overall NSR of HI is lower than that of HR, while the NSR of LI is higher 
than that of LR. These results are reasonable. After interpolation, new pixels are generated. 
The ratio of new to old pixels is approximately 2.5. The line segment of the Gaussian PSF 
between two old, adjacent pixels is closer to a straight line in a high-resolution raw image and 
is a curve in a low-resolution raw image. Some of the interpolated pixels (that is, new pixels) 
are very close to their true values in the positions in a high-resolution raw image where one of 
the two old, adjacent pixels contains positive noise (that is, the value of noise is positive) and 
the other contains negative noise (that is, the value of noise is negative). Thus, the NSR of HI 
is lower than that of HR. However, such cases rarely occur because the line segment of the 
Gaussian PSF between two old, adjacent pixels is a curve in a low-resolution raw image. 
Interpolation, in this circumstance, would lead to additional errors. Thus, the NSR of LI is 
higher than that of LR. 

4.2 Comparison and analysis of reconstructed results based on detection rate and 
localization precision 

Better SNRs of reconstruction results for CS do not imply better detection rates and 
localization precision for STORM. The SNR indicates the overall quality of the 
reconstruction image. The improvement of SNR alone does not imply improved localization 
precision. 

Although the precision of HR and HI are higher than that of LR and LI, as shown in Fig. 
1(d), the recall rates of LR and LI are higher than those of HR and HI, as shown in Fig. 1(b). 
The recall rates of HR and HI are almost the same. JAC is more objective and comprehensive 
indicator than precision and recall rate. The JACs of LR and LI are higher than those of HR 
and HI. As shown in Fig. 1(a), the curves of HI, HR, LR, and LI intersect at the point where 
the molecule density is approximately 17 μm−2. This result means that the measures of 
localization precision of HI, HR, LR, and LI are better in turn before this cross point. As 
shown in Fig. 1(b), the recall rates of HI, HR, LI, and LR after that point are very low. A 
discussion of the reconstruction results with such a low recall rate would be meaningless. 
Some of the curves in Fig. 1 are very close. In order to provide a more quantitative 
description, all the results and errors (i.e. standard deviation) of LR and LI before this cross 
point are presented in Table 2. There are three sets of data at three different molecule 
densities, 4.69 μm−2, 9.38 μm−2, and 14.06 μm−2. The average of the three recall rates of LI is 
0.01 higher than that of LR. In addition, the JACs of LI and LR are almost the same. 

As is shown in Table 2, the average localization precision of LI is 2.02 nm better than that 
of LR, and the average SNR of LI is 0.29 dB better than that of LR. Higher SNR implies 
better image reconstruction quality. For example, the gray intensities of fluorescent molecules 
are closer to their true gray intensities (i.e., the photon counts). In general, the reconstruction 
result of LI is much better than that of LR and is the best for CS and SML before 
approximately 17 μm−2. 

Table 2. Simulation Analysis Results for LR and LI from Fig. 1 

 LR LI LR LI LR LI  
Molecule density 

(μm−2) 
4.69 9.38 14.06 

Localization 
precision /Error (nm) 

21.99/3.76 18.86/3.2 38.92/7.78 36.4/7.01 51.89/9.79 51.49/9.38 

Recall rate/Error 0.97/0.03 0.97/0.02 0.93/0.03 0.94/0.02 0.88/0.03 0.90/0.02 
Precision/Error 0.93/0.03 0.93/0.03 0.88/0.03 0.86/0.03 0.90/0.03 0.89/0.03 

JAC/Error 0.89/0.04 0.90/0.04 0.81/0.03 0.80/0.03 0.79/0.03 0.80/0.03 
SNR/Error (dB) −0.28/0.56 0.06/0.42 −1.52/0.24 −1.26/0.3 −2.0/0.16 −1.73/0.26 
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5. Simulated results of an observation and reconstruction 

Figure 2 shows the simulated results of an observation and reconstruction. Figures 2(a) to 2(e) 
correspond to Figs. 2(f) to 2(j) and depict the results after taking the logarithms of Figs. 2(f) 
to 2(j) based on real data. This approach, a frequently used data possessing method in 
vibration mechanics [35] and digital image processing [36], provides easily performed checks 
and observations of data. Moreover, it preserves the relative scale of data. A comparison of 
Figs. 2(a) and 2(f) reveals that, within the areas highlighted by red ellipses, the white spots of 
Fig. 2(a) are clearer than those in Fig. 2(f). In addition, the brightnesses values of all white 
spots in Figs. 2(a) through 2(e) are different. 

Figure 2(e) shows the true positions and gray intensities of six molecules, where the 
molecule density is 9.37 μm−2. Figure 2(k) shows a simulated low-resolution STORM raw 
image of the same six molecules acquired with a low-resolution EMCCD camera based on the 
matrix ΦLR. Figure 2(m) is a simulated high-resolution STORM image of the same six 
molecules generated with a high-resolution EMCCD camera based on the matrix ΦLI_HR. 
Figure 2 (l) is an interpolated image of Fig. 2(k). Finally, Fig. 2(n) is an interpolated image of 
Fig. 2(m). 

Figure 2(a) is the image reconstructed based on ΦLR and CVX. For this image, the SNR is 
−1.81 dB, and the localization precision is 43.18 nm. Figure 2(b) shows the image 
reconstructed based on ΦLI_HR and the interpolated image in Fig. 2(l). In this case, the SNR is 
−1.12 dB, and the localization precision is 28.48 nm. Figure 2(c) shows the image 
reconstructed based on ΦLI_HR and Fig. 2(m). Figure 2(d) shows the image reconstructed 
based on ΦHI and the interpolated image in Fig. 2(n). The red crosses in Figs. 2 (a) through 
2(d) and Figs. 2(f) through 2(i) represent the true positions of the fluorescent molecules. 

When we examined the results, we noticed that while four white spots appeared in the 
high-resolution STORM image in Fig. 2(c), there were at least six white spots in Figs. 2(a) 
and 2(b). The recall rate of Fig. 2(c) was worse than in Figs. 2(a) and 2(b). Although the SNR 
of Fig. 2(c) was higher than the SNR of Fig. 2(d), only a portion of the molecules was 
detected. 

On comparing the results shown within the circles and rectangles in Figs. 2(a) and 2(b), 
we noticed that the fluorescent molecule was split into multiple white spots in the low-
resolution STORM image in Fig. 2(a). In contrast, the white spots representing the same 
molecule in the interpolated low-resolution STORM image in Fig. 2(b) were closer each 
other. Thus, the localization precision of the interpolated low-resolution image is better than 
that of the low-resolution image. The localization precision and reconstruction quality of the 
interpolated low-resolution image in Fig. 2(b) are better than the reconstruction result of the 
low-resolution image in Fig. 2(a). The simulated results demonstrate that image 
reconstruction quality and localization precision can be improved greatly by using 
interpolated low-resolution STORM raw images. 
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Fig. 2. STORM image simulation analysis using CS to demonstrate its capability for 
identifying molecules efficiently at high densities. The scale bar in (e) is 200 nm. (a) The 
reconstructed result of an LR raw image. (b) The reconstructed result of an LI raw image. (c) 
The reconstructed result of an HR raw image. (d) The reconstructed result of an HI raw image. 
(e) True positions of six molecules. In (a)–(e), results were obtained after taking the logarithm 
of (f)–(j) based on real data. Thus, (f)–(j) correspond to (a)–(e). (k) A low-resolution raw 
image of STORM. The grid size of (a)–(j) equals 1/8 pixel of (k). (l) An interpolated low-
resolution raw image of STORM. (m) A high-resolution raw image of STORM. (n) An 
interpolated high-resolution raw image of STORM. 

6. Experimental data analysis 

We used a publicly accessible data set from the EPFL website [32] to support the evaluation 
of the quality of 2D image reconstruction using LR and LI. The Tubulins high-density data 
set comprises 500 raw images of 128 × 128 pixels. The performances of LI and LR are 
compared in Fig. 3. The super-resolution image reconstructed using LI (Fig. 3(b)) was sharper 
than that reconstructed using LR (Fig. 3(a)). This distinction is apparent in the regions 
indicated by the yellow squares in Figs. 3(a) and 3(b) and enlarged in Figs. 3(d) through 3(f). 
A further evaluation of LI was performed by plotting and comparing photon profiles along the 
yellow line segments in Fig. 3(g). 
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Fig. 3. Comparison of LR and LI based on experimental 2D high-density data (500 raw 
images) from the EPFL website. The yellow squares in (a) and (b) are 3200 × 3200 nm, and 
the scale bar in (c) indicates 2000 nm. (a) A reconstructed result of LR. (b) A reconstructed 
result of LI. (c) A frame of a raw STORM images. (d) Enlarged LR and LI images from the 
top areas marked by yellow squares in (a) and (b), respectively. (e) Enlarged LR and LI images 
from the middle areas marked by yellow squares in (a) and (b), respectively. (e) Enlarged LR 
and LI images from the bottom areas marked by yellow squares in (a) and (b), respectively. (g) 
Plots of photon-count profiles obtained by measurements made along the yellow lines in (f). 

Six microtubules can be resolved in both the LI and LR images, as shown in Fig. 3(f). 
However, LI is clearly better, as shown in Fig. 3(g), because no photons should appear 
between adjacent microtubules. In the LI image, photons are hardly detectable at the positions 
between the first two microtubules or between the fourth and fifth tubules. LI offers better 
estimations of distances between microtubules and shows fewer spurious and noisy peaks 
compared to LR, as shown in the two red circles in Fig. 3(g). This observation and conclusion 
are consistent with the expectations from the results of simulations. 

Figures 3(c) and 3(g) present the results of real data rendered in Matlab using the imshow 
and plot functions. Figures 3(a) and (b) and Figs. 3(d) through 3(f) show the results after 
taking the logarithms of the corresponding real data, a reliable and time-tested data-
possessing method. When such processing is absent, a black and vague image will result. 
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7. Theoretical limit analysis and discussion 

This section presents a discussion of the theoretical limits of this method. An important factor 
is the column incoherence of the measurement matrix. As Table 1 indicates, measurement 
matrices using higher-resolution cameras generally have better column incoherence. 
However, this trend is not always the case. As is well known, if the camera resolution is 
sufficiently high, the maximum values |μmax| of the coherence coefficients between the 
columns of the measurement matrices will be approximately 1. Thus, a higher resolution 
camera based on a certain microscope will not always improve the column incoherence of the 
measurement matrix. At some point, further improvement is impossible. 

Poisson noise is related to the number of photons received by a camera pixel. Larger 
pixels can receive more photons. Poisson noise is reduced when the pixel size is increased. 
Thus, the NSR of HR is much higher than that of LR, as Fig. 1(f) illustrates. Noise is another 
factor that prevents higher-resolution cameras from being used in SML-based microscopic 
techniques in CS. 

We gained insight into the computational complexity of this method by measuring and 
comparing the execution times for LR, LI, HR, and HI using the simulation data depicted in 
Fig. 1 and the experimental data used in Fig. 3. This analysis was performed using a stand-
alone installation of Matlab running on a standard PC with an Intel Core i5-4440 3.1 GHz 
CPU and an AMD Radeon HD 8500M Series GPU. Data processing was performed in four 
parallel threads (one per CPU core). The mean execution time for HI was 72.73 times that for 
LR. The mean execution time for LI was 6.84 times that for LR. Reconstructing a high-
density STORM raw image of 8 × 8 pixels with a sparsity of 21, based on the simulation data 
sets, required mean execution times of 1.43 s, 9.79 s, and 102.59 s for LR, LI, and HI, 
respectively. The mean execution times of LI and HR were almost equal because they 
employed identical 169 × 4096 measurement matrices and because execution runtimes mainly 
depend on the matrix size. 

Although the |μmax| of ΦHI in Table 1 is better than the |μmax| of ΦLI_HR, HI and HR are 
worse than LI in localization precision, as shown in Fig. 1. Moreover, the computation cost 
for HI increased 10.6 times those for HR and LI. Thus, a high-resolution camera is not an 
optimal choice for working with data obtained from the EPFL website. 

8. Conclusion 

This paper proposed a method based on low-resolution raw images, interpolation, and PSF-
based measurement matrices with higher incoherent coefficients to improve the performance 
of CS in STORM. The implementation of this method involves several steps. First, low-
resolution microscopic STORM raw images were obtained with a low-resolution EMCCD 
camera. Then, the low-resolution STORM raw images were interpolated using CVX in 
Matlab to reconstruct the super-resolution image with better measurement matrices. The 
method can improve not only the localization precision and detection rate but also the overall 
reconstructed-image quality as measured by SNR. 

Improvements to the incoherent coefficients of measurement matrices are the fundamental 
reason for the better reconstruction results obtained with interpolation. The incoherent 
coefficient of a measurement matrix tends to reach its peak and then decrease with increase in 
the raw-image resolution. Although the use of higher-resolution cameras is one possible way 
to increase the raw-image resolution, such cameras are unavailable at times. We can reach the 
same aim by means of optical magnification (e.g. zoom lens). However, the field of view will 
shrink accordingly. And only a part of the image can be seen. Furthermore, the small pixels of 
a high-resolution camera can lead to more Poisson noise because EMCCD units will receive 
few photons per pixel. Interpolation is easier to be implemented than using a higher-
resolution camera or optical magnification because it 's a post-processing method. 

It should be noted that computation costs increase exponentially with increase in the 
measurement matrix size. For a certain application, three factors, namely the RIP of the 
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measurement matrix, noise, and computation cost, should be balanced and optimized. The 
method we proposed here uses a low-resolution camera to achieve better reconstruction 
effects compared to those provided by a higher-resolution camera. The quantity of acquired 
data needed to implement the proposed interpolation-based methods is only approximately 
25% of the data needed for methods that utilize higher-resolution cameras. Moreover, our 
method simplifies experimental conditions and reduces experimental costs. 
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