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Abstract: Since contrast sensitivity (CS) relies on the accuracy of stimulus presentation, the 
reliability of the psychophysical procedure and observer’s attention, the measurement of the 
CS-function is critical and therefore, a useful threshold contrast measurement was developed. 
The Tuebingen Contrast Sensitivity Test (TueCST) includes an adaptive staircase procedure 
and a 16-bit gray-level resolution. In order to validate the CS measurements with the 
TueCST, measurements were compared with existing tests by inter-test repeatability, test-
retest reliability and time. The novel design enables an accurate presentation of the spatial 
frequency and higher precision, inter-test repeatability and test-retest reliability compared to 
other existing tests. 
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1. Introduction 

Contrast vision is fundamental for visual perception. The human visual system is more 
sensitive to local luminance contrast than absolute luminance [1]. Contrast is defined as 
relative difference between two color or luminance values e.g. between dark and bright. 
Objects with a large difference in luminance or color are better distinguishable from each 
other displaying a high contrast. The relative difference in luminance is usually expressed by 
the difference between maximum and minimum values divided by the sum of them, which 
Michelson called visibility [2]. Today the so called Michelson contrast is used to define the 
contrast of periodic pattern such as sine wave gratings including the so-called ‘Gabor 
Patches’, sinusoidal luminance patterns named after D. Gabor [3]. The contrast sensitivity 
(CS) is the reciprocal of the minimum contrast required for detection [4], and this contrast is 
called threshold contrast. Contrast sensitivity plotted against the spatial frequency of the 
Gabor Patch reveals the contrast sensitivity function (CSF) of the eye. 

Reliable contrast sensitivity measurements are essential to describe precisely the visual 
function. The resultant CSF reveals the visual performance at different spatial frequencies 
including visual acuity, which corresponds to the cutoff-frequency on the high frequency end 
of the CSF [5]. 

Clinically, contrast sensitivity becomes relevant for several eye diseases such as cataract 
[6–8], glaucoma [9, 10], amblyopia [11, 12], multiple sclerosis [13–15], macular 
degenerations [16, 17], and diabetic retinopathy [18, 19]. The knowledge of the smallest 
perceivable contrast is also essential in order to verify the success of ocular surgeries e.g. 
laser-assisted in situ keratomileusis or intraocular lens implantation [20], by characterizing 
the entire visual function of the patient, using the CSF. 

To measure contrast sensitivity, computer-based stimulus presentations nowadays replace 
paper-based charts like the traditional Pelli-Robson chart [21]. Therefore, display 
technologies such as cathode ray tube (CRT), liquid crystal display (LCD) or organic light 
emitting diode (OLED) need to be set up properly to present contrast pattern accurately. 
Although several methods have been developed in order to assess the contrast sensitivity 
function, little attention has been paid to a method which combines a precise stimulus 
presentation, a time-efficient psychophysical method and an accurate presentation of the 
spatial frequency resulting in repeatable and reliable results. In a view of time efficiency, the 
method of constant stimulus suffers from long measurement duration because of large trial 
numbers. Although methods of constant stimuli are probably highly accurate, they are less 
time-efficient than adaptive staircase procedures. Adaptive procedures use an algorithm to 
select the next stimulus intensity automatically which makes them time-efficient, by 
calculating and reducing the uncertainty [22]. 

The aim of the current research was to develop a new contrast sensitivity test that includes 
a time-efficient four-alternative forced choice (4AFC) staircase method together with a high 
resolution of the contrast levels while incorporating the magnification of currently worn 
prescriptions leading to repeatable and reliable contrast sensitivity measurements. 
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2. Methods 

2.1 Development of the TuebingenCSTest 

2.1.1 The Ψ method – a Bayesian adaptive staircase procedure 

A Bayesian adaptive method that is called Ψ (psi) method was used for the acquisition of the 
threshold contrast of the psychometric function [23]. The Ψ method was implemented into the 
Palamedes Toolbox [24], which can be controlled by the software MATLAB (Matlab 
R2010b, MathWorks Inc., Natick, USA) running on Mac OSX, version 10.9.5, using 4AFC. 
For this experiment, the slope of the psychometric function was fixed and set to 2.74 with a 
lapse rate of 4%, as suggested used by Hou [25]. To be time efficient, 50 trials were used to 
determine the threshold contrast of the participants’ eye. The Ψ method considered the range 
of possible stimuli for each trial and calculated the probability and the uncertainty of correct 
and incorrect response [22]. To select the next stimulus, the expected uncertainty for all 
discrete stimuli was calculated and the stimulus intensity with the lowest calculated 
uncertainty was automatically selected in order to maximize the expected information [22]. A 
typical course of 50 trials is shown in Fig. 1, which ends in the estimated threshold contrast. 

 

Fig. 1. The Ψ (psi) method estimates the threshold contrast (red x) after 50 trials. Closed 
circles indicate correct responses and open circles an incorrect response. Stimulus intensity is 
defined in Michelson contrast. 

2.1.2 The 16-bit gray-level resolution 

A LCD-Display (ViewPixx 3D, VPixx Technologies, Saint-Bruno, Canada) with a mean 
luminance of 40 cd/m2 and a pixel resolution of 1920 x 1080 was used for the presentation of 
the stimuli (Gabor Patch gratings), with a gray-level resolution of 16 bits (216 levels). Since 
Lu and Dosher recommended a gray-level resolution of at least 12.4 bits [26], the current 
gray-level resolution of the used setup is high enough to assess high sensitivities to contrast. 
This keeps true even if the gray-level resolution is reduced by ca. 1 bits by gamma correction 
and by ca. 3 bits by the need for at least eight steps to draw a sine wave, ending up about 12 
bits which corresponds to a stimulus presentation with contrast as low as 0.025% (3.61 log 
CS). Gamma correction and luminance was checked with a luminance meter (Konica Minolta 
LS-110, Konica Minolta, Inc., Tokyo, Japan). 
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2.1.3 The incorporation of lens magnification 

Positive and negative lenses were used to correct ametropic eyes, but these lenses usually 
change the retinal image size. The total magnification (NG) depends on the thickness (d) and 
the refractive index (n) of the lens, the distance between eye and lens (e), distance between 
corneal vertex and the first principal point of the eye (e’), and the front surface power of the 
lens (D) and the back vertex power (S’) in Eq. (1) [27]. 

 
1 1

(1 ( ') ')(1 )
GN

d e e SD
n

= ⋅
− +−

 (1) 

with d = 0.0005 m for negative lenses and d = 0.001 m for positive lenses; e = 0.012 m, e’ = 
0.001348 m and n = 1.52. The magnification of the lens was corrected by changing the size 
and the spatial frequency of the stimulus, so that both were rearranged. Without this 
correction of magnification each participant would have been presented slightly different 
spatial frequencies. 

2.2 Validation of the TuebingenCSTest 

Contrast sensitivity was measured by the four following tests: Functional Acuity Contrast 
Test (F.A.C.T.), Freiburg Acuity and Contrast Test (FrACT), quick CSF (qCSF) and the 
newly developed Tuebingen Contrast Sensitivity Test (TuebingenCSTest). The FrACT 
Version 3.9.3 was used with auditory feedback ‘with info’ setting and 8-bit gray-level 
resolution [28, 29], F.A.C.T. (Stereo optical co., inc., Chicago, IL, USA, developed by 
Ginsburg et al. [30]) was used as described in the manufacturer’s recommended testing 
procedure. The qCSF method was originally developed for 2AFC grating orientation 
identification task [31], while we used 4AFC with 50 trials for the qCSF. The 
TuebingenCSTest was used with 4AFC grating orientation identification task which means 
that one stimulus was presented per trial and four keyboard response choices were available. 
The incorporation of magnification of the lens was done in the new TuebingenCSTest and 
qCSF. 

As mentioned before, Gabor patches (TuebingenCSTest, qCSF) and circular grating 
patches (FrACT, F.A.C.T.) were used as stimuli and presented by a Mac OSX, version 10.9.5 
using the Psychophysics Toolbox Version 3.0.9 [32–34]. The possible orientations of both 
stimuli were depending on the test that was used – either 3AFC (orientation: 90°, 75° and 
105°) for F.A.C.T. or 4AFC (orientation: 0°, 90°, 45° and 135°) for FrACT, qCSF and 
TuebingenCSTest. Since the visual angle of the stimuli is fixed to 1.7° in the F.A.C.T., the 
visual angle of the stimuli, used for the other test, was adapted to the same size. In case of the 
TuebingenCSTest, the FrACT and the qCSF, the stimuli were presented with a presentation 
time of 300 milliseconds (ms), while in the F.A.C.T. the stimuli are presented the whole time. 
The qCSF and TuebingenCSTest used technical 16-bit gray-level resolution whereas the 
FrACT can use only 8-bit. 

To provide feedback to the participants, a tone was implemented into the 
TuebingenCSTest that played a high tone after correct responses and a deep tone after wrong 
responses, similar to the feedback ‘with info’ in FrACT. Additionally, the participants 
performed a short training with high contrast stimuli including each spatial frequency before 
the TuebingenCSTest begun to measure contrast sensitivity. In FrACT, the internal feedback 
was switched on. No feedback was provided in the qCSF whereas a neutral tone was played 
when a stimulus was presented. 

Twelve participants were enrolled in the validation study of the TuebingenCSTest. The 
average age was 27 ± 3 years and habitual refractive errors (mean spherical refractive error: 
−2.06 ± 4.10 D) were corrected to normal vision using trial lenses. The study followed the 
tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of 
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the medical faculty of the University of Tuebingen. Informed Consent was obtained from all 
participants after the content and possible consequences of the study had been explained. The 
participants were placed in 6.1 m (20 feet) in front of the LCD-Display in a darkened room 
using a chin rest. Threshold contrast measurements were done monocular (right eye) for 
spatial frequencies of 1.5, 3, 6, 12 and 18 cycle per degree (cpd), while the order of spatial 
frequencies was randomized. The contrast sensitivity was measured for each spatial frequency 
separately. The whole block of the contrast sensitivity measurements was measured two 
times, separately for each test (FrACT, F.A.C.T., qCSF, TuebingenCSTest), with randomized 
order of the tests. 

Statistics were performed with a statistics software (IBM SPSS Statistics 22, IBM 
Deutschland GmbH, Ehningen, Germany), using a Friedman test and two-way mixed 
intraclass correlation coefficient with absolute agreement. For post-hoc analysis a Dunn-
Bonferroni test was used. Bland-Altman analysis were analyzed using a spreadsheet software 
(Microsoft Office Excel 2016, Microsoft, Redmond, USA) [35]. 

Inter-test repeatability was assessed using the Bland-Altman analysis and the test-retest 
reliability was evaluated via intraclass correlation coefficient (ICC) [36, 37]. Bland-Altman 
analysis included the coefficient of repeatability (COR) which is the 1.96 times the standard 
deviation of the difference between the test and the retest scores [35], which are contrast 
sensitivity measurements within one participant in the analysis. 

3. Results

In order to verify the measurement of the CSF with the newly developed TuebingenCSTest 
(TueCST), we compared the obtained contrast sensitivity measures with three established 
contrast sensitivity tests (FrACT, F.A.C.T. and qCSF). Repeatability and reliability of 
contrast measurements for every contrast sensitivity test due to repeated measurements was 
investigated. Table 1 contains mean and standard deviation (SD) for test and retest contrast 
sensitivity in log CS of twelve participants. 

Table 1. Mean and standard deviation (SD) for the FrACT, F.A.C.T., TueCST and qCSF 
using repeated contrast sensitivity measurements in log CS 

Spatial Frequency (cpd) 
1.5 3 6 12 18 
Test Retest Test Retest Test Retest Test Retest Test Retest 

C
on

tr
as

t S
en

si
ti

vi
ty

 (
lo

g 
C

S
) 

 
FrACT 1.93

(0.18) 
1.91 
(0.13) 

1.96 
(0.14) 

1.88 
(0.16) 

1.78 
(0.29) 

1.74 
(0.29) 

1.36 
(0.24) 

1.31 
(0.25) 

1.02 
(0.25) 

0.94 
(0.35) 

F.A.C.T. 
1.89
(0.11) 

1.93 
(0.10) 

2.16 
(0.07) 

2.17 
(0.07) 

2.13 
(0.18) 

2.16 
(0.13) 

1.81 
(0.27) 

1.90 
(0.21) 

1.26 
(0.24) 

1.40 
(0.35) 

TueCST 
1.85
(0.15) 

1.84 
(0.18) 

1.91 
(0.15) 

1.96 
(0.14) 

1.74 
(0.20) 

1.77 
(0.22) 

1.29 
(0.24) 

1.31 
(0.26) 

0.93 
(0.31) 

0.95 
(0.26) 

qCSF 
1.67 
(0.27) 

1.58 
(0.24) 

1.88 
(0.22) 

1.76 
(0.30) 

1.71 
(0.24) 

1.68 
(0.22) 

1.16 
(0.42) 

1.19 
(0.25) 

0.73 
(0.49) 

0.74 
(0.30) 

3.1 Accordance of different contrast sensitivity tests 

From each contrast sensitivity test, the CSFs were plotted along the measured contrast 
sensitivities at five spatial frequencies, and are presented in Fig. 2. A typical form of a CSF 
curve with a shape of an inverted ‘U’ was measured with all of the four tests. The CSF of 
F.A.C.T. showed its maximum at 6 cpd, FrACT at 3 and 6 cpd, qCSF and the 
TuebingenCSTest at 3 cpd. The shapes of the inter-individual mean CSFs were similar among 
the FrACT and the TuebingenCSTest. The standard deviation (SD) of the two repeated 
measurements varied with spatial frequency and reached smallest at 3 cpd within F.A.C.T., 
FrACT or TuebingenCSTest. In contradiction when the qCSF assessed the CSF, the smallest 
SD was obtained at 6cpd within qCSF. 
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Fig. 2. Mean and standard deviation (SD) of contrast sensitivity measurements in log CS for 
TueCST, FrACT and qCSF for a luminance of L = 40 cd/m2, and for F.A.C.T for L = 85 
cd/m2. 

Kolmogorow-Smirnow test revealed that the measured contrast sensitivity data of FrACT, 
TuebingenCSTest and qCSF were normally distributed, but not those of F.A.C.T. (p<0.05). 
Statistical analysis of the contrast sensitivities demonstrated a significant difference among 
the four methods (χ2 (3) = 165.43, p < 0.001, n = 120, Friedman Test). The post-hoc analysis 
found a significant difference between qCSF and the TuebingenCSTest (p < 0.001), between 
qCSF and FrACT (p < 0.001), between qCSF and F.A.C.T. (p < 0.001), between FrACT and 
F.A.C.T. (p < 0.001) and between F.A.C.T. and TuebingenCSTest (p < 0.001). But the post-
hoc test showed no significant difference between FrACT and TuebingenCSTest (p = 0.92). 

3.2 Inter-test repeatability – coefficient of repeatability 

Table 2 contains mean and standard deviation (SD) and the Bland-Altman coefficients of 
repeatability (COR) for test and retest contrast sensitivity in log CS. High inter-test 
repeatability is indicated by a lower COR. Compared to already established test for the 
measurement of the CS, the CORs were lowest at 1.5, 6, 12 and 18 cpd for the new 
TuebingenCSTest, when compared to FrACT, F.A.C.T. and qCSF. Only repeated 
measurements at the spatial frequency of 3 cpd showed a slightly lower COR for F.A.C.T. 
compared to the TuebingenCSTest (COR 0.15 log CS vs. COR 0.18 log CS). The highest 
agreement between two measurements of contrast sensitivity using the TuebingenCSTest was 
at 6 cpd with a COR of 0.15 log CS. 

Table 2. Coefficient of repeatability (COR) for the FrACT, F.A.C.T., TueCST and qCSF 
using repeated contrast sensitivity measurements in log CS 

Spatial Frequency (cpd) 
1.5 3 6 12 18 

C
O

R
 (

lo
g 

 C
S)

FrACT 0.23 0.20 0.26 0.33 0.48 
F.A.C.T. 0.22 0.15 0.39 0.29 0.47 
TueCST 0.17 0.18 0.15 0.23 0.38 
qCSF 0.64 0.55 0.40 0.66 0.81 

Although the COR values of F.A.C.T. were robust at 1.5, 3 and 12 cpd, the F.A.C.T. had a 
COR of 0.39 log CS at 6 cpd, while the TuebingenCSTest and the FrACT showed a better 
repeatability. The FrACT test demonstrated a marginal better average COR value with 0.30 
log CS compared to F.A.C.T. with COR 0.31 log CS, but the repeatability for qCSF turned 
out in a poor agreement with COR of 0.61 log CS. On average the TuebingenCSTest revealed 
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a COR of 0.22 log CS indicating that the developed test showed a higher repeatability when 
compared to FrACT, F.A.C.T. and qCSF. 

3.3 Test-retest reliability - intraclass correlation coefficient 

Table 3 contains intraclass correlation (ICC) for the test and retest of the contrast sensitivity 
in log CS. The ICC were highest for the TuebingenCSTest compared to FrACT, F.A.C.T. and 
qCSF. According to Cicchetti ICC between 0.75 and 1.00 are interpreted as excellent, 
between 0.60 and 0.74 as good, between 0.40 and 0.59 as fair and smaller than 0.4 as poor 
[38]. An ICC of 0.31 for qCSF at 1.5 cpd and an ICC of 0.33 for F.A.C.T. at 6 cpd indicated 
almost poor reliability, nevertheless on average the qCSF and F.A.C.T. demonstrated a good 
reliability with ICC of 0.61 and 0.63, respectively. The FrACT and the TuebingenCSTest 
came up with excellent reliability at all tested spatial frequencies. However, the developed 
TuebingenCSTest revealed always higher ICCs with a range between 0.88 and 0.96 ICC, 
representing the best reliability among all four contrast sensitivity tests. 

Table 3. The Intra-class correlation (ICC) for the FrACT, F.A.C.T., TueCST and qCSF 
using repeated contrast sensitivity measurements 

Spatial Frequency (cpd) 

1.5 3 6 12 18 
FrACT 0.83 0.82 0.94 0.86 0.81 
F.A.C.T. 0.60 0.59 0.33 0.87 0.76 
TueCST 0.93 0.88 0.96 0.94 0.88 
qCSF 0.31 0.58 0.77 0.70 0.67 

3.4 Time duration 

The TuebingenCSTest was performed with a mean duration ( ± SD) of 10.17 ± 1.52 minutes, 
while qCSF took 2.17 ± 0.87 minutes, FrACT 9.08 ± 1.35 minutes and F.A.C.T. 5.17 ± 1.37 
minutes. Since all these tests need some time to instruct the participant, an average instruction 
time of 1-2 minutes can be estimated, depending on the age of the participant as well as 
whether the participant is naïve to these kinds of measurements or not. This instruction has to 
be conducted before the measurements start and has to be added to the actual measurement 
time. 

4. Discussion

The newly developed contrast sensitivity test was designed to be able to work with a 
sufficiently high gray-level resolution, using an effective staircase procedure and accurate 
presentation of the spatial frequency by incorporating the magnification of spectacle lenses. 
Good agreement with the FrACT confirmed that the new TuebingenCSTest is measuring 
contrast sensitivity at the correct range of log CS values. Although the coefficients of 
repeatability (COR) were lowest at 3 cpd for F.A.C.T., the CORs were lowest in the 
TuebingenCSTest separately at 1.5, 6, 12 and 18 cpd indicating the TuebingenCSTest to have 
a better repeatability compared to the FrACT, the F.A.C.T. and the qCSF for measuring 
contrast sensitivity. Conformingly, the intraclass correlation coefficients (ICC) were highest 
for TuebingenCSTest when compared to FrACT, F.A.C.T. and qCSF. 

One reason why F.A.C.T. showed significant higher contrast sensitivities compared to 
FrACT, qCSF and TuebingenCSTest is simply explained by the fact that the contrast 
sensitivities are higher with higher luminance because F.A.C.T. used 85 cd/m2, but whereas 
the other tests used the ViewPixx monitor that had a luminance of 40 cd/m2. Compared to the 
F.A.C.T and FrACT test, the TuebingenCSTest and qCSF used Gabor patches with Gaussian 
edge while the other two tests used circular grating patches with abrupt edges. Due to the 
Gaussian filtering of the edge, a Gabor Patch also contains low spatial frequencies compared 
to a circular grating. But since abrupt edges have a sharper transition from stimulus to 
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background, this ‘edge sharpening’ can induce contrast enhancement in images for example 
[39], and hence a Gaussian edge is preferred for the test of the threshold contrast and was 
therefore applied in the qCSF and the TuebingenCSTest. The influence on the perception of 
the edge itself of the stimuli can be assumed as small, because a Gaussian edge of 0.1° was 
used, whereas the stimulus size was 1.7°. Furthermore, the F.A.C.T. did not present the 
stimuli with 300 ms and also all nine contrast levels were presented at the same time as long 
the participant wanted to look at them. In addition, due to the fact that the F.A.C.T. uses a 3-
AFC, the probability for the participant to reach one step above their threshold (also called 
guess rate) is 33%, while the probability to score two steps above the threshold is 11% [40]. 
By using a 4AFC in the other tests, the guess rate to measure higher thresholds is 25% for one 
step and 6.25% for two steps. Although the F.A.C.T. holds all these advantages, its 
repeatability and its reliability was worse than the TuebingenCSTest for all spatial 
frequencies, excluding the COR at 3 cpd. The ICC of the FrACT ended up better when 
compared to the F.A.C.T. for almost all spatial frequencies, whereas the repeatability was 
similar. Due to the total number of only 50 trials, the main advantage of the qCSF is the very 
short duration of the measurement, but the test suffers from a low repeatability, reliability and 
came up with significant poorer contrast sensitives than FrACT and the TuebingenCSTest. 
The repeatability of the qCSF could be probably increased by increasing the number of trials, 
as shown by Dorr [41]. 

It is well known that the test of the CS has advantages especially in the detection and 
monitoring of ocular pathologies. Because such a test takes commonly long, especially in 
older and untrained participants or patients, most practitioners avoid the test of the CS. 
Possible solutions to reduce the time needed for this CS measurement, especially while using 
the TuebingenCSTest, are: On the one hand, a faster computer with more random-access 
memory (RAM) can be used, while on the other hand, it is also possible to reduce the number 
of presentation of the used stimuli. The experiments were conducted on a computer with 
limited random-access memory (RAM), which prolongs the inter stimulus interval leading to 
a longer duration of the measurement. With more RAM memory, we were able to achieve a 
time duration of 55 ± 11 seconds (mean ± SD) per spatial frequency. With initial instruction, 
the whole test would take at least 6 minutes, which would roughly halve the current duration 
of ca. 10 minutes of the TuebingenCSTest. While the use of a fast personal computer only 
requires an investment of money, the use of fewer trials has some disadvantages that need to 
be additionally addressed. Most likely, the repeatability and as well as the reliability will be 
affected in case fewer trials are used. 

The measurement with the TuebingenCSTest is more time-efficient if the slope is fixed, 
since in that case, the threshold contrast can be assessed within only 50 trials. Hou and 
colleagues showed that the slope is constant within individuals, but varies among individuals 
[42]. To estimate both, the slope and the threshold, the Ψ (psi) method needs more than 250 
trials for a 2AFC [23]. Our 4AFC procedure might need less trials than for 2AFC to 
determine the slope, but still probably more than 50 trials. For future experiments, the slope 
can be estimated with the TuebingenCSTest to use individual slopes for each participant in 
order to increase the accuracy of the threshold contrast determination. 

The Ψ method of Kontsevich and Tyler was indicated as the best method for getting both 
thresholds and slopes [23, 43]. Relevant for the TuebingenCSTest, pro and contra arguments 
for and against the Ψ method are listed in Table 4. 
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Table 4. The Ψ (psi) method: arguments pro and contra 

Pro Contra 

Ψ adapts fast near to coarse threshold and then 
slowly and precisely to the threshold [23], like other 
adaptive procedures, see Fig. 1. 
 

Lapses and biases (e.g. serial dependencies [44]) affect 
adaptive procedures regarding the accuracy of threshold 
estimation. 

Threshold and slope of the psychometric function 
can be determined within the same measurement 
[23]. 
 
Adaptive procedures are more time-efficient than the 
method of constant stimulus, in which the stimulus 
presentation is repeated at exactly the same intensity 
level multiple times. 

Lapses can have an impact rather on adaptive procedures than 
method of constant stimuli for example. 
 
Lapses can occur for example due to pressing button wrongly 
[45], or not fixating on the stimulus by eye blinks or 
involuntary saccades. 
 
To estimate the threshold and especially the slope, the Ψ 
algorithm needs a lot of computational power, especially RAM 
memory, for calculating the uncertainty [45]. 
 

 Calculations in real-time can unintentionally prolong the inter 
stimulus interval leading to longer duration of the measurement 
[45]. 

One disadvantage of adaptive procedures like the Ψ method is the fact that errors in the 
first trials affect the further procedure [23, 25]. This can occur because observers make for 
example lapses such as occasional finger errors which are considered as stimulus-independent 
[46]. Obviously, also eye blinks or involuntary saccades would lead to less fixations on the 
stimulus that would lead to errors in the measurement of the contrast sensitivity. Therefore, to 
partly overcome such attentional-caused lapses by eye movements, a gaze contingent 
presentation of the used stimulus can be implemented in the TuebingenCSTest. Another 
disadvantage are biases, such as serial dependencies e.g. that right-handed observers may be 
biased to press the right button on the response keyboard [47]. 

Since perceptual learning can change the slope [48], a threshold measurement should be 
done in trained observers. Because the participants in the current study were naïve observers, 
we used the following method to overcome this effect: a short training with feedback was 
presented in the TuebingenCSTest and a constant slope was assumed. Feedback was provided 
for every trial to reduce the chance for biases and lapses. As described for visual acuity 
measurements using the FrACT, systematic feedback does not affect reproducibility and also 
offers advantages such as greater comfort [49]. 

To accurately present stimuli for a contrast sensitivity measurement, a sufficiently high 
gray-level resolution as well as an accurate presentation of the spatial frequency are needed. 
The sufficiently high gray-level resolution was achieved by using the ViewPixx monitor with 
a 16-bit gray-level resolution. The advantage of using 16-bit gray-level resolution is the fact 
that the Gabor Patch can be presented smoothly, which means that the sine wave consists of 
additional but smaller steps. Since the human eye is able to perceive contrasts up to 0.15% 
(2.82 log CS) [50–52], the second advantage of a 16-bit gray-level resolution is the fact that 
the minimum amplitude of the sine wave stimuli (the lowest contrast level) can be smaller 
compared to the 8-bit gray-level resolution. In the current experiment, the FrACT was 
presented with a gray-level resolution of 8 bits. Due to the loss by gamma correction and by a 
smooth oscillating presentation of the Gabor Patch, this would lead to a 4-bit gray-resolution 
that corresponds to a minimal presentable contrast of 6.25% (1.20 log CS). In case the 
contrast levels are defined, the staircase procedure would continue in order to approach 
further threshold contrasts lower than 1.20 log CS. In this case, an 8-bit resolution would not 
present a Gabor Patch with smooth oscillating sine waves. Thus, the Gabor Patch would 
rather convert to square wave stimulus. These steps of the square wave can appear as sharp 
edges in the gray-level dimensions and it was shown that this ‘edge sharpening’ can induce 
contrast enhancement in images for example [39]. Such gray-level edges would become more 
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obvious for Gabor Patches with lower spatial frequencies, because they cover more pixels in-
between one cycle which can be filled with more gray-levels than in Gabor Patches with 
higher spatial frequencies. Furthermore, these gray-level edge sharpening will increase 
detectability: This increased sensitivity to edges can be explained by the antagonistic 
receptive fields of retinal ganglion cells and their lateral inhibitory connections which 
seemingly enhances contrast perception [53]. At 1.5 cpd, the FrACT showed a higher contrast 
sensitivity compared to the TuebingenCSTest (1.94 vs. 1.84 log CS). This difference was not 
significant, but could be explained by contrast enhancement through sharpening of edges in 
the 8-bit gray-level resolution. 

As Blackwell described in his criteria called ‘sensory-determinacy’, methods that lead to 
lower threshold are preferred [54], since higher thresholds may indicate that the used method 
would lead to more unwanted extrasensory influences on the observer [47]. But the FrACT 
with an 8-bit gray-level resolution should be not preferred, although thresholds were lower 
than in the TuebingenCSTest because the observers were predisposed to lower threshold 
values due to increased gray-level edges. 

Also an accurate presentation of the spatial frequency was achieved by incorporating the 
magnification of spectacle lenses. Other authors like Radhakrishnan corrected for spectacle 
magnification by altering the test distance [55]. For the new TuebingenCSTest, the correction 
for magnification was accomplished before recording the response. Therefore, with the 
TuebingenCSTest, measured contrast sensitivity for a certain spatial frequency may afford a 
better comparison over participants with different prescriptions. 

Furthermore, another advantage of the TuebingenCSTest and the FrACT is that it can be 
used for detecting notches in the CSF, which are selective spatial frequency losses due to 
optical defocus [56]. Tests such as qCSF tend to overlook these notches because they estimate 
the CSF with a given function that is not able to reflect selective spatial frequency losses. 

5. Conclusion 

We have successfully implemented the time-efficient Ψ method to measure the contrast 
sensitivity of the human eye with a sufficiently high gray-level resolution that allows a 
smooth oscillating Gabor Patch presentation. Correcting the presented spatial frequencies and 
the stimulus size to overcome the magnification of worn spectacle lenses helps to gain 
comparable threshold contrasts for participants with different habitual refractive errors. The 
new presented method, called TuebingenCSTest, can be set up customized and shows high 
precision, repeatability and reliability over a wide range spatial frequencies regarding contrast 
sensitivity measurements. 
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