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Abstract: Two-photon microscopy of cellular autofluorescence intensity and lifetime (optical 
metabolic imaging, or OMI) is a promising tool for preclinical drug development. OMI, 
which exploits the endogenous fluorescence from the metabolic coenzymes NAD(P)H and 
FAD, is sensitive to changes in cell metabolism produced by drug treatment. Previous studies 
have shown that drug response, genetic expression, cell-cell communication, and cell 
signaling in 3D culture match those of the original in vivo tumor, but not those of 2D culture. 
The goal of this study is to use OMI to quantify dynamic cell-level metabolic differences in 
drug response in 2D cell lines vs. 3D organoids generated from xenograft tumors of the same 
cell origin. BT474 cells and Herceptin-resistant BT474 (HR6) cells were tested. Cells were 
treated with vehicle control, Herceptin, XL147 (PI3K inhibitor), and the combination. The 
OMI index was used to quantify response, and is a linear combination of the redox ratio 
(intensity of NAD(P)H divided by FAD), mean NADH lifetime, and mean FAD lifetime. The 
results confirm that the OMI index resolves significant differences (p<0.05) in drug response 
for 2D vs. 3D cultures, specifically for BT474 cells 24 hours after Herceptin treatment, for 
HR6 cells 24 and 72 hours after combination treatment, and for HR6 cells 72 hours after 
XL147 treatment. Cell-level analysis of the OMI index also reveals differences in the number 
of cell sub-populations in 2D vs. 3D culture at 24, 48, and 72 hours post-treatment in control 
and treated groups. Finally, significant increases (p<0.05) in the mean lifetime of NADH and 
FAD were measured in 2D vs. 3D for both cell lines at 72 hours post-treatment in control and 
all treatment groups. These whole-population differences in the mean NADH and FAD 
lifetimes are supported by differences in the number of cell sub-populations in 2D vs. 3D. 
Overall, these studies confirm that OMI is sensitive to differences in drug response in 2D vs. 
3D, and provides further information on dynamic changes in the relative abundance of 
metabolic cell sub-populations that contribute to this difference. 
© 2017 Optical Society of America 

OCIS codes: (180.2520) Fluorescence microscopy; (170.1530) Cell analysis; (170.1610) Clinical applications. 
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1. Introduction 

Many promising new drugs fail in clinical trials, highlighting a need for more robust pre-
clinical screens that eliminate these drugs before costly clinical trials [1]. Currently, 2D cell 
monolayers are the predominant platform for assessing preclinical drug efficacy in vitro [2,3]. 
However, increasing evidence suggests that 2D cell monolayers may be insufficient to 
accurately recapitulate in vivo human drug response [3, 4]. Therefore, 3D tumor culture may 
present a better option, particularly for tissues with high structural organization such as breast 
cancer. 

Differences in the microenvironment of 2D and 3D cultures, including unique molecular 
localization patterns and ECM composition, trigger different signal transduction cascades and 
result in different cell behaviors [5]. These differing behaviors in 2D vs. 3D cultures include 
apoptotic sensitivity, kinase phosphorylation, and regulation of the activity of receptors 
involved in neoplastic transformation, such as estrogen receptor (ER) and human epidermal 
growth factor receptor 2 (HER2) [4]. Additionally, 3D cultures better represent the oxygen, 
nutrient, lactate, and proliferation gradients of the in vivo microenvironment than 2D cultures 
[6–9]. It is also advantageous to include other, non-malignant cells representative of the 
heterogeneous cell populations in in vivo tumors, such as stromal cells, as they are known 
regulators of proliferation, quiescence, and drug sensitivity in nearby malignant cells [10]. 

Current drug development platforms often rely on markers for apoptosis and necrosis to 
gauge drug efficacy in cancer cells [2, 3]. Alternatively, cell metabolism is capable of 
dynamically resolving subtle changes induced by drug treatments that correlate to successful 
in vivo response [11]. NAD(P)H and FAD are autofluorescent metabolic co-enzymes. The 
ratio of the fluorescence intensities of NAD(P)H to FAD is the “optical redox ratio,” which is 
sensitive to malignancy, tumor aggressiveness, and drug response [12–18]. In fact, changes in 
the redox ratio induced by anti-cancer drugs predict in vivo tumor response long before 
changes in tumor volume can be measured [15]. The fluorescence lifetime, or the amount of 
time a fluorophore remains excited prior to decaying back to the ground state, provides 
complementary information to the redox ratio [16, 19]. The fluorescence lifetime is sensitive 
to changes in cell microenvironment, such as pH, protein binding, and proximity to 
fluorescence quenchers such as oxygen [20–22]. Fluorescence lifetime imaging microscopy 
(FLIM) is an optical imaging technique capable of resolving these changes on a single-cell 
basis [23]. Furthermore, multiphoton FLIM is advantageous for deeper imaging in highly-
scattering samples such as 3D tumor models, due to superior optical sectioning and lower 
sample phototoxicity compared to single photon excitation [19]. Optical metabolic imaging 
(OMI) is two-photon imaging of the autofluorescence intensities and lifetimes of NAD(P)H 
and FAD. 

OMI is currently under investigation for drug screening in 3D tumor cultures, including 
breast cancer. The differences between 2D and 3D breast cancer cultures have been well-
characterized in previous studies using a variety of gold-standard methods, including RNA 
sequencing, Western blotting, and immunofluorescence assays [4, 5, 10]. This study aims to 
verify that OMI is sensitive to these known differences in drug response between 2D and 3D 
cultures, by conducting experiments in breast cancer cell monolayers in parallel to previous 
experiments conducted in 3D breast cancer tumor organoid cultures [15]. This cell-level 
imaging approach within intact samples also allowed for cell sub-populations to be compared 
in 2D vs. 3D cultures, thus enabling a comparison of cell-level heterogeneity in 2D vs. 3D 
cultures for control and treated groups. Additionally, absolute values of NAD(P)H and FAD 
mean fluorescence lifetimes were used as a direct point of comparison between the 
microenvironment of these molecules in 2D and 3D cultures. Previously published results 
showed that 3D organoid response accurately correlates to in vivo murine tumor growth, 
enabling the 2D monolayer results to be gauged against this standard as well [15]. To the best 
of our knowledge, this is the first study to use autofluorescence or FLIM to directly compare 
2D and 3D cultures. 
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1. Materials and methods 

BT474 (ER+/HER2 + ) cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 
Invitrogen) supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin:streptomycin. Herceptin-resistant HR6 cells were derived from BT474 xenografts 
that were treated with Herceptin (trastuzumab), a HER2 antagonist, until in vivo resistance 
was achieved [24]. These cells were grown in media prepared as described above, further 
supplemented with 10 μg/mL Herceptin [25]. The organoids used for comparison in previous 
experiments were generated using the protocol described in [15]. Briefly, xenograft and 
primary tumors were mechanically dissociated and suspended in a PMEC and Matrigel 
solution for culture and imaging [15]. Cells were plated for imaging experiments on 35mm 
glass bottom dishes (BD Biosciences) at a concentration of 1 x 105 cells/mL. Twenty-four 
hours after plating, each dish was treated with one of the following: fresh DMEM media 
(control), Herceptin-supplemented media (H, 25 μg/mL dose), XL147-supplemented media 
(X, 10 nM dose), or combination treatment (H + X). Imaging experiments were conducted 24, 
48, and 72-hour time points post-treatment. These time points were chosen based on previous 
studies [15] that showed agreement between drug response in organoids at 24, 48, and 72 
hours post-treatment, and long-term (30 day) drug response in matched in vivo mouse models. 
Three representative fields of view were imaged and analyzed for each dish, and experiments 
were repeated three times for each cell line, providing nine total images for each cell line. 80-
550 cells were imaged and analyzed per treatment group, with an average of n = 250 cells. 
60-300 cells were imaged and analyzed per treatment group in the previous organoid studies 
[15]. 

Cell monolayers were imaged using a custom-built two-photon fluorescence lifetime 
microscope [16]. Excitation was provided by a Titanium:Sapphire tunable laser (Chameleon 
Ultra II, Coherent, Inc.) operated at wavelengths of 760 nm and 890 nm for NAD(P)H and 
FAD excitation, respectively [19]. Fluorescence emission was collected with a 
photomultiplier tube (PMT, Hamamatsu) using 440/80 nm and 550/100 nm bandpass 
emission filters for NAD(P)H and FAD, respectively. Laser power was monitored over the 
course of imaging experiments and maintained at 3.4-3.6 mW at the sample. The focused 
fluences incident on the sample for NAD(P)H and FAD excitation were 901 kW/cm2 and 657 
kW/cm2, respectively. The photon count rates emitted over the course of an acquisition were 
also monitored to rule out the incidence of photobleaching, or the destruction of fluorophores. 
Count rates were observed to remain above 1 x 105 photons/s over the course of the entire 60-
second acquisition period. A 4.8 μs pixel dwell time was used, and 256x256 pixel images 
were recorded for each field of view. The cells continued to divide post-imaging in control 
dishes, confirming no adverse effects from imaging, consistent with previous studies [26]. 

Time-correlated single photon counting electronics (TCSPC, Becker & Hickl) were used 
to record fluorescence lifetime data, which was subsequently analyzed with SPCImage. An 
instrument response function (IRF) was measured using the second-harmonic generated 
signal from a urea crystal, then deconvolved from the acquired sample decays. The time-
resolved data was fit to a two-component exponential decay as described in previously 
published work, to model the distinct short and long fluorescence lifetimes of free and 
protein-bound NAD(P)H and FAD [13, 14, 16]. The fit model is I(t) = α1exp-t/τ

1 + α2exp-t/τ
2 + 

C, where I(t) is the time-resolved fluorescence intensity following the excitation pulse from 
the laser, α1 and α2 denote the relative contributions of the short and long lifetime components 
to the overall decay, and τ1 and τ2 are the short and long lifetime values. C accounts for 
constant background signal emanating from non-cellular components. This fit parameter was 
found to be consistent across pixels within individual images and across different images, 
suggesting minimal effects of background noise on lifetime and intensity data. The mean 
lifetime, τm, is calculated as the weighted sum of the short and long lifetimes, α1τ1 + α2τ2. The 
goodness of fit of this model was evaluated on a per-pixel basis for each NAD(P)H and FAD 
image and exported as a χ2 value. These values typically ranged from 1 to 2, with an average 
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value of 1.6, indicating good fitting parameters. A fluorescent bead (Polysciences) with a 
monoexponential decay was imaged on each day of experiments as a reference standard to 
validate proper system functioning. The mean fluorescence lifetime of the beads (τ = 2100 
+/− 5 ps) over sixteen total days of imaging was found to be in good agreement with 
published values [15, 19]. 

CellProfiler, a MATLAB-based open source image analysis software [27], was used for 
single-cell autofluorescence intensity and lifetime analysis as described previously [28]. 
Recorded images were first thresholded with an Otsu Global filter, then segmented to exclude 
nuclei from analysis. The redox ratio was calculated on a per-pixel basis for the cytoplasm as 
the NAD(P)H fluorescence intensity of that pixel divided by the FAD fluorescence intensity 
of that pixel. Cytoplasmic NAD(P)H and FAD lifetimes and the redox ratio were used to 
calculate the “OMI index.” The OMI index is a linear combination of the mean-normalized 
redox ratio, NAD(P)H τm, and FAD τm, with the respective coefficients (1, 1, −1) chosen to 
maximize the effect of treatment-induced changes, as described previously [15]. The mean 
OMI index was calculated for each treatment group at each time point for each cell line and 
used as the primary experimental endpoint. Significant changes in mean OMI index were 
assessed with respect to the daily control group using a Wilcoxon rank-sum test with α = 
0.05. Additionally, absolute NAD(P)H and FAD τm were quantified for each group, compared 
directly to corresponding values measured in organoids [15], and analyzed for statistical 
significance using the same procedure. All bar graphs show mean values, with error bars 
representing standard error. 

Population density curves were constructed to visualize sub-populations in OMI index, 
NAD(P)H τm, and FAD τm for each treatment group on a cellular-level. All data collected 
across each day of imaging for each group were fit to one-, two-, and three-component 
Gaussian curves. The Akaike Information Criteria (AIC) were used to assess relative 
goodness of fit for each model, and the model with the lowest AIC value was chosen as the 
most representative. The number of reported sub-populations corresponds to the number of 
Gaussian components in this chosen model. Measures were taken to verify that all analytical 
procedures performed on monolayer data were identical to those used to analyze the 
previously published organoid data [15]. 

2. Results 

BT474 monolayers 

The mean OMI index in 2D monolayers of each treatment group at each time point was 
computed and compared to that of the control at the same time point. The OMI index 
decreases in cells that are responding to a drug, and the OMI index increases or does not 
change in cells that are not responding to a drug. In BT474 2D monolayers, there was a 
significant decrease in OMI index in all treatment groups with respect to control at all time 
points (Fig. 1(a-c)), except there was a significant increase in OMI index in the Herceptin-
treated group at 24 hours (Fig. 1(a)). Trends in the optical redox ratio for each treatment 
group at each time point were identical to those observed in OMI index for this cell line (see 
Appendix, Fig. 5(a-c)). 
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Fig. 1. Optical metabolic imaging of BT474 2D monolayers. The OMI index was calculated at 
24 (a), 48 (b), and 72 (c) hours post-drug treatment. Gold- and gray-colored bars represent 
changes versus control that are in agreement and disagreement, respectively, with prior 3D 
organoid studies [15]. Blue bars delineate the control group for comparison. Population density 
curves were also generated at 24 (d), 48 (e), and 72 (f) hour time points to resolve OMI index 
distributions across a population. 

Population density curves were also generated for these 2D monolayers to visualize the 
presence of sub-populations that are not apparent when computing the average OMI index 
(Fig. 1(d-f)). These curves reveal subgroups of cells that respond to treatment differently, or 
fail to respond at all. A single population is representative of uniform treatment response, 
whereas resistant sub-populations may appear as secondary populations with a distinct mean 
OMI index. At 24 hours, the response is apparent for the XL147 and combination treatment 
group (Fig. 1(d)). At 48 hours, the combination treatment shows a sub-population with a 
higher OMI index (Fig. 1(e)). At 72 hours, the high OMI index sub-population in the 
combination treatment group is more prominent (Fig. 1(f)). The XL147-treated group also 
developed a small, higher-OMI index population at 72 hours (Fig. 1(f)) that was not 
resolvable at earlier time points. 

It is difficult to compare redox ratio, and therefore OMI index, values across different 
experimental conditions due to the need to normalize values to a daily control. However, the 
fluorescence lifetime is independent of intensity, and thus comparable across experimental 
days. Therefore, absolute NAD(P)H and FAD mean fluorescence lifetime values were 
examined in each treatment group in these 2D monolayer experiments to enable comparisons 
to prior 3D organoid experiments in which the absolute fluorescence lifetime values for these 
fluorophores were also calculated [15]. All comparisons of absolute fluorescence lifetime 
values were made for the 72-hour post-treatment time point. For both NAD(P)H and FAD, τm 
values in BT474 2D monolayers were significantly greater than those in corresponding 3D 
organoids across all control and treatment groups (Fig. 2(a, b)). The greatest differences 
existed for the XL147 and combination treatment groups for both fluorophores. Population 
density curves for parallel 2D monolayer and 3D organoid groups (Fig. 2(c-j)) support the 
mean population trends observed in Fig. 2(a, b). For both fluorophores, the organoid τm 
values were generally best modeled as a single population with low standard deviation, 
although the control and Herceptin groups did show small sub-populations for FAD τm. In 
contrast, the monolayer population density curves had broader peaks with larger standard 
deviations, and more often showed the presence of multiple populations. Similar trends in 
both average values and population density were observed in the short (τ1) and long (τ2) 
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lifetime values for both NAD(P)H (see Appendix, Fig. 6(a-j)) and FAD (Fig. 7(a-j)). 
However, the trends in NAD(P)H and FAD short lifetime components (α1) were less 
consistent, and treatment-induced changes were lesser in magnitude than those in 3D 
organoid τ1 and τ2 values (Fig. 8(a, b)). These comparisons were also made at the 72-hour 
time point. 

 

Fig. 2. Comparison of fluorescence lifetime values in BT474 3D organoids and 2D 
monolayers. Average values for NAD(P)H (a) and FAD (b) mean fluorescence lifetime (τm) in 
2D monolayer and 3D organoid cultures at 72 hours post-treatment reveal significantly greater 
τm values in 2D monolayers with respect to corresponding 3D organoid groups (p<0.05). 
Population density curves for NAD(P)H (c-f) and FAD (g-j) τm further distinguish 2D 
monolayer and 3D organoid models. The organoid data is a subset of data previously published 
in [15]. 

HR6 monolayers 

The response of Herceptin-resistant HR6 2D monolayers to the same panel of drug treatments 
was also examined. In general, the OMI index changes in HR6 monolayers were less uniform 
than those in BT474 monolayers (Figs. 1, 3). At the 24-hour time point, the only treatment 
group to differ significantly from control was the XL147-treated group (Fig. 3(a)). At 48 
hours post-treatment, both the XL147 and combination treatment caused a significant 
decrease in OMI index, with that of the combination treatment being larger in magnitude (Fig. 
3(b)). However, no significant changes in OMI index were resolvable at 72 hours post-
treatment (Fig. 3(c)). The lack of change in OMI index in Herceptin-treated HR6 2D 
monolayers with respect to the control group at all points is an important validation in these 
Herceptin-resistant cells (Fig. 3(a-c)). The redox ratio results at the 24- and 48-hour time 
points show the same trends as the OMI index results for each treatment group (see 
Appendix, Fig. 9(a, b)). However, at the 72-hour time point, the redox ratio was significantly 
greater than that of the control group in all of the drug-treated groups (Fig. 9(c)). 

Population density curves generated to visualize heterogeneity within the HR6 2D 
monolayers revealed mostly uniform curves representative of only a single population, 
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particularly after the 24-hour time point (Fig. 3(d)). The similarity between all the curves is 
most evident at 72-hours post-treatment (Fig. 3(f)). The only treatment group to show a 
pronounced sub-population at any time point was the XL147 group at 24 hours (Fig. 3(d)), 
but these higher and lower OMI index groups later merged into a single population with an 
average OMI index closer to that of the other treatment groups and control (Fig. 3(e, f)). 
Monolayer experiments failed to show the presence of any sub-populations at either the 48 
hour or 72 hour time point (Fig. 3(e, f)). The population density curves at 72 hours (Fig. 3(f)) 
support the lack of significant change among average OMI index values at this time point 
(Fig. 3(c)), most notably in the combination-treated group. 

 

Fig. 3. Optical metabolic imaging of HR6 monolayers. The OMI index was calculated at 24 
(a), 48 (b), and 72 (c) hours post-drug treatment. Gold- and gray-colored bars represent 
changes versus control that are in agreement and disagreement, respectively, with prior 3D 
organoid studies [15]. Blue bars delineate the control group for comparison. Population density 
curves were also generated at 24 (d), 48 (e), and 72 (f) hour time points to resolve OMI index 
distributions across a population. 

Like the BT474 results, the HR6 2D monolayers had significantly greater NAD(P)H and 
FAD τm than the 3D organoids for all treatment groups (Fig. 4(a-j)). These comparisons were 
also made at the 72-hour time point only. The differences in magnitude between 2D 
monolayer and 3D organoid NAD(P)H τm were similar across all treatment groups, ranging 
from 650 to 900 ps (Fig. 4(a)). The same was true for FAD τm comparisons, though the 
absolute differences between each pair were smaller, varying from 200 to 400 ps (Fig. 4(b)). 
For both NAD(P)H and FAD, the distributions of fluorescence lifetimes in 3D organoids were 
best modeled by a single, narrow population, with the exception of the Herceptin-treated 
organoids, which showed a small second peak (Fig. 4(c-j)). In 2D monolayer, the absolute 
values were better modeled by either a single, broader peak, or by two distinct sub-
populations. As with the BT474 τm results, some of the HR6 2D monolayer populations 
showed a lower τm sub-population that overlapped well with the organoid distribution, but 
also had higher τm sub-populations (FAD τm in control, combination-treated groups, Fig. 4(g, 
j)). The average τ1 and τ2 values for both NAD(P)H (see Appendix, Fig. 10(a)) and FAD (Fig. 
11(a)) were significantly higher for all treatment groups in 2D monolayers than in 
corresponding 3D organoid groups. Additionally, the distribution of τ1 in all 2D culture 
groups was consistently better modeled by two distinct populations (Fig. 10(c-f), Fig. 11(c-
f)). However, the τ2 distribution was better modeled by a single population (Fig. 10(g-j), Fig. 
11(g-j)). This trend held for both NAD(P)H and FAD at the 72-hour time point where these 
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comparisons were made. The α1 values for NAD(P)H and FAD showed opposite trends in 2D 
and 3D models, with 3D organoids having a significantly greater NAD(P)H α1 (Fig. 12(a)), 
but 2D monolayers having a greater FAD α1 (Fig. 12(b)). In general, comparisons made 
across the HR6 2D and 3D models were like those made across the BT474 2D and 3D 
models, but differences between 2D and 3D for HR6 cells were more uniform and greater in 
magnitude, particularly for NAD(P)H τm. 

 

Fig. 4. Comparison of fluorescence lifetime values in HR6 3D organoids and 2D monolayers. 
Average values for NAD(P)H (a) and FAD (b) τm in 2D monolayers and 3D organoids at 72 
hours post-treatment reveal significantly greater values in 2D monolayers with respect to 
corresponding 3D organoid groups (p<0.001). Population density curves for NAD(P)H (c-f) 
and FAD (g-j) τm further distinguish 2D monolayer and 3D organoid models. The organoid 
data is a subset of data previously published in [15]. 

3. Discussion 

Previous studies have established that 2D and 3D breast tumor cultures exhibit differences in 
cell signaling, genetic expression, and drug response [4]. Our results confirm that 
autofluorescence imaging of NAD(P)H and FAD can non-invasively resolve these differences 
within intact samples. Our studies also provide new information on more subtle differences in 
metabolic cell subpopulations of varied response over a treatment time-course. The temporal 
evolution of these cell subpopulations also differs between 2D and 3D breast tumor cultures. 
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Table 1. Comparison of number of sub-populations in 2D monolayer and 3D organoid 
BT474 cultures. Differences between 2D monolayers and 3D organoids are highlighted in 

bold. 

 Number of subpopulations 
Monolayers Organoids 

24 hours Control 1 1 
Herceptin 1 2 
XL147 1 2 
H + X 1 2 

48 
hours 

Control 1 1 
Herceptin 2 2 
XL147 1 1 
H + X 2 1 

72 hours Control 2 1 
Herceptin 1 2 
XL147 2 1 
H + X 2 1 

 
In prior BT474 3D organoid experiments, each drug and combination treatment resulted 

in a significant decrease in OMI index at all three time points [15]. These decreases matched 
the outcomes seen in tumor growth curves, which showed a significant decrease in tumor 
volume over a 30-day period in all treatment groups. Overall, the trends in mean OMI index 
values in BT474 2D monolayers matched those seen in BT474 3D organoids fairly closely, 
particularly at 48 hours post-treatment (Fig. 1(a-c)). The similarity in average OMI index 
values at this time point is further supported by a comparison of the number of sub-
populations in the 2D and 3D cultures (Table 1). The only inconsistency at 48 hours is the 
emergent second population in the combination treatment group in 2D monolayers (Table 1). 
However, the numbers of sub-populations differed greatly between 2D monolayers and 3D 
organoids for this cell line at 24 and 72 hours. As the multiple sub-populations resolved in 
BT474 3D organoids gave way to a more uniform response over time [15], the opposite trend 
occurred in BT474 2D monolayers. The number of sub-populations generally increased over 
time in BT474 2D monolayers. Interestingly, although the Herceptin-treated 3D organoids 
maintained two populations throughout the time course, the Herceptin-treated 2D monolayers 
were the only treatment group in the 2D experiments to merge into a single population at 72 
hours. 

Table 2. Comparison of number of sub-populations in 2D monolayer and 3D organoid 
HR6 cultures. Differences between 2D monolayers and 3D organoids are highlighted in 

bold. 

 Number of subpopulations 
Monolayers Organoids 

24
 

ho
ur

s 

Control 1 1 
Herceptin 1 1 
XL147 2 2 
H + X 1 2 

48
 

ho
ur

s 

Control 1 1 
Herceptin 1 1 
XL147 1 2 
H + X 1 1 

72
 

ho
ur

s 

Control 1 1 
Herceptin 1 1 
XL147 1 1 
H + X 1 2 

 

                                                                       Vol. 8, No. 3 | 1 Mar 2017 | BIOMEDICAL OPTICS EXPRESS 1920



In general, OMI index changes in HR6 2D monolayers differed more from those of HR6 
3D organoids (Fig. 3(a-c)) than the BT474 2D monolayers did from BT474 3D organoids 
(Fig. 1(a-c)). As in the BT474 2D monolayers, the average OMI index of the HR6 2D 
monolayers is most like that of the 3D organoids at the 48-hour time point (Fig. 3(b)). 
However, there are differences in numbers of sub-populations between 2D monolayers and 
3D organoids at all time points (Table 2). In parallel 3D organoid experiments, two sub-
populations were present in XL147-treated organoids at 48 hours, which merged to a single 
population at 72 hours (Table 2). The previous 3D organoid experiments also showed two 
populations at 72 hours after combination treatment (Table 2). Monolayer experiments failed 
to show the presence of any sub-populations at either the 48 hour or 72 hour time point (Fig. 
3(e, f) and Table 2). 

The most meaningful discrepancy between 3D organoid and 2D monolayer results was the 
outcome of combination-treated HR6 2D monolayers at 72 hours. The Herceptin-resistant 
HR6 3D organoids did not maintain a response to XL147 treatment alone at 72 hours, but did 
respond to combination treatment of XL147 and Herceptin [15]. XL147 inhibits the 
phosphatidylinositol-3-kinase pathway, which acts downstream of HER2 [29]. Therefore, the 
combination treatment of XL147 and Herceptin is under clinical consideration as a potentially 
viable treatment for HER2-positive patients [24]. However, the lack of response at 72 hours 
in 2D monolayers treated with this combination of drugs (Fig. 3(b)) is inconsistent with 3D 
organoid and in vivo results [15], demonstrating that the predictive value of the 2D model is 
inferior to that of the 3D organoid model in this context. 

Resolving the presence of cell sub-populations through population density modeling 
helped to explain some of the discrepancies seen in OMI index trends between 2D and 3D 
cultures (Tables 1 & 2). In general, 3D organoids showed a decrease in the number of sub-
populations over time in groups that had been treated successfully. This trend shows an 
intuitive disappearance of responsive sub-populations with continued treatment. For both cell 
lines, there were few discernable trends in the number of sub-populations over time in 2D 
monolayer cultures, despite the overall agreement in average OMI index between BT474 2D 
monolayers and 3D organoids. This observation further suggests that the 2D monolayer 
model may be inferior to the 3D organoid model, particularly in applications studying trends 
in drug response and resistance on a single-cellular level over time. 

Large differences were observed in the absolute mean NAD(P)H and FAD fluorescence 
lifetime values between 2D monolayers and 3D organoids for both cell lines (Figs. 2, 4). 
These values provide a direct, quantitative comparison of 2D and 3D microenvironments. 
Previous experiments conducted in head and neck squamous cell carcinoma (HNSCC) 
compared 3D primary tumor organoids to in vivo tumor xenografts of the same cell origin 
(FaDu) [29]. The NAD(P)H and FAD τm were found to be significantly greater in 3D 
organoids with respect to in vivo xenografts [30]. The difference in τm between HNSCC 
organoids and in vivo xenografts were on the order of approximately 200 ps and 500 ps for 
NAD(P)H and FAD, respectively. Similarly, in the current study, NAD(P)H and FAD τm 
were greater in 2D monolayers than in 3D organoids (Figs. 2, 4). Differences in τm between 
2D and 3D ranged from 200 to 500 ps for NAD(P)H τm in the BT474 line and for FAD τm in 
both lines. Larger differences were measured for NAD(P)H τm in the HR6 line, which 
potentially correlate to the greater differences in OMI index and sub-population number 
between the 2D and 3D cultures for this line. Given that fluorescence lifetime is sensitive to 
the oxygen and pH gradients that exist to a much lesser degree in 2D monolayer cultures than 
in 3D organoids, it is not surprising that these values differ greatly between 2D and 3D 
models. It is important to note that the media used to culture the monolayers and organoids 
was not identical; the media used for 3D organoid culture was supplemented with epidermal 
growth factor (EGF), hydrocortisone, insulin, and matrigel [15]. However, we nonetheless 
believe that inherent differences in cell signaling were more responsible for these lifetime 
differences than growth conditions alone. 
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The good agreement between OMI index values in BT474 2D monolayers, 3D organoid 
cultures, and in vivo xenografts, supports the continued use of cell monolayers for studying 
endpoints in some cell lines on some platforms. As 2D cultures continue to dominate drug 
development platforms, it is important to understand when their usage is appropriate, as they 
offer many practical advantages for high-throughput applications over 3D organoid cultures. 
Nonetheless, the findings of this study support the existing evidence that 3D analogues offer a 
superior method for analyzing drug efficacy and resistance within in vitro populations over 
time. In particular, single-cell based population modeling and comparisons of absolute 
fluorescence lifetime values helped to reveal differences between 2D and 3D cultures that 
global average values could not. Fluorescence lifetime and redox ratio measurements can 
resolve subtle differences in microenvironment between drug-treated 2D and 3D BT474 and 
HR6 cultures that may not be evident by examining overall structure or gene expression 
alone. The findings of these experiments conducted in breast cancer cell monolayers and their 
comparative analysis to parallel organoid experiments validate the use of optical metabolic 
imaging as a sensitive indicator of drug response. These results show that OMI can resolve 
differences in drug response between 2D and 3D cultures, and provide further evidence that 
OMI could be a powerful tool for drug screening on a single-cell level, particularly when 
applied to 3D breast cancer models. 

Appendix: Additional figures 

 

Fig. 5. Redox ratios of BT474 2D monolayers. The normalized redox ratio was calculated at 24 
(a), 48 (b), and 72 (c) hours post-drug treatment. The redox ratio significantly decreased 
(p<0.05) with treatment in all groups excluding the Herceptin group at the 24-hour time point. 
These trends are in good agreement with corresponding OMI index results (Fig. 1(a-c)). 
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Fig. 6. Comparison of short (τ1) and long (τ2) NAD(P)H fluorescence lifetime values in BT474 
3D organoids and 2D monolayers. Average values for NAD(P)H τ1 (a) and τ2 (b) in 2D 
monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 
2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population 
density curves for NAD(P)H τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D 
organoid models. The organoid data is a subset of data previously published in [15]. 

 

Fig. 7. Comparison of short (τ1) and long (τ2) FAD fluorescence lifetime values in BT474 3D 
organoids and 2D monolayers. Average values for FAD τ1 (a) and τ2 (b) in 2D monolayers and 
3D organoids at 72 hours post-treatment reveal significantly greater values in 2D monolayers 
with respect to corresponding 3D organoid groups (p<0.05). Population density curves for 
FAD τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D organoid models. The 
organoid data is a subset of data previously published in [15]. 
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Fig. 8. Comparison of the NAD(P)H and FAD fractional short lifetime components (α1) in 
BT474 2D monolayers and 3D organoids. The NAD(P)H short lifetime component (a) 
changed less with treatment in 2D monolayers than in 3D organoids. The changes in the FAD 
short lifetime component (b) were also lesser in magnitude and showed similarly inconsistent 
trends with respect to corresponding 3D organoid α1 values. The organoid data is a subset of 
data previously published in [15]. 

 

Fig. 9. Redox ratios of HR6 2D monolayers. The normalized redox ratio was calculated with 
respect to control at 24 (a), 48 (b), and 72 (c) hours post-drug treatment. Trends in redox ratio 
in this cell line agree with trends observed in OMI index at the 24-hour (Fig. 3(a)) and 48-hour 
(Fig. 3(b)) time points. However, the redox ratio increased significantly (p<0.05) in each of the 
treatment groups after 72 hours, whereas no significant changes were measured in OMI index 
at this time point (Fig. 3(c)). 

 

Fig. 10. Comparison of short (τ1) and long (τ2) NAD(P)H fluorescence lifetime values in HR6 
3D organoids and 2D monolayers. Average values for NAD(P)H τ1 (a) and τ2 (b) in 2D 
monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 
2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population 
density curves for NAD(P)H τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D 
organoid models. The organoid data is a subset of data previously published in [15]. 
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Fig. 11. Comparison of short (τ1) and long (τ2) FAD fluorescence lifetime values in HR6 3D 
organoids and 2D monolayers. Average values for NAD(P)H τ1 (a) and τ2 (b) in 2D 
monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 
2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population 
density curves for FAD τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D organoid 
models. The organoid data is a subset of data previously published in [15]. 

 

Fig. 12. Comparison of the NAD(P)H and FAD fractional short lifetime components (α1) in 
HR6 2D monolayers and 3D organoids. The NAD(P)H short lifetime component (a) was 
significantly lesser in 2D monolayers than in 3D organoids. FAD α1 values (b) in 2D 
monolayers were significantly greater than those in corresponding 3D organoids. The organoid 
data is a subset of data previously published in [15]. 
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