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Abstract: We report a generic method for automatic segmentation of endoscopic optical 
coherence tomography (OCT) images. In this method, OCT images are first processed with 
L1-L0 norm minimization based de-noising and smoothing algorithms to increase the signal-
to-noise ratio (SNR) and enhance the contrast between adjacent layers. The smoothed images 
are then formulated into cost graphs based on their vertical gradients. After that, tissue-layer 
segmentation is performed with the shortest path search algorithm. The efficacy and 
capability of this method are demonstrated by automatically and robustly identifying all five 
interested layers of guinea pig esophagus from in vivo endoscopic OCT images. Furthermore, 
thanks to the ultrahigh resolution, high SNR of endoscopic OCT images and the high 
segmentation accuracy, this method permits in vivo optical staining histology and facilitates 
quantitative analysis of tissue geometric properties, which can be very useful for studying 
tissue pathologies and potentially aiding clinical diagnosis in real time. 
©2017 Optical Society of America 

OCIS codes: (170.4500) Optical coherence tomography; (100.0100) Image processing; (100.5010) Pattern 
recognition; (170.4580) Optical diagnostics for medicine. 
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1. Introduction 

Optical coherence tomography (OCT) is a powerful imaging technology for assessing 
biological tissue morphology, blood flow, optical and mechanical properties [1–4]. With the 
help of innovative endoscopes, OCT can provide high resolution 2D and 3D images of 
internal luminal organs in vivo and in real time [2–7]. To facilitate the extraction and utility of 
structural and quantitative information from the large amount of OCT imaging data, one 
important measure is to automatically segment tissue layers of interest from the images. One 
example of direct clinical relevance is the thickness of retinal layer and nerve fiber layer 
based on OCT images for glaucoma staging [8, 9]. 

Various automatic or semi-automatic methods have been proposed for OCT image 
segmentation [10–17]. The widely-used methods are based on the OCT intensity variation, 
such as the pixel-level edge detection algorithm [10, 11], the 1-D intensity peak detection 
procedure for each A-scan [12], and the support vector machine method based on mean 
intensity of each layer [13, 14]. Furthermore, the intensity variation-based method has been 
successfully applied to segment retinal layers from 3D OCT data sets [15]. These approaches, 
however, are intrinsically sensitive to noise and could potentially fail to detect tissue layer 
boundaries correctly if the boundaries seem to be discontinued in the images due to view 
blocking, tissue folding, or low contrast resulting from low signal-to-noise ratio (SNR). To 
overcome the noise issue, graph cut methods have been proposed by taking into account both 
the edge-based and the region-based terms [16]. However, these methods require a priori 
knowledge of the tissue structure and their accuracy heavily depends on the choice of the a 
priori conditions. Active contour segmentation approaches based on the level set theory have 
also been proposed to find the boundary of each layer by optimizing a cost function [18, 19]; 
however, they are liable to fall into local optima. Recently, methods based on graph theory 
were developed to segment the retinal layers, promising results were demonstrated with very 
high efficiency and accuracy [20–24]. 

So far, most reported OCT image segmentation methods targeted retinal OCT images. To 
the best of our knowledge, there is no literature reporting an accurate and robust segmentation 
method for ultrahigh-resolution endoscopic OCT images of luminal organs, such as 
esophagus and airway. We hypothesize that accurate segmentation of endoscopic OCT 
images can help quantitatively study tissue integrity and remodeling of luminal organs 
associated with various diseases, such as Eosinophilic Esophagitis (EoE) and Barrett's 
esophagus [25–27]. Segmentation of endoscopic OCT images has to address some common 
challenges similar to those encountered in segmenting free-space retinal OCT images, 
including the intrinsic speckle noise, intensity change with depth, and motion artifacts 
(associated with in vivo imaging). In addition, endoscopic OCT images come with their own 
challenges, such as steep layer boundary slopes due to tissue folding, view blocking by mucus 
or some debris (such as food debris in esophagus), and image distortion caused by non-
uniform azimuthal scanning speed. 

To address these challenges, we propose an automatic and robust layer segmentation 
approach for endoscopic OCT images. This approach firstly incorporates L1-L0 norm 
minimization based de-noising and smoothing methods to reduce the image noise and 
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improve the image contrast; then it numerically attenuates the intensity along the image depth 
and identifies each layer’s boundary by searching for the lowest cost path. This paper is 
organized as follows: in section 2, the detailed segmentation method is presented; in section 
3, the effectiveness and robustness of this method are demonstrated by segmenting in vivo 
guinea pig esophagus images acquired by our home-built OCT endoscope. Based on the 
accurate segmentation results, in vivo optical staining histology of guinea pig esophagus is 
also demonstrated. Finally, a brief discussion is provided along with conclusion in section 4. 

2. Methods 

Our segmentation method is primarily based on the gradient information and graph theory. As 
we have pointed out, gradient-based method is generally sensitive to noise. To address this 
problem, an L1 norm minimization based de-noising technique is firstly applied to reduce the 
image noise [28]. Secondly, in order to mitigate the influence of gradients resulting from 
intra-layer structures, the intra-layer fine structures are smoothed out by using an L0 norm 
minimization based smoothing algorithm [29]. Thirdly, the image signal intensity is 
numerically attenuated along imaging depth in order to ensure a gradually increasing cost 
function along depth direction (as elaborated in section 2.3) and facilitate automatic 
identification of each sequential layer boundaries for later step. Finally, each layer on the 
image is segmented by calculating the weight of each graph node and searching for the lowest 
cost path. 

Our method is tested on segmenting the endoscopic OCT images of guinea pig esophagus. 
Figure 1 shows a representative histology image illustrating well-delineated layered structure 
of guinea pig esophagus [6]. In our method, we firstly segment the stratum corneum (SC) 
layer and then move on to segment each other layers in sequence (along imaging depth), such 
as the epithelium (EP), lamina propria (LP), muscularis mucosae (MM), and submucosa 
(SM), respectively. Since our method does not actually utilize any special property of tissues, 
it can be generalized for layer segmentation of other luminal organs, such as airway and 
colon. 

 

Fig. 1. Histology of guinea pig esophagus. SC: stratum corneum; EP: epithelium; LP: lamina 
propria; MM: muscularis mucosae; SM: submucosa; MP: muscularis propria. 

2.1 L1-L0 norm minimization based de-noising and smoothing methods 

In order to obtain reliable image intensity gradient for each layer boundary, we firstly reduce 
the speckle noise of OCT images. However, it is well known that the general low-pass filters, 
such as the Gaussian or Butterworth filter [30], will blur the feature edges of the image and 
weaken the strong gradients. To preserve the strong gradients while minimizing the speckle 
noise, we adopt the total variation minimization algorithm [28]. In essence, the algorithm 
searches for a desired noise-free (ideal) image (denoted by u) by minimizing the following 
variant gradient L1 norm ( )J uε  as: 

 
2 22( ) ,J u g u dxdy u dxdyε λ ε

Ω Ω
= − + + ∇   (1) 

where 0λ > is a regulation parameter to adjust the weight of the total variation, g is the 

original noisy image, ∇ denotes the 2D gradient operator, ε is a stabilization parameter, and 
Ω  represents the 2D image space domain. The explicit image pixel position ( , )x y  is omitted 
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in g and u  for simplicity. It is noted that Eq. (1) is slightly different from the classic total 

variation formulation by the introduction of ε , which is used to remove potential singularities 

and stabilize the solution. In our case, we choose 61 10ε −= × . This de-noising procedure is 
equivalent to seeking for a solution of u that can best resemble the original noisy image g 
while still maintaining a sparse gradient field. By minimizing the gradient L1 norm in Eq. (1), 
the solution of u will be: 

 
22

1 Ω2 ( ) in , and
,

0 on ,

u

u

u
n

u g λ ε
∇
+ ∇

∂
∂

 = + ∇ ⋅


 = ∂Ω 

   

  
 (2) 

where ∂Ω  is the image boundary of Ω . Equation (2) can be discretized using a fixed point 
finite difference scheme, which iteratively estimates u and its gradient to obtain the solution, 
i.e., the desired noise-free image u [31]. 

Furthermore, we found that the fine structures within each layer have strong gradients, 
which often interfere severely with the search for the desired inter-layer boundaries. For this 
end, an L0 norm minimization based smoothing approach is applied to preserve the salient 
boundary of each layer and blur the fine structures within each layer. The employed L0 norm 
smooth function is: 

 
2

0
( ) ,s s s s sJ I u I dxdy Iλ

Ω
= − + ∇  (3) 

where 0sλ > is a weight parameter to adjust the smoothing extent, u is the de-noised image, 

sI refers to the expected smooth image, and 
0

 denotes L0 norm. Here 
0sI∇ is defined as 

{ }0
# ( , ) 0s x s y sI x y I I∇ = ∇ + ∇ ≠ , { }# is a set operation which counts the number of set 

elements, x sI∇ and y sI∇ are the partial derivatives of sI with respect to x and y, respectively. 

The goal of this optimization procedure is to find the smooth image sI whose gradients have 

the minimal L0 norm, while preserving the major features of the noise-free image u. 
However, it is well known that Eq. (3) is concave due to the calculation of L0 norm, and 

thus difficult to optimize [32, 33]. To address this challenge, we introduce an auxiliary vector 
variable ( , )vhD D D=


, where hD is the partial derivative of D


with respect to x, and vD is the 

partial derivative of D


with respect to y. By trying to let D


be as close to sI∇  as possible, Eq. 

(3) can be converted into: 

 
2 2 2

0
( , ) ( ) ,s s s s d h x s v y sJ I D u I dxdy D I D I dxdy Dλ λ

Ω Ω
= − + − ∇ + − ∇ +   (4) 

where 0dλ > is a scaling parameter to control the proximity between sI∇ and D


. Then, the 

optimization of Eq. (4) can be divided into two sub-problems. One is: 

 
2 2 2

( ) ( ) ,s s s s d h x s v y sJ I u I dxdy D I D I dxdyλ λ
Ω Ω

= − + − ∇ + − ∇   (5) 

and the other is: 

 
2 2

0
( ) ( ) .s d h x s v y sJ D D I D I dxdy Dλ

Ω
= − ∇ + − ∇ +  (6) 

It can be found that Eq. (5) is convex and Eq. (6) can be solved according to Ref [34]. By 
alternately optimizing Eq. (5) and Eq. (6), the expected smooth image sI can be obtained 

[31]. 
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Through the above L1-L0 de-noising and smoothing procedures, we can obtain OCT 
images with lower noise and higher contrast, as shown in Figs. 2(a)-2(c). As seen from the 
represetative intensity profiles illustrated in Figs. 2(d)-2(f), the fine structures within each 
layer are effectivly smoothed while the layer boundraies are well preserved after the de-
noising and smoothing procedures. 

 

Fig. 2. Representative endoscopic OCT images of guinea pig esophagus before and after L1-L0 
norm minimization based de-noising and smoothing procedures. (a)-(c) are the original OCT 
image, image after the de-noising procedure, and image after the de-noising and smoothing 
procedures, respectively; (d)-(f) are the representative intensity profiles along imaging depth 
(in the units of pixel) corresponding to the A-scan labeled with red dashed vertical lines in (a)-
(c). 

2.2 Graph path and layer segmentation 

By treating each pixel as a graph node and the relationship between neighboring pixels as 
edges (here we define the edge weight as the summation of neighboring pixels' gradients), the 
image after de-noising and smoothing can be represented as a graph G(V, E), where V is the 
set of vertices of nodes and E is the set of edges. If we weigh the graph edges appropriately, 
these boundaries between adjacent layers could correspond exactly to the preferred graph 
paths. Accordingly, the problem of layer segmentation is transformed to a problem of 
searching for the preferred graph paths, which can be solved by dynamic programming 
method [35]. 

In principle, the weight of each edge is crucial to the accuracy of layer segmentation. 
Owing to the L1-L0 norm minimization based de-noising and smoothing procedures, the 
resulted layer boundaries of OCT images become more pronounced with high gradients. 
Therefore, we could simply use the vertical gradients (along the imaging depth) to calculate 
the weight of each edge. To further improve the robustness of the gradient calculation, we use 
a 5 5×  vertical gradient operator k [30]: 

 

0 1 2 1 0

1 2 3 2 1
1

,0 0 0 0 0
13

-1 -2 -3 -2 -1

0 -1 -2 -1 0

k

 
 
 
 =
 
 
  

  

and the image gradients can be obtained by convolving image sI with k, i.e., 
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 .sgrad k I= ⊗  (7) 

where ⊗  denotes convolution operation. To facilitate further processing, the grad matrix of 
the image can be normalized as: 

 
min( )

,
max( ) min( )Nm

grad grad
grad

grad grad

−=
−

  (8) 

where min( )⋅  and max( )⋅ are the minimum and maximum functions, respectively. Based on 

gradNm, we assign a cost value to each node(i, j), denoted by C(i, j), as: 

 ( , ) 1 ( , ).NmC i j grad i j= −  (9) 

In this way, the cost value of each node is reversely proportional to its vertical gradient. 
Then the edge weight between node(i, j) and node(m, n), denoted by W(i,j)-(m,n), can be defined 
as: 

 ( , ) ( , )

, ( , ) ( , )
,

( , ) ( , ), ( , ) ( , )i j m n

if m n Neighbor i j
W

C i j C m n if m n Neighbor i j−

∞ ∉
=  + ∈

 (10) 

where ( , )Neighbor i j denotes the nearest neighboring pixels of node(i, j). In our method we 

associate each node with its eight nearest neighbors, i.e. 

 { }( , ) ( , ) [ 1, 1], [ 1, 1], 0Neighbor i j k l k i i l j j k i l j= ∈ − + ∈ − + − + − ≠  (11) 

It can easily be seen that the edge weight is designed to be smaller for edges between two 
neighboring pixels (nodes) both with larger magnitude of vertical gradients; such two pixels 
potentially delineate layer boundaries. While for two neighboring pixels within one layer, 
their vertical gradients tend to be small, and then the edge weight between them tends to be 
large. Hence, by applying the shortest path search to find the path with minimal weight W(i,j)-

(m,n) among its eight neighboring pixels [36–38], the task of identifying layer boundaries can 
be formulated as a problem of seeking the minimal cost graph path, which could be readily 
solved via the dynamic programming algorithm [39,40]. It is worth noting that a similar 
shortest path search method was first introduced by Chiu et al. for segmenting retinal 
structures [21]. 

2.3 Numerical attenuation of depth-dependent image intensity 

For endoscopic OCT images of luminal organs (such as esophagus), the imaging beam 
usually focuses inside the tissue instead of on the tissue surface; thus the surface boundary of 
the first tissue layer does not always have the highest gradient. This results in a compromised 
accuracy for the identification of the first layer boundary, which in turn affects the 
effectiveness of sequential search for other layer boundaries. Theoretically, the influence of 
the depth-dependent effects of the beam profiles can be numerically compensated [41]; 
however, it is complex for endoscopic OCT imaging. Instead, we numerically attenuate the 
image intensity along imaging depth so that the first layer boundary will have the highest 
gradient and then each sequential layer boundary will have a gradient lower than that of its 
precedent. To do so, we introduce a depth (y)-dependent attenuation function: 

 ( ) ,ny ayϕ =  (12) 

where a is the attenuation amplitude, and n is the attenuation exponent. For different imaging 
conditions, these two parameters should be adjusted accordingly. In our case we empirically 
choose a  = 0.01 and n = 2. Then the smoothed image ( , )sI x y  is attenuated with this depth-

dependent function before calculating the image gradient (i.e., grad): 
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 ( , ) ( , ) ( ).sI x y I x y yϕ=  (13) 

This intensity attenuation can greatly facilitate the identification of the first boundary by 
using the shortest path searching algorithm since the first boundary (or the tissue surface) will 
now have the highest gradient in the image. In order to optimize the searching efficiency, we 
adopt the same method as reported in [20, 42] to limit the search area for the segmentation of 
each layer by using the prior knowledge of the tissue layer thickness with a ± 20% tolerance. 
This prior knowledge was acquired from manual segmentation of the endoscopic OCT images 
of the same subject that have a good histological correlation. 

3. Segmentation and optical staining of esophagus images 

The performance of the above segmentation method is tested on in vivo OCT images of 
guinea pig esophagus, which were acquired with an 800-nm ultrahigh resolution endoscopic 
OCT system [6, 7]. Figure 3(a) shows a representative image where some layer boundaries 
can be visually (but vaguely) identified, such as the boundaries of the epithelium (EP), lamina 
propria (LP), and muscularis mucosa (MM). In comparison, our segmentation result is shown 
in Fig. 3(b), where the boundaries of all five layers of interest are successfully identified and 
the layer thicknesses can be further quantified. Unlike [42] in which the images need to be 
numerically flattened before segmentation, our method can directly segment original OCT 
images with undulating layers (and layer boundaries). Furthermore, it can be seen from Fig. 
3(b) that even in the presence of dramatic kinks of tissue layers, e.g. the areas marked by red 
circles, the layer boundaries can still be reliably identified. 

 

Fig. 3. Segmentation of a representative endoscopic OCT image. (a) Representative cross-
section in vivo OCT image of guinea pig esophagus. (b) Segmentation result of (a), with lines 
of different colors indicating the layer boundaries. Red circles indicate areas of dramatic kinks 
of tissues layers. Deep red: boundary 1, SC surface; red: boundary 2, SC/EP interface; orange: 
boundary 3, EP/LP interface; yellow: boundary 4, LP/MM interface; green: boundary 5, 
MM/SM interface; cyan: boundary 6, SM/MP interface. 

As aforementioned, OCT images possess a set of unique challenges conveyed by 
endoscopic setting and luminal organs. Shown in Fig. 4 are exemplary challenging images 
with steep slopes in the layer boundaries (Fig. 4(a)), with partial view-blocking (Fig. 4(c)) 
and with local distortion (Fig. 4(e)). Specifically, steep boundary slopes are usually caused by 
luminal tissue folding or sudden change of the endoscope position relative to the lumen wall; 
partial view-blocking generally results from mucus or blood vessels, or food debris for the 
case of esophagus; image distortion can occur due to non-uniform rotation speed of the 
endoscope. We tested our method on these images and the corresponding results are shown in 
Figs. 4(b), 4(d), and 4(f). As seen from the segmentation results, each tissue layer can be 
accurately identified for all these ill-posed cases, which therefore demonstrated the robustness 
of the method. Furthermore, in order to show the reproducibility of the current method, 50 
sequential OCT images of guinea pig esophagus have been segmented automatically and 
illustrated in Visualization 1 in the supplementary materials. 
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Together with the ultrahigh resolution and high SNR of OCT images, the accuracy 
afforded by the automatic and robust segmentation method offers a unique opportunity to 
optically code tissue structures with different color to achieve in vivo optically stained 
histology-alike images. Various color-coding schemes can be chosen to mimic different 
histological staining effects. Here we use a color scheme similar to (but not exactly the same 
as) the widely-used H&E staining as an example. We stain each layer by mapping the gray-
scale intensity to a designated RGB color map. Figures 5(b) and 5(d) show the optically 
stained OCT images in the Cartesian and polar coordinates, respectively. The image area 
above the tissue surface including the plastic sheath (as boxed with a red rectangle in Fig. 
5(a)) is masked out in both Figs. 5(b) and 5(d). 

 

Fig. 4. Segmentation of the representative ill-posed endoscopic OCT images with different 
challenges. OCT images of a guinea pig esophagus with steep slopes in layer boundaries, 
partially blocked view, and local distortions, are shown in (a), (c), and (e), respectively. Areas 
boxed with red solid lines in (a), (c), and (e) indicate the challenging areas of each image. (b), 
(d), and (f) show the corresponding segmentation results of (a), (c) and (e), respectively. 

Furthermore, automatic and robust segmentation of OCT images enables an efficient 
quantitative analysis of the geometric properties of tissues. For example, we can conveniently 
calculate the average thickness of each layer in terms of optical path length (OPL) for 20 
esophagus images acquired from one 10-week old guinea pig, as shown in Table 1. In order to 
quantitatively validate the accuracy of the proposed method, we recruited two experienced 
OCT image readers who were blinded to the automatic segmentation results. Both readers 
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manually segmented the same set of 20 OCT images independently using a freeform 
(drawing) method implemented in MATLAB (The MathWorks Inc.). As shown in Table 1, 
we found that the automatic method provided similar results as the two readers. In order to 
demonstrate the clinical potential, our method was deployed to segment two sets of 20 guinea 
pig esophagus images, including a control and an EoE model. EoE induction with ovalbumin 
sensitization and challenge was performed following a well-established protocol [43]. Male 
guinea pigs (Hilltop, Scottsdale, PA) with the same age and roughly the same weight were 
used. All animals were handled under protocols approved by the Johns Hopkins University 
Animal Care and Use Committee (ACUC). Two segmented OCT images of esophagus for a 
guinea pig control and an EoE model were displayed in Figs. 6 (a) and (b), respectively. As 
shown in Fig. 6 (c), the layer thicknesses can be quantified by our segmentation method and 
conveniently compared between the control and the EoE model. Together with in vivo optical 
stained histology-alike images, we believe that an accurate quantitative analysis would 
potentially facilitate the study of tissue pathologies and aid clinical diagnosis in real time 
[44,45]. 

 

Fig. 5. Optical staining of representative endoscopic OCT images. (a-b): OCT image of guinea 
pig esophagus and its optical staining version in Cartesian coordinates. (c-d): OCT image of 
guinea pig esophagus and its optical staining version in polar coordination. Red box in (a) 
contains a residual portion of the plastic sheath was exclude from optical staining. 
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Table 1. Automatic versus manual segmentation of layer thickness for guinea pig 
esophagus 

Layer 

(μm, OPL) SC EP LP MM SM 

Automatic 

Thickness 
 
33.3±1.1 

 
23.1±1.1 

 
15.4±0.9 

 
14.5±0.9 

 
24.3±1.1 

Manual 

Thickness 

Reader 1 

 

Reader 2 

 
 
 
34.1±1.0 

 
 
33.0±0.9 

 
 
 

22.4±1.0 
 
 

23.5±1.0 

 
 
 

14.7±0.7 
 
 

15.0±0.9 

 
 
 

14.8±1.1 
 
 

14.1±1.0 

 
 
 

24.6±1.2 
 
 

24.0±1.1 

 

 

Fig. 6. Two representative OCT images of guinea pig esophagus segmented with our method 
for a control (a) and an EoE model (b). (c) Comparison of the esophageal layer thickness for a 
guinea pig EoE model and control. SC: stratum corneum; EP: epithelium; LP: lamina propria; 
MM: muscularis mucosae; SM: submucosa. “*” indicates the thickness difference between the 
EoE model and control is statistically significant with a P-value less than 1 × 10−7 for all five 
layers (based on two-tailed Welch’s t-test, n = 20). 

4. Discussions and conclusions 

In summary, an automatic segmentation method with high robustness has been proposed and 
validated for segmenting endoscopic OCT images. By employing an L1-L0 norm minimization 
based de-noising and smoothing algorithms, our method works well on low-SNR and low-
contrast images. By introducing depth-dependent digital attenuation of the image intensity, 
the tissue surface and other layer boundaries can be accurately and sequentially identified. In 
addition, accurate segmentation of OCT images of ultrahigh resolution and high SNR enables 
optical staining of OCT images and facilitates the quantitative analysis of tissue geometric 
parameters. It is worth mentioning that our method can serve as a generic segmentation 
method and be conveniently adopted for segmenting other endoscopic OCT images (such as 
airway and colon) and non-endoscopic OCT images (such as retina). This method can also be 
potentially used to segment histopathological micrographs for patterns/features extraction and 
identification. 
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As one of the limitations, the computational efficiency of current algorithm is suboptimal 
for real time applications. As a benchmark test, CPU timing was carried out on a personal 
computer with a Windows 7 operating system, an Intel Core i7 at a base processor frequency 
of 2.4 GHz and 8GB RAM. Algorithm was implemented in MATLAB. Computational time 
was measured to be ~6.63 seconds per frame (2048 A-lines/frame and 2048 pixels/A-line). In 
addition, the current algorithm only segments a predefined number of layers, for example, the 
first 5 layers of the esophagus tissue in our case. Future work and effort can be concentrated 
on GPU implementation for improving computational speed and algorithm optimization for 
adaptive selection of the number of layers for segmentation. It is also worth noting that our 
current optical staining colormap was mainly used for showing the layers segmented by the 
reported method. More studies and validations on the color coding methods will be carried 
out in the near future in order to better reflect the histomorphology of tissues. Furthermore, 
the MATLAB based source scripts for the reported method are available by emailing request 
to jhu.bme.bit@gmail.com. 
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