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Abstract: We measured hemoglobin oxygen saturation (sO2) in the retinal circulation in 

healthy humans using visible-light optical coherence tomography (vis-OCT). The 

measurements showed clear oxygenation differences between central retinal arteries and veins 

close to the optic nerve head. Spatial variations at different vascular branching levels were 

also revealed. In addition, we presented theoretical and experimental results to establish that 

noises in OCT intensity followed Rice distribution. We used this knowledge to retrieve 

unbiased estimation of true OCT intensity to improve the accuracy of vis-OCT oximetry, 

which had inherently lower signal-to-nose ratio from human eyes due to safety and comfort 

limitations. We demonstrated that the new statistical-fitting sampling strategy could reduce 

the estimation error in sO2 by three percentage points (pp). The presented work aims to 

provide a foundation for using vis-OCT to achieve accurate retinal oximetry in clinical 

settings. 

© 2017 Optical Society of America 
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1. Introduction 

Retinal oxygen metabolism is a key factor in the pathogenesis of leading blinding diseases, 

including diabetic retinopathy (DR) and age related macular degeneration (AMD) [1–4]. 

There are growing evidences suggesting that functional variations precede structural 

alterations [2, 4–8]. Thus, retinal metabolic rate of oxygen (rMRO2), a hallmark of retinal 

metabolism, may be a key biomarker for early disease screening, evaluating disease severity, 

and monitoring response to therapeutic intervention. Two main parameters, retinal blood flow 

and retinal oxygenation, are required to quantify rMRO2. Retinal blood flow can be calculated 

given the diameter of retinal blood vessels and their flow velocity, both of which can be 

reliably quantified using the state-of-the-art ophthalmic imaging tools [9–11]. Therefore, the 

major challenge that hinders the incorporation of rMRO2 into ophthalmic care is the lack of a 

well-established method for accurate retinal oxygen measurement in clinics. 

Though several existing technologies have been explored to quantify retinal oxygen, they 

are currently not suitable for measuring rMRO2 during routine clinical visits. For example, 

the most accurate method in ophthalmic research uses intra-retinal microelectrodes to directly 

measure the oxygen tension in the retina [8, 12–14]. Unfortunately, the invasive nature of this 

procedure limits its practice, and only approximate measurements can be obtained at the 

retinal surface in human subjects during surgical procedures, such as vitrectomy [12]. 

Another disadvantage of microelectrode measurement is that it is nearly impossible to map 

the oxygen tension over a larger area in the retina. In order to identify spatial distribution of 

oxygenation in individual retinal blood vessels, imaging-based methods are required. For 

example, phosphorescence lifetime imaging can map the oxygen tension in mouse retinal 

vessels based on oxygen-dependent emission quenching of the injected phosphorescent probe 

[15, 16]. Unfortunately, the need to introduce toxic fluorescent probes into the systemic 

circulation makes it inappropriate for human uses. Magnetic resonance imaging (MRI) can 

detect dynamic retinal oxygenation response non-invasively in humans following inhalation 

challenge [17, 18]. However, MRI has low resolution and provides only qualitative 

measurement. Most importantly, this approach relies on dynamic contrast variation after 

oxygen challenge and cannot provide steady-state measurements [18]. 

Recently, researchers focused on image-based extraction of hemoglobin oxygen saturation 

(sO2) rather than direct measurements of oxygen tension. sO2 describes the percentage of 

hemoglobin binding sites occupied by oxygen molecules. Together with blood hemoglobin 

concentration, sO2 can reveal the amount of oxygen carried in the blood, fulfilling the 
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requirement for rMRO2 calculation. Optical measurement of sO2 is possible because the two 

forms of hemoglobin, oxy- and deoxy-hemoglobin (HbO2 and HbR), have distinct optical 

properties. As the optical absorption coefficient of whole blood is the linear combination of 

these two forms of hemoglobin, multi-wavelength spectroscopy can be used to retrieve 

relative HbO2-HbR concentration ratio and thus sO2. Fundus photography [4–7], scanning 

laser ophthalmoscopy [19], and hyperspectral imaging [20, 21] have all been investigated to 

measure retinal circulation sO2 in humans. These approaches rely on the backscattered 

photons from blood vessels and share similar imaging principle. The major drawback of these 

approaches is that they can only provide two dimensional en face images, which are 

susceptible to various interferences and noises in quantifying sO2. Monte Carlo simulation of 

photon transport in the retina shows that quantified sO2 are susceptible to (1) multiply 

scattered photons, (2) variations in blood vessel diameter, and (3) melanin concentration in 

the retinal pigment epithelium (RPE). All these factors collectively contribute up to 20% error 

in measuring sO2 [22]. In contrast, photoacoustic ophthalmoscopy (PAOM), a three-

dimensional (3D) imaging modality that is sensitive to optical absorption contrast, is robust at 

removing the influence from the background and multiple scattering. However, PAOM 

requires an ultrasound detector in direct contact with the eyelid [23–25] and no human retinal 

imaging has been demonstrated yet. 

Visible light optical coherence tomography (vis-OCT) is an emerging non-invasive 

imaging modality suitable for retinal oximetry [26, 27]. Similar to traditional OCT, it uses a 

broadband light source to provide high-quality anatomical imaging in 3D based on low 

coherence interferometry. Instead of using near infrared (NIR) light as in all commercial OCT 

systems, vis-OCT takes advantage of visible light spectrum for improved resolution, and 

arguably enhanced scattering contrast from certain tissues [28]. Most importantly, sO2-

dependent hemoglobin optical absorption has the strongest spectral contrast within the 

visible-light wavelength range, which further facilitates sO2 quantification [29]. If vis-OCT 

retinal oximetry can be successfully developed in humans, it will have the following 

advantages: first, 3D imaging and coherent detection minimize the influence from 

surrounding tissues to warrant high sO2 quantification accuracy; second, vis-OCT has access 

to a more continuous optical absorption spectrum of blood, which facilitates inverse 

calculation since spectral fitting provides much higher sample density than discrete multi-

wavelength measurements in other modalities; third, because conventional OCT is routinely 

used in ophthalmic clinics worldwide, adding functional imaging capability to OCT will 

enable a quick clinical adoption [30]; and fourth, OCT is a versatile technology which has 

already demonstrated accurate measurement of diameter and blood flow velocity within 

retinal vessels [9, 24]. Therefore, vis-OCT, providing both sO2 and blood flow measurements, 

has the potential to quantify rMRO2 by a single imaging modality, which has not been 

previously possible. 

We are focusing on translating vis-OCT from benchtop to clinical applications. Previous 

studies have shown the capability of vis-OCT to quantify retinal sO2 in rodents under both 

normal conditions and during oxygen challenge [27, 31, 32]. In addition, dynamic rMRO2 

measurement was also demonstrated [27]. Recently, we developed a human vis-OCT 

prototype, which retrieved structural retinal images with fine details and sub-micrometer axial 

resolution [33]. In this study, we seek to quantify sO2 within central retinal circulations in 

healthy human volunteers. Our vis-OCT oximetry revealed that retinal arteries and veins in 

close proximity to the optic nerve head had at least 20% difference in sO2. Moreover, we 

observed sO2 variations in different levels of arterial branches. To overcome the low signal-

to-noise ratio (SNR) in humans as compared with rodents due to reduced illumination power 

and stronger attenuation from larger eyeballs, we developed a statistical fitting-based 

approach for sampling OCT intensity. Then we showed that we could use this approach to 

obtain true OCT intensities in noisy images and discussed vis-OCT oximetry in details. 
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2. Methods 

2.1 Hunan subject recruitment 

Our studies were approved by the Northwestern University Institutional Review Board (IRB), 

and adhered to the tenets of the Declaration of Helsinki. All procedures took place in the 

Ophthalmology Department at the Northwestern Memorial Hospital. Healthy volunteers were 

recruited during their routine clinical visits. All recruited volunteers were provided informed 

consent before participation. Prior to imaging, all subjects underwent a complete eye 

examination performed by an ophthalmologist. Inclusion criteria required that the subject 

should have normal or near-normal vision. If the subject wore corrective lenses, they were 

eligible if the refractive error was in the range of + 2 to 6 diopters. Subjects with known 

retinal diseases, significant cataract, or vitreous cloudiness were excluded. Subjects 

underwent pupil dilation during their routine eye examination before vis-OCT imaging. 

2.2 Data acquisition 

The core of the human vis-OCT prototype is a Michelson interferometer using a 

supercontinuous laser (SuperK EXTREME EXW-6, NKT Photonics). The detailed 

specifications and capabilities of the system were described in details in our previous 

publication [33]. Briefly, the spectrum of the illumination light ranged from 506 nm to 621 

nm, giving us the previously-characterized axial resolution of 0.97 µm in air. The square 

field-of-view (FOV) covered roughly 5 × 5 mm
2
 on the retina. We switched between two 

raster scanning protocols, (1) 128 × 8 (A-lines × B-scans) during alignments and (2) 512 × 

256 for acquisition, to optimize the tradeoff between imaging time and scanning density. The 

A-line rate was 25 kHz. In most imaging sessions, the laser intensity on the cornea was 220 

µW. However, in rare cases, it was moderately increased to 280 µW to compensate for 

increased optical attenuation in older subjects. Even at the higher intensity, it was still well 

within the safety limit under the American National Standards Institute (ANSI) laser safety 

guidelines [34]. 

We imaged either one or both eyes of each volunteer. In the cases where only one eye was 

imaged, the right eye was preferred. We gently positioned the subject’s head on a motorized 

chin rest, which was translated using a remote control. During alignment, the subject was 

instructed to follow a fixation target using the fellow eye, while the operator monitored the 

real-time vis-OCT scans to locate a proper region-of-interest (ROI). Once we identified the 

desired ROI, we asked the subject to keep his/her eyes wide open and refrain from blinking 

during acquisition. Each acquisition took 5.2 seconds, and the entire session lasted less than 

five minutes per eye. 

2.3 Vis-OCT oximetry 

We applied our previously established spectroscopic algorithms to retrieve sO2 [31]. Its 

accuracy and stability have been characterized using mathematical modeling, verified using 

ex vivo phantom experiments, and further confirmed during in vivo rodent studies [27, 35]. 

Briefly, we applied a series of short-time Fourier transforms (STFT) to split the entire OCT 

interferogram into multiple spectral sub-bands. Each sub-band was then individually 

reconstructed for its corresponding vis-OCT image stack. We manually assigned a ROI for 

each identified vessel along its longitudinal axis. We sampled its spectroscopic vis-OCT 

intensities from all sub-bands within a 25 µm thick slab located in the middle of the vessel. 

To inversely calculate sO2, we employed a modified Beer-Lambert’s law described in our 

previous work [31] and established a linear relationship between the measured spectroscopic 

vis-OCT intensity and sO2. Thus, we can retrieve blood sO2 from the target vessel by least-

squares fitting of the experimental data to the known attenuation spectra of oxygenated and 

deoxygenated whole blood. 
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2.4 Statistical sampling strategy on noisy vis-OCT images 

Retrieving unbiased true vis-OCT intensity from the selected ROI is the key to accurate sO2 

calculation. Unfortunately, satisfying this requirement is often challenging in clinical settings, 

where SNR is usually sub-optimal due to safety and comfort limitations. The most 

straightforward way to cancel the effects of noise is to calculate the arithmetic mean value of 

a larger ROI. Unfortunately, the noises in OCT intensity images are not zero-mean due to the 

modulus operation applied as shown below, precluding the use of simple arithmetic average 

for obtaining unbiased estimation in low SNR situations. 

Here we present a statistical fitting method to retrieve unbiased estimation of the true 

OCT intensity. This approach is based on the statistical distribution model of OCT intensity 

in noisy images. Our derivation assumes spectral-domain OCT (SD-OCT), but can be adapted 

for swept-source OCT (SS-OCT). Each spectrometer detector element recorded interferogram 

intensity D[ki], where i indicate the sequence of the elements (i = 1, 2, …, N; N is the total 

number of elements); ki is the corresponding optical wavenumber for the i
th

 element. Discrete 

Fourier transform translate the spectral domain interferogram into complex OCT A-line 

profiles d[xi] in the spatial domain, 

    
1

1
d D ,n i

N
jk x

i n

n

x k e
N





   (1) 

where xi is the depth index. The scaler term, 1/N, normalizes the transform so that the result is 

independent from transformation length. OCT intensity can be expressed as the modulus of 

the complex profile, |d[xi]|. In a noise-free system, |d[xi]|
2
 is proportional to the amount of 

light energy back-scattered from sample depth xi. Thus, our goal is to estimate the true value 

of |d[xi]| when it is biased by noises. 

First, we must address the question that how stochastic noise translates from the spectral 

domain to the spatial domain. We base our derivation on a shot-noise limited OCT system, 

which is an accepted model to study SNR in OCT [36, 37]. Shot-noise originates from the 

discrete nature of photons, which arrive at the CCD detector at random interval during the 

exposure time. This stochastic process can be modeled by Poisson distribution. When the 

photon number is large, it approximates normal distribution. Thus, we write the general 

expression of spectrometer signal for each detector element as, 

      s nD D D ,i i ik k k   (2) 

where Ds[ki] is the noise-free signal and Dn[ki] is an additive noise term. For each ki, Dn[ki] is 

independent and obeys normal distribution, where its expected value   nE D 0ik  . At the 

current stage, it is safe to assume that all Dn[ki] share the same variance,    2

nVar D ik  . 

These treatments are consistent with earlier discussion on the SNR of OCT systems [36]. 

Combining Eq. (1) and Eq. (2) leads to 
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 (3) 

Apparently, ds[xi] is the noise-free A-line and dn[xi] is the additive noise term. First, we 

examine the OCT background noise when  sd 0ix  . Decomposing Eq. (3) using Euler’s 

formula leads to 
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For simplicity, we define    n

1

1
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n n i
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   and    n
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The OCT intensity can thus be expressed as the modulus of the complex profile 

   2 2

0 .id x Re Im   (5) 

It becomes clear that the statistical distribution of OCT background intensity |d0[xi]| depends 

on the statistical distribution of Re and Im. Here, we only provide explicit analysis on Re, as 

the two terms are symmetrical and readers can apply the same approach to reach the 

conclusion for Im. Based on the notion that Dn[ki] are independent and follow normal 

distribution, we have the expected value of Re 
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as well as the variance, 
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Here we introduce a scaler,  2

1

1
cos

N

n i

n

C k x
N 

  , to simplify the expression to 

  2Var σ
C

Re
N

 . When N is large, C is approximately 0.5. In addition to mean and variance 

calculations, we know that Re follows normal distribution, as it is the weighted sum of 

independent normally distributed random variables. Thus, we denote 

2~ Normal 0,   σ
C

Re
N

 
 
 

. Similarly, we also have 
2~ Normal 0,   σ

C
Im

N

 
 
 

. One can further 

prove that Re  and Im  are uncorrelated, as their covariance are zero due to the orthogonality 

of the trigonometric functions. In addition, as the vector pair , Re Im  satisfies the definition of 

multivariate normal distribution, it leads to the conclusion that that Re  and Im  are indeed 

two independent random variables, even though they share the same origin. 
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Upon inspection of Eq. (5), it becomes clear that OCT background intensity |d0[xi]| 

follows generalized chi distribution with two degrees of freedom, or Rayleigh distribution. 

The probability density function (pdf) of  0d ix t  is, 

  

2

22 σ
2

,   0;
σ

0,  otherwise.

Nt

C
Nt

e t
f t C


 

 



 (8) 

Now, we extend the same analysis chain toward the non-background area, i.e., the features 

in the OCT intensity image. Similarly, we decompose the noise-free A-line into real and 

imaginary parts,  sd ix a jb  , where a and b are both deterministic functions of xi. 

  2 2d as ix b   is the desired true OCT intensity. We can re-write Eq. (4) and Eq. (5) as 

      d  ix a j b Re j Im a Re j b Im           (9) 

and 

      
2 2

d .ix a Re b Im     (10) 

It is again apparent that  a Re  and  b Im  are two normally distributed random 

variables and we have   2~ Normal ,   σ
C

a Re a
N

 
  

 
 and   2~ Normal ,   σ

C
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  

 
, 

respectively. Thus, |d[xi]| follows non-central generalized chi distribution with two degrees of 

freedom, also known as Rice distribution. The pdf for  0d ix t  is 
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 (11) 

I0 is the modified Bessel function of the first kind. We further introduce a scaler 

2 2σ
C

N
   to simplify the expression. It has the same expression as the variance of the above 

Rice distribution. Another scaler 2 2a b    has the same expression as |ds[xi]|. Notably, ν 

is independent from the noise term σ. Thus, we have successfully separated OCT signal from 

noise, while the value of ν represents the true OCT intensity. For small signal 0  ,  g t  

degenerates to  f t  as expected. Thus, Eq. (11) can be used as a general expression to model 

the statistical distribution of OCT pixel intensity. By performing a statistical fitting on Eq. 

(11) using experiment results, we can determine ν and ε, thus retrieving the true OCT 

intensity. 
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Fig. 1. Statistical characteristics of noise in OCT. (a) Simulated interferogram with added 

Gaussian noise from a single reflective surface (red solid line). The black solid line is the noise 
free interferogram. The shaded area depicts S.D. of the added noise, which corresponds to 

SNR = 30 dB for the reconstructed image; (b) The distribution of the corresponding non-DC 

peak values on the 2D complex plane after discrete Fourier transform reconstruction. The 

insert shows the spatial distribution of the complex values in the 2D plane, which were tested 

to follow bi-variate normal distribution. (c) The distribution of the modulus r. The solid line is 

generated using the data from (a) and (b). The dashed line showed a non-symmetrical case 
where SNR was much worse (10 dB). 

Figure 1 illustrates the above theory using numerical simulation. We started from a 

sinusoidal interference spectrum with a length N = 2048 [Fig. 1(a)]. Then we introduced 

random white Gaussian noise additively to the interference spectrum. The standard deviation 

(S.D.) of the noise was chosen to produce an SNR of 30 dB (non-DC peak intensity vs. 

background S.D.) in the reconstructed OCT signal. The shaded area depicted ± S.D of the 

additive noise. After applying discrete Fourier transform on the simulated spectrum, we 

retrieved the complex value corresponding to the non-DC peak in the transformed result. It 

was subsequently plotted in the complex plane [Fig. 1(b)]. We repeatedly generated the 

spectra and the associated non-DC peak data points 10,000 times to reach a statistically stable 

solution. The entire process was analogous to sampling a homogenous region in a vis-OCT 

image at a specific depth, such as within a blood vessel. After all data were collected, we 

tested the spatial distribution of these complex points and found they follows bivariate normal 

distribution as discussed above. In addition, both the real and imaginary components followed 

univariate normal distribution. We then calculated the modules r of these points, which 

follows Rice distribution. Its pdf was depicted by the gray solid line in Fig. 1(c). For 

comparison, we conducted the entire simulation again using an interference spectrum with 

smaller modulation amplitude. The reconstructed signal had an SNR of 10 dB and the 

distribution of the modules r showed the unsymmetrical nature of the Rice distribution (the 

gray dashed line). In both cases, we performed statistical fitting using the obtained modules r 

distribution curves. The parameter ν from the fitting agreed with the constructed modulation 

amplitude of the simulated interference spectrum, verifying that ν was the unbiased 

estimation of true OCT intensity. 

The flowchart in Fig. 2(a) summarizes the steps for retrieving true OCT intensity from 

human vis-OCT images. Following these steps, we subsequently tested our theory on a 

moderate-quality human vis-OCT image [Fig. 2(b)]. Here we define regional SNR (rSNR) as 

the ratio between the sampled mean OCT intensity and the background standard deviation 

within a select ROI. The latter was estimated using B-scans that don’t contain any identifiable 

anatomical structures at the given depth from the same volumetric scan. The vessel area (box 

1) has rSNR of ~5 dB. We plotted the probability density of OCT intensities of three regions 

in Figs. 1(c)-1(e) in gray lines, respectively. It was then fitted using Rice distribution, and the 

corresponding theoretical curve were plotted on top of the experiment data in red lines. In all 

three cases, the coefficient of determination (R
2
) was at least 0.96, indicating a close fit. In 

Fig. 1(c), we observed minor discrepancies between the fitted OCT intensity from parameter 

ν (red arrow) and the arithmetically averaged mean (gray arrow). In both Fig. 1(d) and 1(e), 
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the fitted OCT intensity (parameter ν) were close to zero (< 0.01) as expected, because both 

regions were backgrounds without any features. However, arithmetic means were biased 

(gray arrows) due to asymmetry of the modulus operation. 

 

Fig. 2. (a) Flowchart showing the steps of retrieving true OCT intensity using statistical fitting 

approach. For OCT oximetry, the same ROI is used for all narrow-band images. (b) A typical 
human vis-OCT B-scan image showing three sampling regions: one from within a blood vessel 

(1) and two from the background at different depths (2) and (3). (c) The pdf of OCT intensity 

(gray line) from box (1) and its statistical fitting (red line). The gray and red arrows indicate 
the arithmetic mean and fitted OCT intensity, respectively. (d) and (e) The pdfs of pure OCT 

noise intensities from the background at their respective depths in gray lines (boxes 2 and 3). 

Red lines are the corresponding statistical fittings. The gray arrows indicate arithmetic means. 
The fitted OCT intensities were both approximately zero. 

It is worth noting that even though we developed the model assuming that the added noise 

was independent among detector elements, it could also be applied to situations when added 

noise share certain correlations. Specifically, there existed cross-talk between adjacent 

detector elements as introduced by the limited optical resolution of the spectrometer optics. In 

addition, the supercontinuum laser source used in our vis-OCT system contained high levels 

of relative intensity noise (RIN), which had strong 1/f dependency. It led to the observation 

that A-line regions closer to the zero delay line had higher background noise. If simple 

arithmetic mean were used, it would appear that the region closer to the zero-delay line (box 

2) had higher averaged OCT intensity than the one further away from the zero-delay line (box 

3), which were demonstrated in Fig. 1(d) and Fig. 1(e) (gray arrows). However, our 

statistical-fitting model was unaffected by this influence. The differences in noise level 

manifest itself in terms of the variance of the distribution, or the width of the pdf curves 

plotted, which did not affect the estimated OCT intensity. 

3. Results 

3.1 Statistical sampling can reduce oximetry estimation error 

To demonstrate how the aforementioned statistical sampling approach benefit vis-OCT 

oximetry, we carried out the following numerical simulation. We repeatedly generated 

sinusoidal inteferogram spectrum with different levels of added Gaussian noises, yielding 

various SNR from 30 dB down to 0 dB. Then, we sampled the corresponding OCT intensity 

using both arithmetic mean (gray solid line) and statistical fitting (red solid line). The error in 

each measurement was interpreted as relative S.D. against the known preset true values. As 

shown in Fig. 3(a), when SNR was good (>20 dB), both methods had negligible deviations 

from the preset values. However, as SNR decreases, the estimation errors of arithmetic mean 
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approach increased exponentially. In contrary, the statistical fitting approach provided more 

stable estimation in the 10 dB to 0 dB range. 

 

Fig. 3. Comparison of OCT intensity sampling errors on the accuracy of sO2 estimation. (a) 

The relative S.D. of extracting OCT intensities using arithmetic mean (black line) and 

statistical-fitting approach (red line) under different SNRs; (b) Numerical simulation result on 
sO2 estimation error at different pre-set sO2 level and relative S.D. of sampled OCT intensity. 

(sO2: 100% = 1). 

Undoubtedly, the sampling error in the OCT intensity will propagate through the least-

squares fitting process to affect the accuracy of sO2 measurements. Unfortunately, due to the 

non-linearity of the non-negative fitting algorithm used, it is challenging to analytically 

formulate the direct correlation. However, we believe that a numerical simulation, though 

greatly simplified, can shed light on such connection and fulfill our analytical needs. 

Specifically, we simulated the transmission spectrum of blood at different sO2 level (0.4 to 

0.95) using Beer-Lambert’s law. For each sO2 level, we perturbed the transmission spectrum 

by adding additive Gaussian noises. The relative S.D. of the noise was inferred from the 

findings in Fig. 3(a) and ranged from 0 to 0.3. We used non-negative least-squares fitting 

algorithm to retrieve sO2 values from the distorted spectra. Figure 3(b) depicted the 

relationship among pre-set sO2, relative errors in the sampled OCT intensity, and sO2 

estimation error. We empirically assumed that sO2 estimation error of less than 5 percentage 

points (pp) is acceptable, as is to the left of the highlighted white solid line. Using the 

relationship depicted in Fig. 3(a) and the average spectroscopic vis-OCT image rSNR of 3-5 

dB, we found that the statistical fitting approach shifted the estimation error region from the 

right dashed box to the left one, which roughly indicates a 3 pp reduction in sO2 estimation 

error. 

Though seemingly small, such 3 pp reduction in error is significant in clinical sO2 

measurements. First, spectroscopic OCT have even lower rSNR (2-3 dB drop) than the one 

shown in Fig. 2(b) due to fewer detector elements contributed to each narrow-band images 

[36]. Second, a 3 pp reduction in the measurement error is critical in disease management, as 

pathophysiological alterations in retina circulation sO2 can be very small in early stages of 

blinding diseases such as diabetic retinopathy [8, 27, 38]. Reducing measurement error will 

lead to higher confidence level in identifying a statistical significant alteration, leading to 

higher diagnostic sensitivity in human studies. 

3.2 Vis-OCT oximetry 

Figure 4 shows the vis-OCT imaging results from four volunteers. Images in each row were 

obtained from different individuals’ eyes. Table 1 summarizes the basic information of the 

volunteers and the condition of the eyes. 
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Fig. 4. Vis-OCT imaging results with different rSNRs from four healthy volunteers (A to D). 
Column i: vis-OCT en face fundus images. Column ii: vis-OCT B-scan images from the 

corresponding locations highlighted by the dashed lines in column i. Column iii: OCT intensity 

spectrum taken from the identified central retinal arteries (A1, black curve) and their 
corresponding least-squares fitted results (red line). Column iv: OCT intensity spectrum taken 

from the identified central retinal veins (V1, black curve) and their corresponding least-squares 

fitted results (red line). 

Column i of Fig. 4 are the en face vis-OCT fundus images. The FOV of the fundus images 

covers 6.4°, positioned within close proximity to the optic nerve head (ONH) to visualize the 

first- and second- order branches of the central retinal arteries and veins. At the current stage, 

the FOV selection around the ONH is intended to test sO2 quantification at different vascular 

branching levels. 

Table 1. Summary of the imaged volunteers. 

Volunteer Age, Gender Refractive error Condition 
Eye, Location 

A 27, F N/Aa Healthy 
OD, nasal 

B 27, M 6.00 Healthy OD, inferotemporal 

C 38, F 3.75 Healthy OD, inferior 

D 60, F 3.00 Minor cataract 
OD, inferotemporal 

aThe subject was satisfied with her vision and refractive error was not measured. Subject was not using 

refractive correction or contact lenses. 

Vis-OCT images from the volunteers A and B have the highest qualities, registering peak 

rSNR of 12 dB and 11 dB within the blood vessels, respectively. The image from the 

volunteer C has moderate peak rSNR of 9.3 dB. Volunteer D’s image has the lowest peak 
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rSNR of 8.4 dB, possibly due to extensive attenuation in the probing beam caused by age and 

minor cataract. In A and B, vis-OCT visualized arterioles and venules as small as 25 µm in 

diameter. In addition, the stripe patterns found in A and B correspond to nerve fiber layers 

(NFL) [33]. Two vis-OCT B-scan images, each averaged from 2 adjacent frames, are shown 

for each volunteer. The locations of the B-scan images are highlighted by the dashed-lines in 

column i. Appendix Fig. 6 provides a detailed labeling of the 13 identified layers from the 

vis-OCT B-scan A-ii. 

We manually selected rectangular ROI’s within major artery and vein branches, which 

were indicated by the yellow dashed-boxes in column i. For each ROI, we followed the steps 

outlined in the methods section to retrieve true OCT intensity spectra. The obtained spectra 

were plotted in column iii and iv of Fig. 4 for identified first order arteries (A1) and veins 

(V1), respectively. Least-squares fitting on each individual spectrum yielded sO2 of the 

correspondent retinal vessel segment. These fitted curves were plotted on top of the 

corresponding experiment spectra along with the measured sO2 values. 

Table 2. Reduction on sO2 measurement error (Δσ) using statistical fitting (SF) against 

arithmetic mean (AM). sO2 values are mean ± S.D of 10 measurements. 

  Row A  Row B  

  A1 V1  A1 A2 A3 V1 V2  

rSNR [dB]  10.5 10.7  10.4 9.7 8.7 9.4 8.7  

SF sO2 [%]  92 ± 3 77 ± 4  92 ± 4 90 ± 5 89 ± 4 75 ± 5 73 ± 5  

AM sO2 [%]  92 ± 5 78 ± 6  89 ± 7 89 ± 9 89 ± 9 78 ± 8 74 ± 10  

Δσ [pp]  2 2  3 4 5 3 5  

Table 2. Continued 

  Row C  Row D  

  A1 A2 A3 V1  A1 V1  

rSNR [dB]  9.3 9.1 8.1 8.9  8.4 5.5  

SF sO2 [%]  97 ± 3 94 ± 3 89 ± 4 77 ± 5  95 ± 4 81 ± 6  

AM sO2 [%]  95 ± 5 95 ± 5 89 ± 7 76 ± 8  95 ± 7 81 ± 11  

Δσ [pp]  2 2 3 3  3 5  

In additional to extracting retinal sO2 from selected ROI’s, we further verified that our 

statistical fitting method (SF) can reduce OCT oximetry measurement error against arithmetic 

mean approach (AM). For each vessel branches identified in Fig. 4, we randomly adjusted the 

ROI position and size by a small amount within the vessel segment, and then re-calculated 

sO2 using both SF and AM. We repeated the process ten times and summarized the results in 

Table 2. The human experimental results suggested similar findings to our simulation results 

in section 3.1. First, sO2 measurement error generally increased as rSNR worsened. Second, 

SF sO2 results yield smaller errors than the corresponding AM values at all tested rSNR 

levels. Third, the largest measurement reduction for SF method appeared at lower rSNR 

values. Specifically, when rSNR fell below 8.7 dB, SF gave us a 5 pp reduction in the error. 

Our measurement showed that first order arteries had an sO2 value at least 20 pp higher 

than the corresponding first order veins (p-value < 0.01). For the volunteers B and C, where 

multiple orders of retina vessel branches could be observed, we further plotted blood sO2 

against the branch orders. The results shown in Fig. 5 suggest that the oxygen content 

decreases as arteries bifurcate and travel downstream. Meanwhile, central retinal vein tends to 

have higher sO2 values when it is closer to the ONH. 

Though we could not find reference to this finding in previous literature on spatial 

distribution of retinal sO2 [39, 40], these observations are consistent with Murray’s law [41]. 

Murray’s law established a predictive model between transmural oxygen gradient and 

perfusion pressure gradient, which suggested that higher branch-level vessels should have 

greater oxygen unloading rate, or lower sO2 values. Furthermore, due to the proximity to the 

supplying retinal arteries and lower photoreceptor density, the region proximity to the OHN 

may demonstrate higher regional oxygen tension, and thus higher venular sO2 as unutilized 
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oxygen molecules diffuse back into the vein [40]. Nevertheless, the observed variations are 

small (4-5 pp), and are likely to be neglected if the measurements were not precise enough. 

 

Fig. 5. Variations of sO2 in major retinal artery and vein branches. The vessel branches are 

taken from ROI’s identified in the corresponding vis-OCT fundus images in Fig. 4. The arterial 

and venous sO2 difference is statistically significant (**: p < 0.01). 

4. Discussion 

In this work, we showed vis-OCT results from four healthy volunteers of both genders with 

an age span from 20s to 60s. We retrieved sO2 in major central retinal veins and arteries 

following spectroscopic analysis. To increase the accuracy of sO2 estimation when the SNR 

was low, we developed a statistical-fitting based sampling strategy. We verified the sampling 

strategy both theoretically and experimentally. In addition, both numerical simulation and 

human experimental data showed that the new approach reduces sO2 estimation error by 

about 3 percentage points. However, there are still some caveats associated with the statistical 

model, as detailed in the following discussion. 

First, we neglected speckle variations in our OCT intensity statistical model as we focused 

on low SNR situations. However, speckle variance is one of the major noise sources in higher 

quality OCT images. Speckle arises as the interference of diffusively reflected light. 

Unfortunately, the diffusive nature of the speckle mandates that its properties are difficult to 

describe using a simple formula, as it is affected by a combination of the illumination light 

and the microscopic structure of the sample. Schmitt et al explored the characteristics of 

speckle in OCT when imaging biological tissues [42]. They found that the OCT intensity 

from single polarized quasi-monochromatic illumination follows a pdf of exponential 

distribution. For unpolarized light, the incoherent addition of the two orthogonal components 

leads to a first order negative exponential distribution, which is related to Rayleigh 

distribution [42]. In our study, we obtained a second-order negative exponential distribution, 

which is also related to Rayleigh distribution. As a result, it is possible that the effects of 

speckle might be absorbed into our formula, due to the fact that we used a higher order 

model. More recently, Mahmud et al reported in a review article on OCT speckle variance 

that OCT intensity follows Gaussian distribution in solid tissues, while it changes to Rayleigh 

distribution in fluids [43]. It is worth noting that both these two distributions are the special 

cases of Rice distribution ( v  leads to Gaussian distribution; and v   leads to Rayleigh 

distribution). The former situations are likely to be satisfied in high SNR images within solid 

tissue, and the later in fluids with high speckle variance, respectively. In such sense, our 

model might serve as a generalized description for OCT intensity variances. 

Second, we noticed that our statistical model fails when blood flow reaches fringe 

washout velocity. In this situation, OCT intensity decreases significantly within the blood 

vessels. We observed a left-shifted peak and elevated tails when doing statistical fittings on 

regions with high blood flow. We can avoid this detrimental effect by limiting the ROIs to 

where the Doppler angle is large. As Doppler effect is most pronounced when the actual flow 

is parallel to the probing beam, limiting the Doppler angle close to 90° can minimize the 

perceived velocity by OCT detection so as not to reach the fringe washout threshold [44]. In 
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addition, we consistently monitored the fitting process and rejected any fittings with R
2
 less 

than 0.95. In case of rejected fittings, the ROI is moved to a different appropriate region 

where the established model held. Using the approach, we were able to extract and calculate 

sO2 from various branches of central retinal arteries and veins. We also observed lower sO2 

with increasing orders of vascular branching. The observation is in accordance with Murray’s 

law on oxygen exchange in capillaries [41]. 

It is worth noting that our measured sO2 of retinal veins are at the higher range compared 

to previously reported values [39, 40, 45, 46]. All these results were obtained by the less 

accurate multiple wavelength diffusive fundus imaging, which has intrinsic vulnerability due 

to lack of axial resolution and strong influences from vessels diameter and RPE pigmentation 

variations [22]. There are also a few other possible reasons that we cannot completely rule out 

currently. First, our sampling ROI’s are close to the root of ONH. It is possible that the higher 

oxygen tension around ONH leads to elevated sO2 within veins [40]. However, due to the 

lack of a gold standard in retinal oxygenation measurements, it is premature to draw a 

definitive conclusion on this discrepancy. Second, there is a possibility that the visible light 

illumination itself during the vis-OCT alignment and acquisition may cause elevated venous 

sO2 due to neural-vascular coupling. Although we believe that vis-OCT will unlikely to cause 

any detectable hemodynamic variations during the 5-s data acquisition period as compared 

with the light energy and illumination duration in flicker studies [47, 48], we will conduct 

further investigations. A dual-band OCT system, using both visible and NIR light [28] will be 

an ideal tool to examine this issue. Nevertheless, vis-OCT oximetry is a principally new 

technology and we still need extensive studies to establish its accuracy and reliability. In 

addition, an automated algorithm to assign ROI to retinal vessels, preferably based on image 

segmentation, is desirable to facilitate clinical applications in the future. 

In summary we have demonstrated the feasibility of vis-OCT oximetry in humans. Using 

the statistical-fitting approach, we improved the accuracy of sO2 extraction when the SNR is 

low, which can frequently be encountered in human imaging. Though data from only four 

healthy volunteers are presented here, we have imaged over 30 volunteers and are actively 

recruiting more to establish a normative database of retinal sO2 values. Further improvement 

of the vis-OCT system will be focused on higher stability and better patient comfort. 

Appendix 

 

Fig. 6. A labeled vis-OCT B-scan showing imaged retinal layers. ILM: inner limiting 
membrane; NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: 

inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external 

limiting membrane; IS: photoreceptor inner segment; OS: photoreceptor outer segment; RPE: 
retinal pigment epithelium; BM: bruch's membrane. 
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