
Lookup table-based sampling of the phase 
function for Monte Carlo simulations of light 
propagation in turbid media 

PETER NAGLIČ,* FRANJO PERNUŠ, BOŠTJAN LIKAR AND MIRAN BÜRMEN 
University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Imaging Technologies, 
Tržaška cesta 25, SI-1000, Ljubljana, Slovenia 
*peter.naglic@fe.uni-lj.si 

Abstract: Analytical expressions for sampling the scattering angle from a phase function in 
Monte Carlo simulations of light propagation are available only for a limited number of phase 
functions. Consequently, numerical sampling methods based on tabulated values are often 
required instead. By using Monte Carlo simulated reflectance, we compare two existing and 
propose an improved numerical sampling method and show that both the number of the 
tabulated values and the numerical sampling method significantly influence the accuracy of 
the simulated reflectance. The provided results and guidelines should serve as a good starting 
point for conducting computationally efficient Monte Carlo simulations with numerical phase 
function sampling. 
© 2017 Optical Society of America 
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1. Introduction 

One of the central mechanisms of light propagation in turbid media such as biological tissue 
is scattering. In terms of Monte Carlo (MC) simulations, which are often used for modeling 
the light propagation [1,2], scattering is described by the scattering coefficient and scattering 
angle typically drawn from the inverse cumulative distribution of the phase function. In recent 
studies, phase functions have become increasingly important in modeling of the reflectance 
obtained by spatially-resolved reflectance spectroscopy [3–5] or spatial-frequency domain 
reflectance spectroscopy [6–8], in particular for small source-detector separations or high 
spatial frequencies. The Henyey-Greenstein (HG) phase function [9] is most commonly used 
in the biomedical community since it offers an analytical inverse of the cumulative 
distribution function (CDF), which is convenient for sampling the scattering angles by a 
random number drawn from a uniform distribution. However, the HG phase function is well 
known to underestimate large-angle backward scattering observed in turbid media such as 
tissue [10]. Consequently, other phase functions were investigated, such as the modified 
Henyey-Greenstein (MHG) [11], Gegenbauer kernel (GK) [12,13], Mie [14] and Mie fractal 
[15] phase functions. Unlike the HG and GK, the MHG, Mie and Mie fractal phase functions 
do not offer analytical inverse of the CDF. In order to use these types of phase functions in 
the MC simulations, the phase functions have to be numerically sampled. For this purpose, 
Toublanc has proposed a method for computing the scattering angle from tabulated evenly 
spaced scattering angles that through the CDF correspond to a random number drawn from a 
uniform distribution [16]. Zijp et al. have proposed a similar approach, however, tabulating 
the evenly spaced values of the inverse CDF that correspond to the scattering angle [17]. 
Upon a drawn random number, the scattering angle can be instantly deduced without 
additional computation. From our experience, we have noticed that the number of the 
tabulated CDF values as well as the sampling method applied to the phase function can 
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significantly influence the accuracy of the MC simulated reflectance. Most of the studies that 
have used numerical phase function sampling as described above, lack the information on the 
details of the employed sampling method [4–7,10,11]. Consequently, it is very difficult to 
properly repeat the experiments conducted in those studies. 

In this study, we extensively evaluate the existing implementations of the numerical phase 
function sampling for MC simulations following the methodology of Toublanc and Zijp et al., 
and propose an improved sampling scheme utilizing non-linearly spaced tabulated CDF 
values. We show that the accuracy of the MC simulated reflectance acquired by optical fiber 
probes at various source-detector separations (SDS) significantly depends on the number of 
the tabulated CDF values and the numerical phase function sampling method, and can 
become significantly degraded, if the tabulated CDF is too sparse. Moreover, we show that 
the most prominent phase function property that governs the required number of the tabulated 
CDF values is the anisotropy factor. This study should serve as a reminder that all the details 
of the numerical phase function sampling methodology should be carefully considered when 
performing MC simulations. 

2. Theoretical background on sampling from the phase functions 

2.1 Phase functions 

In general, a scattering phase function is defined as a probability density function p(s, s') for a 
photon deflecting from the propagation direction s' in the direction s. Although turbid media 
are sometimes anisotropic, biological tissues are often assumed to be isotropic, where the 
scattering depends only on the angle θ between s and s'. Consequently, the phase function can 
be written as p(φ, cos θ), where φ is the azimuthal angle given that the z axis is aligned with 
the propagation direction s' [18]. Under the assumption that φ and cos θ are independent 
variables, the phase function can be written as p(φ, cos θ) = p(φ) p(cos θ). In the literature, the 
term phase function is most commonly used for the probability density of cos θ, since  
p(φ) = 1/(2π) for symmetric scatterers. Consequently, we will use the term phase function 
exclusively for p(cos θ) throughout the remainder of this study. 

The most commonly used phase function in the biomedical community is the Henyey-
Greenstein (HG) phase function [9] that allows simple and computationally efficient 
description of scattering in biological tissues: 

 ( )
( )

2

HG 3/ 22

1 1
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g g
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where g is the anisotropy factor of the phase function. However, since it has been shown that 
the HG phase function underestimates large-angle scattering [10], other phase functions such 
as the modified Henyey-Greenstein (MHG) and Gegenbauer kernel (GK) have been 
proposed. The MHG phase function is defined as a weighted sum of the HG phase function 
and Rayleigh scattering [11]: 
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where β adjusts their relative contribution. The GK phase function is a mathematical 
extension of the HG phase function with an additional free parameter αGK [12,13,19]: 
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It should be noted that gGK is in general not equal to the anisotropy factor of the GK phase 
function. 
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Another common way of describing phase functions in biological tissues is by utilizing 
the rigorous Mie theory for spherical particles, where a tissue phase function can be expressed 
as a weighted sum of phase functions arising from different spherical particles. A popular 
approach is to sum the phase functions of spherical particles that follow the discrete particle 
fractal size distribution, which was found to adequately describe structural properties of 
biological tissues and the resulting refractive index variations that cause light scattering 
[15,20,21]. The discrete particle fractal size distribution is defined as 

 ( ) ,i in d Ad α−=  (4) 

where n(di) is the number density of spherical particles with diameter di, α the power of the 
distribution and A is related to the total number density of spherical particles, which 
determines the amplitude of the scattering coefficient. The phase function of a single 
spherical particle of diameter di is given by [14] 

 ( ) ( ) ( )2 2

1 2

Mie 2
sca

cos cos
cos ,

S S
p

C k

θ θπθ
+

=  (5) 

where Csca is the scattering cross section of the spherical particle, k = 2πnmed/λ, and S1(cos θ) 
and S2(cos θ) are the elements of the amplitude scattering matrix. In this case, nmed represents 
the refractive index of the medium in which the sphere is suspended and λ the wavelength of 
light in vacuum. Note that Csca, S1(cos θ) and S2(cos θ) are all functions of the ratio between 
the refractive index of the medium nmed and the refractive index of the spherical particle npar, 
and also of a dimensionless parameter x = πnmed d/λ. To obtain the phase function of the 
spherical particles that follow the discrete particle fractal size distribution, the individual Mie 
phase functions have to be summed in the following way 
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where the two summations go over all the diameters di of spherical particles. Thus the 
obtained phase function depends on the fractal volume dimension α, the lower and upper 
bounds of the summation and the diameters of the spherical particles. 

2.2 Analytical sampling of the phase function 

An essential part of the MC simulations of light propagation in turbid media are the scattering 
events. At each scattering event, the photon packet undergoes a deflection by a scattering 
angle, which is related to the phase function of the turbid medium. To sample the φ and cos θ 
in the MC simulations, the CDFs of the probability density functions p(φ) and p(cos θ) have 
to be derived 
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where p(φ) can be set to 1/(2π) if all the azimuthal angles are equally likely. The obtained 
CDFs are then usually equated to uniformly distributed random numbers ξ1 and ξ2 from [0, 1]. 
Subsequently, the sampled φ and cos θ can be derived by evaluating the corresponding 
inverse CDF 
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The computation of an inverse CDF significantly depends on the form of the phase 
function. For example, the HG phase function is very convenient since the inverse CDF can 
be expressed analytically. Similar analytical expression can be also found for the GK phase 
function [13]. Consequently, cos θ can be sampled from a closed form analytical expression. 
Analytical forms of the inverse CDF allow simple and computationally efficient 
implementation in the MC model. Such implementation is especially important, if the MC 
model is intended to run on a graphics processing unit (GPU). 

2.3 Numerical phase function sampling 

If an analytical inverse of the CDF given by the second term in Eq. (8) is not available or the 
analytical expression is too extensive, the sampling of the cos θ can be conducted 
numerically. Commonly, the sampling from a probability distribution can be performed with 
the well-known rejection sampling method. However, this method is computationally very 
inefficient in particular for probability distribution containing peaks, which is the case with 
the forward-peaked phase functions of biological tissues [17]. Alternatively, a lookup table-
based sampling of cos θ can be employed. 

In the following we present three lookup table-based methods for sampling the scattering 
angle from the phase function that can be easily incorporated in the MC simulations. 

2.3.1 Forward lookup table (FLT) sampling method 

The entries of the forward lookup table (FLT) sampling method are the discrete CDFj values 
calculated for each cos θj: 

 ( )
cos

1

CDF cos cos ,
j

j p d
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where j goes from 0 to N, cos θ0 = –1 and cos θN = 1. Given a random number ξ drawn from a 
uniform distribution, the task is to find the value of cos θξ, such that CDF(cos θξ) corresponds 
to ξ (Fig. 1(a)). This can be accomplished by finding an index J for which [16] 

 1CDF CDF .J Jξ +< ≤  (10) 

Once index J is found, the sampled cos θξ can be estimated by a linear interpolation between 
the cos θJ and cos θJ+1 values corresponding to CDFJ and CDFJ+1: 
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The most computationally intensive part of the FLT sampling method is the process of 
finding index J. For a given value of ξ this can be accomplished by one of the well-known 
root-finding methods such as bisection or Newton-Raphson method. However, searching 
through a lookup table in this way is very time consuming and also depends on the size of the 
lookup table. 

To avoid the pitfalls of the FLT sampling method, we describe two alternative numerical 
approaches. 
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Fig. 1. An example of the CDF for the HG phase function. Drawn random number ξ and the 
sampled cos θξ are given in red. (a) The forward lookup table (cos θj values and their 
corresponding CDFj values) is presented with blue circles. The values of cos θj in the forward 
lookup table are evenly spaced. (b) The inverted lookup table (cos θj values and their 
corresponding CDFj values) is presented with red circles. The CDFj values in the inverted 
lookup table are evenly spaced. 

2.3.2 Inverted lookup table (ILT) sampling method 

Zijp et al. have proposed an inverted lookup table (ILT) sampling method where the forward 
lookup table (evenly spaced cos θj values and corresponding CDFj values) is transformed to 
an inverted lookup table by interpolation (cubic interpolation in our study) to obtain evenly 
spaced points of the CDFj values and corresponding cos θj values [17]. In this way, the index 
in the inverted lookup table can be computed directly from the drawn ξ without employing 
iterative root-finding methods, and independently of the lookup table size. Subsequently, a 
linear interpolation can be used to refine the value of the sampled cos θξ (Fig. 1(b)). 

2.3.3 Non-linear lookup table (NLT) sampling method 

We propose an alternative to the ILT sampling method. The non-linear lookup table is based 
on an approximate analytical model of the CDF that accounts for much of the information 
common to the phase functions of biological tissues (highly forward-peaked). The idea 
behind modeling the CDF is to transform the evenly spaced cos θj values from a forward 
lookup table using the approximate analytical model and interpolate the obtained values over 
the exact CDF to get a set of cos θj* now representing the non-linear lookup table. By 
drawing a random number ξ, the approximate model instantly yields the index for the evenly 
spaced cos θj. Since the transformation between the domains of cos θj and cos θj* is bijective, 
a final linear interpolation between the two domains yields the sampled cos θξ. The main 
benefit of the proposed methodology lies in the final linear interpolation that is accomplished 
between the domains of cos θj and cos θj*, which are linked almost linearly, especially if the 
approximate analytical model fits the CDF well. In contrast to the FLT and ILT sampling 
methods, where the linear interpolation is performed on the highly non-linear CDF, this 
should significantly improve the sampling accuracy with respect to the size of the lookup 
table. 

In the following we describe the proposed procedure. Firstly, we compute the forward 
lookup table of evenly spaced cos θj values and their corresponding CDFj values. Next, we fit 
the selected approximate analytical model f (cos θ) to the CDF (Fig. 2, red curve). It should 
be noted that the selected approximate CDF model f must be analytically invertible and well 
describe the variability of the employed phase function CDFs. For the purpose of this study, 
we have used the following model: 
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Given that the model f (cos θ) has to satisfy the following conditions to represent a CDF 

 ( 1) 0 and (1) 1,f f− = =  (13) 

only one free parameter remains in the model f. The value of the free parameter can be found 
by non-linear least squares minimization of the difference between the model f and the CDF. 
Once f is known, a non-linear lookup table can be constructed. Each cos θj value in the 
forward lookup table is transformed by the model f, see Fig. 2(b). The obtained values are 
close but not equal to CDFj. By employing an inverse (cubic) interpolation with the aid of the 
forward lookup table for each f (cos θj), the corresponding cos θj* can be obtained (red circles 
in Fig. 2). The connection between the values of cos θj* and f (cos θj) now represents the non-
linear lookup table of the CDF. 

When a random number ξ is drawn (Fig. 2(b) green diagram), it is first transformed by  
f −1(ξ) into the domain of evenly spaced cos θj, which instantly yields the index into the 
lookup table of cos θj* values. The cos θξ can then be obtained by a final linear interpolation, 
similar to the FLT and ILT sampling methods. There is one important distinction, however. 
The NLT sampling method does the final linear interpolation between the evenly spaced  
cos θj and cos θj* values. The bijection between the two is an identity function, if the model f 
ideally fits the CDF, which results in an error-free linear interpolation. If the fits are as 
presented in Fig. 2, the bijection is close to identity function and the final linear interpolation 
should still work sufficiently well even with small lookup table sizes. 

 

Fig. 2. (a) An example of CDF for the HG phase function. The non-linear lookup table (cos θj* 
values and their corresponding CDFj = f (cos θj) values) is presented with red circles. The 
evenly spaced points of cos θj are presented with blue circles. Drawn random number ξ and the 
sampled cos θξ are given in green. (b) Construction of a non-linear lookup table from evenly 
spaced cos θj. The non-linear lookup table is presented in red. Green diagram highlights the 
sampling of cos θξ from a random number ξ. 

3. Materials and methods 

3.1 Monte Carlo (MC) simulations 

In this study, an MC model (MCML) developed by Wang et al. [2] and implemented for 
CUDA by Alerstam et al. [22] was used. The code was modified to account for the source-
detector optical fiber probe geometry and to study the reflectance as a function of the source-
detector separation (SDS) and numerical phase function sampling. The described setting was 
adopted since optical fibers probes are frequently used to collect the backscattered light from 
a turbid medium [23]. In the MC simulations, the optical fiber geometry was treated as a 
laterally uniform probe-tissue interface, which takes into account only the mismatch between 
the refractive indices of the turbid medium and optical fibers. The refractive index of the 
turbid medium was set to nm = 1.33, while the refractive index of the optical fibers was set to 
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nfib = 1.45. The diameter of optical fibers was set to 200 μm and SDS values of 220, 440, 660, 
880, and 1100 μm were considered. The selected range of the SDS should encompass the 
transition of the reflectance from the sub-diffusive to the diffusion regime [7]. The photon 
packets were launched uniformly over the source fiber opening and uniformly over the solid 
angle defined by the numerical aperture of the fiber (NA = 0.22). In order to take advantage 
of the entire area around the source fibers and thereby reduce the simulation noise, the 
detection scheme around the source fiber was divided into 5 µm concentric rings. The total 
weight of the detected photon packets at a particular SDS was then calculated in the post-
processing step. Only the photon packets with the output direction within the acceptance cone 
of the detection fiber were considered (NA = 0.22). 

The MC simulations were conducted under the semi-infinite turbid medium geometry. In 
the simulations, all of the photon packets that drifted more than 0.8 cm laterally or axially 
from the central point of the source fiber, were terminated. This condition sped up the 
simulations considerably and was found consistent with the semi-infinite medium geometry. 

3.2 Phase functions utilized for evaluating the numerical sampling methods 

The most common observables used in the biomedical optics that arise from the phase 
function are the anisotropy factor g and the parameter γ. The latter is defined as  
γ = (1-g2)/(1-g), where g2 is the second Legendre moment of the phase function. We 
considered several different phase functions to evaluate the three numerical sampling 
methods across the biological variations of g and γ. The anisotropy factor g can be found to be 
as low as 0.4 [24] and can reach values of up to 0.98 [25] in the biological tissues. With 
respect to parameter γ, the values tend to lie between 1.1 and 2.3 [6,26,27]. As a result, we 
have utilized 15 phase functions listed in Table 1. 

Table 1. Phase functions, the corresponding parameters and the resulting observables g 
and γ used in this study. 

Phase Function Phase Function Parameters g γ 

GK 

αGK = 0.5 
αGK = 0.82 
αGK = –0.13 
αGK = 5.8 

gGK = 0.4 
gGK = 0.94 
gGK = 0.93 
gGK = 0.27 

0.4 
0.98 
0.6 
0.8 

1.4 
2.3 
1.4 
2.3 

MHG 

β = 0.90 
β = 0.99 
β = 0.97 
β = 0.96 

gHG = 0.77 
gHG = 0.98 
gHG = 0.72 
gHG = 0.94 

0.7 
0.98 
0.7 
0.9 

1.4 
1.9 
1.6 
1.4 

Mie 
nmed = 1.33 
npar = 1.59 
λ = 633 nm 

d = 0.1 μm 
d = 1 μm 
d = 10 μm 
d = 20 μm 

0.075 
0.92 
0.90 
0.91 

0.97 
2.2 
1.6 
1.6 

Mie fractal 

nmed = 1.352 
npar = 1.42 
λ = 633 nm 
di = [5nm – 30 μm] 
(5 nm steps) 

α = 4 
α = 4.5 
α = 5 

0.96 
0.91 
0.80 

2.1 
1.8 
1.5 

4. Results 

4.1 Influence of the numerical phase function sampling on the Monte Carlo (MC) 
simulated reflectance 

In order to study how the different numerical sampling methods and their corresponding 
lookup table sizes affect the MC modeling of light propagation in turbid media, we have 
simulated reflectance maps as a function of the absorption and reduced scattering coefficient 
at several SDS. For this particular case, a Mie phase function for 10 μm polystyrene 
microspheres listed in Table 1 was used. Figure 3 presents the relative reflectance error 
(RRE) maps across different numerical sampling methods for an undersized lookup table 
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comprising only 100 entries. The RRE maps were obtained by subtracting the ground truth 
reflectance map from the reflectance map computed by the undersized lookup table and 
subsequently dividing the difference by the ground truth reflectance map. Since analytical 
sampling from the Mie phase function is not possible, the ground truth reflectance map was 
obtained by the NLT sampling method utilizing an oversized lookup table of 5000 entries. 
Figure 3 shows that the distribution and extent of the RRE significantly depends on the 
numerical sampling method and also on the SDS. The FLT sampling method seems to 
perform well at shorter SDS, while the ILT sampling method performs well at longer SDS. 
The NLT sampling method seems to retain the smallest RRE across all the SDS. For a small 
lookup table of 100 entries, the RRE can reach up to ± 15%. 

 

Fig. 3. RRE maps as a function of the absorption and reduced scattering coefficient at three 
SDS arising from an undersized lookup table employed by the numerical sampling methods 
(FLT, ILT and NLT). 

 
Fig. 4. MC simulated reflectance spectrum of a turbid phantom comprising 5 μm polystyrene 
spheres computed by varying the lookup table (LUT) size. The phase function was sampled 
using the ILT sampling method. 
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Figure 4 shows an example of MC simulated reflectance spectrum from 550 to 700 nm at 
SDS = 220 μm for a turbid phantom containing 5 μm monodisperse polystyrene microspheres 
with a wavelength independent absorption coefficient set to 0.1 cm−1. The concentration of 
the polystyrene microspheres was selected so that the reduced scattering coefficient at 633 nm 
amounted to 7.61 cm−1. Sampling from the Mie phase function was accomplished with the 
ILT sampling method. The lobes in the spectrum are a consequence of the wavelength 
dependency of the Mie phase function of monodisperse spheres. In practice, the lobes are 
usually somewhat reduced due to the particle size variations. The effect of the lookup table 
size on the MC simulated reflectance spectrum is apparent. In this particular case, an 
undersized lookup table leads to an underestimated reflectance. 

4.2 Dependence of the relative reflectance error (RRE) on the lookup table size 

As shown in Section 4.1, the choice of the numerical sampling method and the underlying 
lookup table size significantly affect the accuracy of the MC simulations. Consequently, we 
have further investigated the performance of the numerical sampling methods and the 
influence of the lookup table size on the accuracy of the MC simulated reflectance. For this 
purpose, 5 x 5 reflectance maps as a function of the absorption and reduced scattering 
coefficient were computed for five SDS and all the phase functions defined in Table 1. The 
absorption coefficient spanned values from 0 to 25 cm−1 and the reduced scattering coefficient 
from 5 to 60 cm−1. The reflectance maps were simulated for each numerical sampling method 
by progressively increasing the lookup table size from 25 in steps of 25 until the maximum 
absolute RRE within the map fell under 2%. The ground truth reflectance map was obtained 
as described in Section 4.1, using the NLT sampling method with a lookup table size of 5000. 

Table 2 summarizes the lookup table sizes of the numerical sampling methods that were 
required to reduce the maximum absolute RRE under 2% at all SDS. It can be observed that 
the required lookup table size varies dramatically across the employed phase functions. Large 
lookup tables are required for phase functions with a high anisotropy factor g, in particular for 
values exceeding 0.9. 

Table 2. Minimum lookup table sizes of the numerical sampling methods (FLT, ILT and 
NLT) that guarantee maximum absolute RRE under 2% for all the utilized phase 

functions at all SDS. 

Phase Function g γ FLT ILT NLT 

GK 

0.4 
0.98 
0.6 
0.8 

1.4 
2.3 
1.4 
2.3 

25 
850 

50 
50 

50 
1450 

50 
475 

25 
350 

25 
50 

MHG 

0.7 
0.98 
0.7 
0.9 

1.4 
1.9 
1.6 
1.4 

50 
1475 

50 
300 

75 
750 

25 
150 

50 
800 

25 
175 

Mie 

0.075 
0.92 
0.90 
0.91 

0.97 
2.2 
1.7 
1.6 

25 
125 
450 
500 

50 
175 
350 
300 

25 
125 
250 
275 

Mie fractal 
0.96 
0.91 
0.80 

2.1 
1.8 
1.5 

500 
225 
100 

250 
150 

75 

300 
125 

75 

The performance of the numerical sampling methods was further examined by employing 
the GK phase function with g = 0.98, for which the largest variation of the lookup table size 
was observed. Figure 5 presents the maximum absolute RRE as a function of the lookup table 
size for the FLT, ILT, and NLT numerical sampling methods. In addition, the maximum 
absolute RRE are calculated for each SDS (top row). The corresponding reconstructed GK 
phase function based on the lookup table size listed in Table 2 is presented in the middle row 
(blue line). The reconstruction was accomplished by uniformly drawing 108 random numbers 
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from the interval [0,1] and then binning the computed cos θ in a histogram with 1000 bins. In 
order to overcome the influence of discretization and directly compare the reconstructed and 
the corresponding true phase function (orange line), the average value of the true phase 
function was computed within each bin. The relative error of the reconstructed phase function 
is shown in Fig. 5 (bottom row). 

Two important observations can be made from Fig. 5. Firstly, the maximum absolute RRE 
is notably dependent on the SDS regardless of the numerical sampling method. The FLT 
sampling method at a given lookup table size exhibits lower maximum absolute RRE for 
shorter SDS. In contrast, the ILT sampling method performs better at longer SDS. Unlike the 
FLT and ILT sampling methods, the NLT sampling method seems to perform well across all 
the SDS. 

 

Fig. 5. (top row) Maximum absolute RRE as a function of the lookup table size used by the 
numerical sampling methods (FLT, ILT and NLT). (middle row) Comparison between the 
reconstructed and the corresponding true GK phase function obtained by different numerical 
sampling methods using the lookup table sizes from Table 2. (bottom row) The relative errors 
of the reconstructed GK phase functions. 

Secondly, the maximum absolute RRE can be under 2% even though the reconstructed 
phase function exhibits relative errors of around ± 20%. This observation suggests that the 
phase functions do not have to be accurately modeled in the MC simulations, especially at 
large scattering angles, to yield a satisfactory reflectance prediction. 

 
Fig. 6. The average simulation time required to compute a 5 x 5 reflectance map as a function 
of the lookup table size for each numerical sampling method (FLT, ILT and NLT). 
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In terms of the simulation time, we compared the numerical sampling methods (FLT, ILT 
and NLT) for the GK phase function studied above. Figure 6 presents the average simulation 
time required to compute a 5 x 5 reflectance map normalized by the number of points in the 
map. Simulations were performed on a personal computer (operating system: Microsoft 
Windows 7 Enterprise, central processing unit: Intel® Core i7-4770 @ 3.40 Ghz, memory: 
16.00 GB RAM, graphics processing unit: Nvidia GeForce GTX 770). A twofold increase in 
the simulation time is observed for the FLT in comparison to the ILT and NLT sampling 
methods for a lookup table size larger than 250. For the ILT and NLT sampling methods, the 
difference is negligible for a lookup table size larger than 250, however, below this point the 
ILT sampling method seems to perform better. 

4.3 Dependence of the required lookup table size on the phase function anisotropy 
factor 

The most prominent dependence of the lookup table size required to keep the maximum 
absolute RRE under 2% is on the anisotropy factor of the phase function. This is further 
confirmed by Fig. 7, which shows the RRE maps as a function of the anisotropy factor and 
reduced scattering coefficient for a MHG phase function with a constant γ of 1.8. The 
absorption coefficient was set to 2 cm−1 and the lookup table size used in all of the numerical 
sampling methods was set to 200. As the anisotropy factor increases, the RRE rises 
significantly and can exceed 50% for the FLT method, 25% for the ILT method and 10% for 
the NLT method. This means that a higher anisotropy factor requires a larger lookup table. 

 

Fig. 7. Relative reflectance error (RRE) maps as a function of the anisotropy factor and 
reduced scattering coefficient at three SDS arising from an undersized lookup table employed 
by the numerical sampling methods (FLT, ILT and NLT). 

Figure 8 depicts the dependence of the required lookup table size at different SDS 
obtained for the three numerical sampling methods. It can be clearly observed that regardless 
of the SDS, the lookup table size significantly increases for anisotropy factors g beyond 0.8. 
Below this value, the required lookup table size is under 100 for all the numerical sampling 
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methods and all the SDS. We can also observe the difference between the FLT and ILT 
sampling methods. In particular, for short SDS the largest lookup table is required by the ILT 
sampling method, while for longer SDS the largest lookup table is clearly required by the 
FLT sampling method. 

 

Fig. 8. Minimum lookup table size required to keep the maximum absolute RRE computed by 
different numerical sampling methods (FLT, ILT and NLT) under 2% as a function of the 
anisotropy factor for three source-detector separations (SDS). 

5. Discussion 

Proper sampling of the scattering angle from a phase function is important when simulating 
light propagation in turbid media. For example, any errors arising from sampling of the 
scattering angle required at each scattering event in the MC simulations can directly influence 
the observable quantities such as reflectance. As shown in Figs. 3 and 4, the RRE 
significantly depends on the numerical sampling method and underlying lookup table size. 
This suggests that special care should be taken when implementing the phase functions in the 
MC simulations, and moreover, include the information in research articles as this was not a 
common practice to date [4–7,10,11]. 

Especially concerning is the information presented in Fig. 4, since turbid phantoms 
containing polystyrene microspheres are often used to calibrate MC simulated reflectance 
acquired with optical fiber probes [28,29]. As such, implementing proper sampling of the 
scattering angle from the phase function is also crucial for a good calibration that enables 
comparison between the MC simulations and measurements. 

Selection of an optimal lookup table size is especially important when performing the MC 
simulations on a GPU, where the amount of fast random access memory is limited. Moreover, 
constructing a large lookup table for phase functions such as the Mie phase function can be 
computationally intensive. This is especially true for the fractal Mie phase function that 
requires computation of many Mie phase functions corresponding to monodisperse particles 
that are integrated over the full range of the employed particle number density. 

We have investigated the performance of the numerical sampling methods in the MC 
simulations for various phase functions with different anisotropy factor g and parameter γ 
(Table 2). We have observed that the three numerical sampling methods require different 
sizes of the lookup tables for different phase functions. Furthermore, the results for the GK 
phase function in Fig. 5 clearly show that the performance of the numerical sampling methods 
also significantly depends on the SDS. The explanation for this observation can be directly 
related to the linear interpolation performed during the extraction of cos θ from the lookup 
table (Figs. 1 and 2). The FLT sampling method has evenly spaced cos θ values in the lookup 
table, which implies that for a drawn random number, the CDF will be interpolated equally 
well for large and small scattering angles. In contrast, the ILT sampling method has evenly 
spaced CDF values and unevenly spaced corresponding cos θ values and thus interpolates the 
CDF better for small scattering angles. Due to the characteristic shape of the CDF for forward 
peaked phase functions, the uniformly distributed random numbers evaluate to unevenly 
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spaced cos θ values, where the density of points increases towards the smaller scattering 
angles. However, according to Bodenschatz et al. [7], at short SDS, photons that scatter at 
larger angles significantly contribute to the reflectance signal, thus making the corresponding 
part of the phase function important. Consequently, the FLT sampling method is observed to 
perform better for shorter SDS. This fact is consistent with the observation in the bottom row 
of Fig. 5. In comparison to the FLT and NLT sampling methods, the ILT sampling method 
performs significantly worse at larger scattering angles where the density of cos θ values in 
the lookup table drops substantially. Consequently, the ILT sampling method has higher 
maximum absolute RRE at shorter SDS. At longer SDS, however, the probability of large 
angle scattering events drops and, due to the forward peaked shape of the phase function, the 
sampled scattering angles are mostly small. In this case, the ILT sampling method is expected 
to perform better. Since this cannot be observed from the bottom row of Fig. 5, we have 
calculated the average relative error within 50 bins of the reconstructed phase function 
histograms from Fig. 5 that represent the contribution of small scattering angles (cos θ 
between 0.9 and 1). The obtained relative error as a function of the lookup table size is shown 
in Fig. 9. The average relative error approaches zero faster for the ILT than the FLT sampling 
method. It should be noted that the best results for all of the SDS shown in Fig. 5 and Fig. 9 
are obtained with the NLT sampling method. This is because the linear interpolation in the 
NLT sampling is accomplished between the indices that correspond to evenly spaced cos θ 
and close to evenly spaced cos θ* (see Sect. 2.3.3 and Fig. 2). The error of linear interpolation 
depends solely on the quality of the fit between the employed model f and the CDF. For a 
good fit, the relation between the evenly spaced cos θ and cos θ* is close to identity, yielding 
accurate sampling results for both small and large scattering angles. 

 

Fig. 9. The average relative error within 50 bins of the reconstructed phase function histograms 
from Fig. 5 that represent the contribution of small scattering angles (cos θ between 0.9 and 1) 
as a function of the lookup table size for each numerical sampling method (FLT, ILT and 
NLT). 

In Fig. 5 we have made another remarkable observation that high relative errors in the 
reconstructed phase functions do not necessarily lead to high RRE. This suggests that the 
phase functions can be implemented in the MC simulations with a low degree of accuracy and 
still yield satisfactory reflectance estimates. Especially notable is the example for the ILT 
sampling method that exhibits a ± 20% error of the reconstructed phase function (large 
scattering angles) while the simulated reflectance at the shortest SDS still stays within 2% of 
the ground truth. This observation explains why simple phase functions such as HG can be 
successfully used in many experimental configurations, for which the phase function has a 
limited influence on the simulated reflectance. As a consequence, establishing a measure for 
the accuracy of reflectance simulation should be based on the reflectance itself (as performed 
in Fig. 5) and not on the relative errors in the reconstructed phase function. Using the latter as 
a measure could lead to oversized lookup tables, occupying large chunks of memory and 
requiring long preparation times. 
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To gain some insight on the computation efficiency of the numerical sampling methods, 
we have compared the simulation times required to complete a reflectance map. As expected, 
the simulation time required by the FLT sampling method is the longest and governed by the 
lookup table size. Since the FLT sampling method does not provide benefits in terms of 
lookup table size (Table 2), it should be the last choice in terms of MC simulations. The ILT 
and NLT sampling methods circumvent the use of costly iterative root-finding algorithm 
through the lookup table, and exhibit generally similar simulation times. However, for lookup 
tables of size below 250, the ILT sampling method seems to be the fastest. We believe that 
this is due to the additional computations of the inverse model f −1(ξ) performed by the NLT 
sampling method. For small lookup tables, the additional computation time becomes 
dominant over the memory access latency. However, for practical applications where the 
lookup table size usually exceeds 250 entries, the simulation times for ILT and NLT sampling 
methods converge. 

Finally, the anisotropy factor was proven to be the key observable of the phase functions 
that determines the lookup table size required for the maximum absolute RRE to drop under 
2%. As expected, phase functions with higher anisotropy factor g (i.e., highly forward 
peaked) require larger lookup tables. For highly forward peaked phase functions, the CDF of 
the phase function is steep, thus making the linear interpolation in the numerical sampling 
methods increasingly difficult. Consequently, a large number of cos θ values and the 
corresponding CDF values is required to retain a certain level of accuracy. For phase 
functions with anisotropy factor below 0.8, a lookup table size of approximately 100 is 
sufficient. In accordance with the computational efficiency of the numerical sampling 
methods, our recommendation is to use the ILT sampling method for phase functions with 
anisotropy factors below 0.8. For phase functions with anisotropy factor above 0.8, we 
believe that both ILT and NLT sampling methods should work sufficiently well. However, 
for short SDS, the NLT sampling method exhibits significantly smaller lookup table sizes (in 
this study shown for the GK phase function) and thus might be preferred over the ILT 
sampling method. 

6. Conclusion 

In this study we showed that numerical sampling from the phase function can significantly 
affect the MC simulated observables such as reflectance. Consequently, the resulting error of 
simulated reflectance can affect the calibration of MC simulations and thereby comparison 
with measured reflectance. By direct comparison of the FLT, ILT and NLT sampling 
methods, we found that their performance significantly depends on the phase function shape 
(anisotropy factor) and on the SDS when simulating reflectance acquired with optical fiber 
probes. Phase functions with a higher anisotropy factors require larger lookup tables. In terms 
of the SDS, at a common lookup table size, the FLT sampling method performs well at 
shorter SDS, while the ILT sampling method performs well at longer SDS. The NLT 
sampling method seems to perform sufficiently well at all the studied SDS. Remarkably, a 
suitable lookup table size should be based on the quantity that is being simulated (e.g., 
reflectance) and not on the errors that are present in the phase function reconstructed from the 
lookup table. Since the phase function is sampled many times due to the multiple scattering 
events, the errors in the reconstructed phase function are generally not a good measure for the 
quality of the simulated quantity (e.g., reflectance). 

Our recommendations on numerical sampling from the phase function in MC simulations 
of light propagation in turbid media are the following. Firstly, a suitable lookup table size 
should be determined through a comparison of the simulated observable (e.g., reflectance) to 
the ground truth. As a first approximation for the suitable lookup table size, the anisotropy 
factor of the phase function should be considered. Afterwards, the preferred numerical 
sampling method should be selected according to the simulation time. If the lookup table size 
is less than approximately 250, the ILT sampling method should be used. For larger lookup 
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tables, both the ILT and NLT sampling methods are acceptable, although for reflectance 
acquired close to the source (small SDS), the NLT sampling method was shown to sample the 
larger scattering angles more accurately than the ILT sampling method. 
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