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Abstract: Biometric signatures of remote photoplethysmography (rPPG), including the pulse-
induced characteristic color absorptions and pulse frequency range, have been used to design 
robust algorithms for extracting the pulse-signal from a video. In this paper, we look into a new 
biometric signature, i.e., the relative pulsatile amplitude, and use it to design a very effective 
yet computationally low-cost filtering method for rPPG, namely “amplitude-selective filtering” 
(ASF). Based on the observation that the human relative pulsatile amplitude varies in a specific 
lower range as a function of RGB channels, our basic idea is using the spectral amplitude of, e.g., 
the R-channel, to select the RGB frequency components inside the assumed pulsatile amplitude-
range for pulse extraction. Similar to band-pass filtering (BPF), the proposed ASF can be 
applied to a broad range of rPPG algorithms to pre-process the RGB-signals before extracting 
the pulse. The benchmark in challenging fitness use-cases shows that applying ASF (ASF+BPF) 
as a pre-processing step brings significant and consistent improvements to all multi-channel 
pulse extraction methods. It improves different (multi-wavelength) rPPG algorithms to the extent 
where quality differences between the individual approaches almost disappear. The novelty of 
the proposed method is its simplicity and effectiveness in providing a solution for the extremely 
challenging application of rPPG to a fitness setting. The proposed method is easy to understand, 
simple to implement, and low-cost in running. It is the first time that the physiological property 
of pulsatile amplitude is used as a biometric signature for generic signal filtering.
c© 2017 Optical Society of America
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1. Introduction

Remote photoplethysmography (rPPG) enables contactless monitoring of human cardiac activi-
ties by measuring the pulse-induced subtle color variations on the human skin surface through a
regular RGB camera [1]. This measurement is based on the fact that the pulsatile blood propagat-
ing in the human cardiovascular system changes the blood volume in skin tissue. The oxygenated
blood circulation leads to fluctuations in the amount of hemoglobin molecules and proteins
thereby causing a fluctuation in the optical absorption across the light spectrum. An RGB camera
can be used to identify the phase of the blood circulation based on minute color changes in skin
reflections.

Recently, several multi-channel pulse-extraction methods have been proposed. These include:
(i) BSS-based approaches (PCA [2] and ICA [3]), which use different criteria to de-mix temporal
RGB traces into uncorrelated or independent signal sources to retrieve the pulse; (ii) a data-driven
approach (2SR [4]), which measures the temporal hue change from the spatial subspace rotation
of skin-pixels as the pulse; and (iii) model-based approaches (CHROM [5], PBV [6] and POS [7]),
which exploit characteristic properties of skin reflections (e.g., typical color absorption variations
due to blood volume changes in living skin-tissues) and different assumptions on the distortions
in the color channels to design a projection function from which the pulse-signal is extracted.
A thorough review of these algorithms can be found in [7]. Among them, the model-based
approaches demonstrate superior robustness in dealing with practical challenges such as the
skin-tone variations, body-motions and illumination conditions. This is due to the deployment of
the physiological and optical properties of skin reflections as (rPPG-related) priors to facilitate
the pulse extraction. In contrast, BSS-based approaches that do not use such priors need more
data to get the high-quality statistics for solving the source de-mixing problem. In general, there
are two major biometric signatures being used by current rPPG algorithms: (i) characteristic
color absorptions (i.e., pulse-induced color variation directions in a multi-spectrum camera),
which has been exploited by model-based rPPG [5–7] to differentiate between the pulse-induced
color changes and noise-induced color changes; (ii) characteristic pulse-frequency range, which
has been used in (almost) all rPPG algorithms to eliminate the frequency noise outside the
assumed frequency-band (e.g., [40, 240] beat per minute (bpm)), using a Band-Pass Filter (BPF).

Based on the recent findings reported by [8], we recognize that the relative amplitude (AC/DC)
of the human pulsatile component varies in a specific lower range as a function of RGB channels,
i.e., [0.0001, 0.002] AC/DC for the R-channel based on our experiments. The AC/DC is defined
as the variation amplitude of the target signal after the DC normalization. Take a color-signal
measured by the camera as an example, its AC/DC can be measured by first dividing the color-
signal by its temporal mean (DC) and then measuring the frequency amplitude (AC) of the target
component (i.e., pulse) in the DC-normalized signal. In this paper it is investigated if rPPG can
be improved by incorporating this prior knowledge. Our basic idea is using the spectral amplitude
of, e.g., the R-channel, to select the frequency components in RGB channels inside the assumed
“characteristic pulsatile amplitude-range” for pulse extraction, while the frequency components
outside this range are pruned as noise. We shall refer to this novel approach as “Amplitude
Selective Filtering” (ASF), and illustrate its principles in Fig. 1. Similar to BPF, ASF can also
be applied to a broad range of rPPG algorithms as a pre-processing or post-processing step to
improve the pulse extraction. Here we particularly use it for pre-processing, as it can repair/correct
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Fig. 1. Illustration of the amplitude-selective filtering. The essence of this filter is in the step
of selecting the RGB frequency components within the pulsatile amplitude-range for pulse
extraction, thus removing large components due to motion.

the color distortions in RGB-signals at an earlier stage, such that the cleaned AC-components
will benefit the pulse extraction in rPPG algorithms. Here we clarify the difference between pre-
processing and post-processing in rPPG: (i) pre-processing cleans the input (raw RGB-signals)
and thus can influence the pulse extraction; (ii) post-processing cleans the output (extracted
pulse-signal), which cannot influence the pulse extraction. A benchmark on challenging fitness
recordings shows that applying ASF (ASF+BPF) as a pre-processing step brings significant and
consistent improvements to the existing multi-channel pulse extraction methods. The strength of
ASF is evident not only from the fact that it improves all benchmarked (multi-wavelength) rPPG
algorithms but in particular because it drives them to a similar quality-level.

The novelty of this work is that we introduce a simple yet powerful pre-filtering method
(i.e., ASF) that significantly improves the performance of rPPG methods, particularly in the
challenging use-case of fitness. It is the first time that the physiological property of pulsatile
amplitude is exploited as a biometric signature for generic signal filtering. The proposed method
is easy to understand, simple to implement, and low-cost in running, i.e., the challenging
motion problem in fitness can be addressed by a few lines of Matlab code. Most importantly,
the improvement introduced by ASF is general to all multi-wavelength rPPG methods, as
demonstrated by seven existing core rPPG algorithms in the benchmark. As such, it can not only
be used as an add-on function by the existing rPPG methods to increase their robustness, but
also by rPPG methods that will be developed in the future. Similar to the widely used BPF, ASF
can be standardized as a generic filtering step in vital signs monitoring systems/frameworks to
benefit the community at large. Though the concept of ASF and its implementation is simple,
it has so far not been considered nor evaluated as a means to shape the frequency response of
the commonly used Band-Pass Filter depending on the energy/amplitude per frequency bin. We
will show that our ASF provides an effective solution for the previously considered very hard
problem of measuring heart-rate during vigorous exercise in a fitness setting. We use a very
simple step to solve a challenging problem that existing core rPPG algorithm cannot deal with.

The remainder of this paper is structured as follows. In Section II, we define the problem. In
Section III, we analyze the considered problem in detail and describe the amplitude-selective fil-
tering method. In Section IV and V, we benchmark the proposed filter and discuss its performance.
Finally in Section VI, we draw our conclusions.
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2. Problem definition

Unless stated otherwise, vectors and matrices are denoted as boldface characters throughout
this paper. Considering the RGB-signals measured by a camera within a time interval as C (i.e.,
RGB channels are ordered in rows), it is composed of different source-signals observed from the
environment (e.g., pulse and motion). Each channel of C can be physically expressed as:

Ci = Si,1 + Si,2 + ... + Si,M =
∑M

n=1
Si,n , (1)

where Ci denotes the i-th channel of C; Si,n denotes the n-th source-signal contributing to Ci;
M is the total number of sources. The component of interest, i.e., pulse, is one of the sources
among Si,n, which we assume to be Si,1. The goal of filtering is to derive a Ĉi that approximates
Si,1. Thus our first step is to separate Ci into different components, where pulse is assigned to,
preferably, a single component. Since pulse is a periodic signal, we can capture this property by
decomposing Ci into different temporal frequency components:

Ci = Fi,1 + Fi,2 + ... + Fi,N =
∑N

n=1
Fi,n , (2)

where Fi,n denotes the n-th frequency component of Ci, which can be obtained by the frequency
decomposition; N is the total number of frequency components, with, in practice, N > M .
The targeted source-signal, Si,1, is expressed as a single component or very limited number of
components in Fi,n. The main task of filtering is to select the pulse-related components from
Fi,n.

Intuitively, some Fi,n in (2) cannot be related to the pulse-signal, as the (periodic) pulsatile
component does not spread in the entire frequency spectrum. Hence, a band-pass filter is typically
used to select the pulse-related Fi,n with specifications based on the assumption that the human
pulse-rate can only vary in a range, e.g., [40, 240] bpm. This procedure can be expressed as
weighting Fi using a binary mask:

Ĉi =
∑N

n=1
wi ,n · Fi,n with wi ,n =

1, if n ∈ [bmin , bmax ],
0, elsewhere,

(3)

where wi ,n denotes the combining weight for Fi,n; [bmin , bmax ] denotes the assumed pulse
frequency-band. In essence, BPF uses the frequency-index (n) of Fi,n to determine their combin-
ing weights. As a consequence, it cannot deal with the case when the noise-frequency enters the
assumed frequency-band, which typically occurs in fitness applications where the periodic body
motions usually occur in the pulse frequency-band [9].

Looking at this problem from a different angle, we recognize that it is also possible to use
the amplitude of Fi,n to determine their combining weights. The rationale is: the human relative
pulsatile amplitude (AC/DC) also varies in a specific range as a function of RGB channels [8].
Therefore, we can define a (narrow) pulsatile amplitude-band to only select the Fi,n with the
in-band amplitude for pulse extraction. This is equivalent to defining an amplitude-selective
filter. We hypothesize that such an approach could be highly attractive for the fitness use-case,
as the periodic motion distortions are typically stronger than the pulse-signal itself, certainly
in the R-channel that contains rather low pulse-energy due to the low blood absorption in red.
Moreover, we expect its advantage to increase for more vigorous exercise as compared to the
band-pass filter, since the significant body motions may enter the pulse frequency-band, but are
increasingly less likely to enter the low pulsatile amplitude-band.

Thus the problem at hand is the design of an amplitude-selective filter to improve the robustness
of existing rPPG algorithms. In the next section, we shall analyze this problem in detail and
present our solution.
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3. Method

In this section, we first analyze the criteria for defining an amplitude-selective filter, and then
describe the proposed algorithm.

3.1. Analysis

The study of [8] shows that the relative pulsatile amplitude, measured in red (675 nm) and
infrared (842 nm) wavelengths, varies around (1 ± 0.5) × 10−3 AC/DC dependent on different
skin temperatures (from 7◦C to 23◦C). It is in fact a quite narrow range as compared to the
motion amplitudes (particularly in fitness), which triggers us to restrict the frequency components
admitted to the pulse-extraction processing to the ones falling inside the characteristic pulsatile
amplitude-range. This can be translated into the procedure of using the spectral amplitude
(AC-level) of Fi,n to determine the wi ,n in (3), such that the Fi,n outside the assumed amplitude-
range can be suppressed. However, it remains questionable whether the quantitative data on the
relative pulsatile amplitude-range provided by [8] can be directly used in our approach, since [8]
used monochrome cameras with selected narrow-band block filters to measure the pulsatility,
which are different from the optical filters in a regular RGB camera. In order to find the proper
quantitative data for such a setup, we re-do this experiment by measuring the relative pulsatile
amplitudes (AC/DC) in RGB channels using a regular multi-wavelength RGB camera (Global
shutter RGB CCD camera USB UI-2230SE-C from IDS, with 768 × 576 pixels, 8 bit depth, and
20 frames per second (fps)).

Targeting fitness applications, our experiment considers adult subjects in a moderate room
temperature (i.e., 20◦C - 25◦C). We used 22 video sequences recorded on 15 stationary subjects
with different skin-tones and under different illumination conditions. The recruited 15 subjects
have three skin-types based on the Fitzpatrick scale: 5 Western European subjects (skin-type III),
5 Eastern Asian subjects (skin-type III), and 5 Sub-Sahara Africa/Southern Asian subjects (skin-
type IV-V). Four lighting conditions are used: Fluorescent, Red LED, Green LED and Blue LED.
The reference PPG-signal is recorded by a finger-contact transmissive pulse oximetry (Model
CMS50E from ContecMedical) and synchronized with the video frames. Since the pulsatility
of a stationary subject is also time-varying due to the Mayer-waves (i.e., oscillations of arterial
pressure occurring spontaneously in conscious subjects) [10], we can split one video recording
into multiple non-overlap/independent intervals (e.g., 4 intervals) to extend the measurement.
Eventually, we have 88 video intervals in total. By using the contact-PPG reference signal
recorded in parallel, we can precisely locate the pulse frequency components in RGB channels
and obtain their relative amplitudes (AC/DC). Fig. 2(a) shows the relative pulsatile amplitude as a
function of RGB channels over 88 video intervals and their corresponding statistics. We observe
that (i) the G-channel has the highest pulsatility, followed by the B and R channels; (ii) the
R-channel has the lowest pulsatile variation, followed by the B and G channels, i.e., the variation
of AC/DC is proportional to its average level; and (iii) the difference between RGB channels is
in fact not large. The reason for (iii) can be explained by the overlap of the transmission spectra
of the optical filters in the Bayer pattern of the used RGB camera, where the R-channel also sees
the information in the G-channel (see Fig. 2(b)). The wavelength-overlap could be an advantage
for extreme lighting spectra (e.g., non-white illumination), where all three channels can more or
less sense the pulsatility across channels, i.e., if the R-channel is completely dark that cannot
sense any information (e.g., in blue-LED illumination), the functions of both the filtering and
pulse extraction will break down.

To design an effective amplitude-selective filter, we have two hypotheses: (i) the pulsatile
components have small relative amplitudes (AC/DC) that are bounded in a specific lower range;
(ii) the (fitness) motion distortions have larger AC/DC that allow them to be distinguished
from the pulsatile amplitude. To this end, we choose to use the R-channel to select the pulsatile
components in RGB channels. The reasons are following: (i) the R-channel has the lowest average
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(a) The relative pulsatile amplitude as a function of RGB channels over 88 video intervals and corresponding
statistics. In the left-hand panel, each vertical bar is a stack (cumulative sum) of the AC/DC values in the
RGB channels, identified by RGB colors, for each video interval. In the right-hand panel where the pulsatile
distributions are shown, the box identifies the quartile range, the horizontal bar inside the box the median,
the whisker the full range disregarding the outliers (crosses).
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(b) The continuous relative pulsatile amplitude traces obtained from RGB channels in videos recorded
under different (extreme) lighting conditions (e.g., colored LED illumination). The right-hand panel shows
the responses of RGB filters of the used camera (red/green/blue curves) and the absolute PPG-amplitude
(black dashed curve).

Fig. 2. (a) The statistically measured relative pulsatile amplitude as a function of RGB chan-
nels. (b) The continuous relative pulsatile traces exemplified in extreme lighting conditions
and the optical filter responses of the used RGB camera.

AC/DC, which is easier to be differentiated from that of the large motions; (ii) the AC/DC of the
R-channel has the smallest range (e.g., [0.0001, 0.002] AC/DC), the mean/median of which is
more bounded and less uncertain than that of the G and B channels. Essentially, we only need to
define the maximum amplitude bound for the R-channel, while the minimum amplitude bound is
non-critical, because the influence of small noise variations (with an amplitude even smaller than
the pulse) on the estimated pulse-signal is negligible. Based on our experiments, we define the
maximum amplitude bound for the R-channel as 0.002, i.e., the component with an amplitude
larger than this threshold will be suppressed. Such a filter is expected to be particularly effective
for eliminating large motion distortions in challenging use-cases like fitness, and less effective
for simple use-cases where distortions have small AC/DC that is similar to pulse. Although less
effective, the proposed filter can never harm the pulse extraction in the rPPG module, as it does
not introduce new distortions/artifacts.
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3.2. Algorithm

Given the raw RGB-signals C, our first step is to eliminate the dependency of C on the average
skin reflection color (DC-level). This can be done by the temporal normalization (AC/DC-1) [5]:

C̃i =
Ci

µ
(
Ci

) − 1, (4)

where C̃i denotes the zero-mean color variation signal in the i-th channel, the DC of which is
normalized and removed; µ(·) denotes the averaging operator. Note that an alternative to (4) is to
take the logarithm of Ci and remove the mean, which for small variations as the PPG-signal has
practically the same effect [7].

Here we mention that Ci is a 1D color-signal averaged of the skin-pixel values from a whole
face, where the spatial distribution of the pulsatile signals is eliminated. We understand that
in the domain of imaging-PPG (iPPG) [11], the PPG-waveforms from different locations of
a human body are different, but using the spatially averaged pixel values for pulse extraction
is still a valid option in our rPPG task. The reasons are threefold: (i) we consistently use the
complete face area as a single spot for pulse measurement. Thus the spatially averaged color-
signal assembles a stable and consistent PPG-waveform averaged from the whole face in time.
This is similar to the iPPG where the measurement also depends on the resolution of the used
local pixel-/patch- sensors, i.e., the RoI sizing 7 × 7 (or 20 × 20) pixels may already combine
different PPG-waveforms. But this does not constitute a problem as long as the RoI is consistently
sampled from the same location of the skin. In a similar vein, we use the whole face as a single
RoI for measurement, where the only difference is the RoI resolution; (ii) we use a 20 fps camera
for video recording. With such a low frame-rate, the pulse transit time or the pulse wave delay
between pixels on face can be neglected. Also, the camera in our setup is placed around 2 meters
in front of the exercising subject. With the used focal length, the percentage of the face area in a
video frame (640 × 480 pixels) is approximately 15-20%, which is much smaller than that in
a typical iPPG imager. With such a resolution, the signal differences between pixels on a face
are trivial; and (iii) in fitness applications, our ultimate goal is to estimate a rough heart-rate
(HR) trace (i.e., a single parameter signal instead of imaging) to optimize the effectiveness of a
workout in real-time. We are not looking for the detailed cardiac features in the PPG-waveform
shape to guess the arterial stiffness or cardiovascular age during exercise. IPPG is far more
challenging, as it requires accurate pixel-to-pixel registration, which, with the state-of-the-art
algorithms, is not yet feasible for the fitness task with significant body motions. Note that using
the “spatial pixel averaging” to estimate the physiological signal (e.g., pulse) is a common step
in all existing rPPG works, which is not a contribution of this paper

To analyze the AC-components, we transform C̃i into the frequency-domain using the Fast
Fourier Transform (FFT):

Fi =
FFT(C̃i)

L
, (5)

where Fi denotes the frequency spectrum of the i-th channel; FFT(·) denotes the FFT operator;
L is the signal length. Note that Fi needs to be scaled by dividing L to eliminate the energy
variance due to different signal lengths (e.g., number of frames). Based on earlier reasoning, we
choose to use the R-channel to derive the combining weights for selecting the AC-components
in RGB channels. The weighting vector W, consisting of different combining weights Wn, is
derived by:

Wn =


1, if abs(F1,n) < amax ,
∆

abs(F1,n)
, elsewhere,

(6)

where Wn denotes the weight for the corresponding Fi,n; F1,n denotes the n-th component
of F1 (i.e., the spectrum of the R-channel, the first channel in F); abs(·) takes the absolute
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value (i.e., spectrum amplitude); amax is the maximum amplitude threshold used for selecting
the AC-components, which is set to 0.002 based on our earlier analysis; ∆ is a small number
that prevents the zero-weight, which is specified as 0.0001 based on the lower bound of the
pulsatile range (in the R-channel) found by our experiments, i.e., the unselected components are
suppressed to a level lower than the relative pulsatile amplitude.

We note that in (6), the weight assigned to the unselected AC-component is spectrum-
dependent small value instead of 0. This is to avoid the situation that less than 3 AC-components
are selected for pulse extraction, which renders some rPPG algorithms invalid, i.e., the filtered
RGB-signals must contain at least 3 AC-components for BSS-based [2, 3] and PBV [6] algo-
rithms, otherwise it results in a (near-) singular covariance matrix that cannot be solved. Next,
we use W to weight each channel of F:

F̂i = W � Fi , (7)

where � denotes the element-wise product; W = [W1 ,W2 , ...,WL]. Consequently, the weighted
spectrum F̂i is transformed back into the time-domain using the Inverse Fast Fourier Transform
(IFFT):

Ĉi = µ(Ci) ·
(
IFFT(F̂i) + 1

)
, (8)

where IFFT(·) denotes the IFFT operator. Note that DC of the color is re-instated to the filtered
signals to keep the original meaning of RGB-channels, as some rPPG algorithms cannot work
with DC-free signals, such as the HUE algorithm [15]. Ĉ is the final output of the filtering, which
can be used as the input of rPPG algorithms for pulse-signal extraction.

The complete algorithm of Amplitude-Selective Filtering (ASF) is shown in Algorithm 1,
which is very easy to replicate and allows all kinds of refinements, i.e., the implementation only
requires a few lines of Matlab code. The ASF-algorithm is kept as simple and clean as possible
to highlight the essence of our idea. Further dedicated algorithmic optimization on ASF, i.e.,
adapting the maximum amplitude threshold (amax ) to the pulsatility of the measured subject in a
specific video to further restrict the component selection, is not considered in this paper but shall
be left to future work.

Algorithm 1: Amplitude-Selective Filtering
Input: Raw RGB-signals C with dimension 3 × L

Initialization: amax = 0.002, ∆ = 0.0001 (default)
1 C̃ = diag(mean(C, 2))−1 ∗ C − 1;
2 F = fft(C̃, [ ], 2)/L;
3 W = ∆./abs(F(1, :));← F(1, :) is the R-channel
4 W(abs(F(1, :)) < amax ) = 1;
5 F̂ = F. ∗ repmat(W, [3, 1]);
6 Ĉ = diag(mean(C, 2)) ∗ (ifft(F̂, [ ], 2) + 1);

Output: Filtered RGB-signals Ĉ

4. Experimental setup

This section introduces the experimental setup for the benchmarking. First, a challenging fitness
video dataset is created. Next, two evaluation metrics are presented. Finally, three filtering
methods are compared as a function of pre-processing for eight existing rPPG algorithms.

4.1. Benchmark dataset

The purpose of our benchmark is to verify the effectiveness of the proposed ASF as the pre-
processing step in rPPG algorithms, in particular in dealing with the motion challenges in fitness
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(a) The recording setup used for creating the benchmark video datset. It includes three different light sources
and involves subjects with different skin-tones. The ceiling light is a fluorescent lamp emitting light at a 60◦

angle, while the frontal fluorescent light and frontal halogen light provide a frontal illumination on the face.
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(b) Snapshots of some benchmark videos, which show different challenges included in our recordings such
as skin-tone variations, different light sources or luminance intensity levels, other body-parts, etc.

Fig. 3. Experimental setup and video snapshots.

applications. To this end, we create a benchmark dataset containing 23 videos (with 161,051
frames) recorded from different subjects running on a treadmill. Note that these benchmark
videos are completely different from the 22 stationary videos recorded for investigating the
relative pulsatile amplitude in our earlier experiment. The videos are recorded by a regular RGB
camera (Global shutter RGB CCD camera USB UI-2230SE-C from IDS, with 640×480 pixels,
8 bit depth, and 20 fps) at a constant frame rate in an uncompressed bitmap format. The ground-
truth/reference is the contact-based ECG-signal sampled by the NeXus device (The wireless
physiological monitoring and feedback device. The type of the device is NeXus-10 MKII) and
synchronized with the video frames. This study has been approved by the Internal Committee
Biomedical Experiments of Philips Research, and informed consent has been obtained from each
subject.

Figure 3(a) illustrates the experimental setup. Unless mentioned otherwise, each video is
recorded using the following default settings: the camera is placed at about 2 meters in front of
the subject running on the treadmill, which results in approximately 20,000 skin-pixels given the
used optics. The default subject is a male adult with a skin-type III according to the Fitzpatrick
scale, and his face region is recorded for the pulse extraction. The subject is illuminated by the
office ceiling light (i.e., fluorescent lamp) with an illumination direction oblique to the skin-
normal, which is a common lighting condition in the fitness environment. During the recording,
the subject varies the running speed between low-intensity (3 km/h) and high-intensity (12 km/h)
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Fig. 4. Illustration of the two quality metrics (SNR and success-rate) used for evaluating
the rPPG performance. In the SNR metric, the frequency components of pulse (green) and
noise (red) are defined by the ECG-reference. In the success-rate metric, the inlier estimates
(green) and outlier estimates (red) are defined by a tolerance (dashed black line) w.r.t. the
ECG-reference.

within 5-8 minutes, depending on his endurance. The background is a skin-contrasting cloth to
facilitate the skin-segmentation, which we regard as an independent research challenge outside
the scope of this paper.

To thoroughly investigate the functionality of ASF, we include various realistic challenges in
the recordings by changing the default experimental settings. These challenges include: different
skin-types, light sources (i.e., fluorescent and halogen lamps), luminance intensity levels (i.e.,
from dark to bright), and other body-parts (i.e., running hand). Since ASF is designed for
reducing large motion distortions in general but not for a specific challenge like skin-tone, we
only perform an overall analysis/comparison on the entire dataset instead of the categorized
individual challenges. Fig. 3(b) exemplifies the snapshots of some benchmark videos. Since
a skin-contrasting background is used in the recording setup, we apply a simple thresholding
method in YCrCb space [12] to segment the skin-region across the video and save the temporal
RGB traces of spatially averaged skin-pixels for processing (i.e., pulse extraction). In this way,
we ensure that the experiment relies on the minimal non-rPPG techniques, to highlight the
effect/essence of the proposed method and facilitate the replication of the experiment.

4.2. Evaluation metric

To evaluate the quality of estimated rPPG-signals,we used two metrics: SNR and success rate. The
SNR and success rate measure the cleanness and correctness of the output signal, respectively.
• SNR The Signal-to-Noise-Ratio (SNR) metric used by [5] is adopted. The SNR is derived by

the ratio between the energy around the fundamental pulse frequency and remaining components
within [40, 240] bpm in the frequency spectrum, where the fundamental pulse frequency is
precisely located by the reference ECG-signal recorded in parallel (see Fig. 4). Since the pulse
frequency of an exercising subject is time-varying, we use a sliding window to measure the
SNR of the extracted pulse-signal in a short time-interval, and average the SNR measured from
different time-intervals as the output metric value. More specifically, the length of the sliding
window used for measuring SNR is 256 frames (6.4 s in 20 fps camera), with the sliding step
1 frame. As mentioned earlier, ASF shall be assessed on the entire dataset, the final quality
indicator for each method is the globally averaged SNR over 23 video sequences.
• Success-rate We also measure the success-rate of the rPPG-signals, where the “success-rate”

refers to the percentage of video frames where the absolute difference between the measured
rPPG-frequency and reference ECG-frequency is bounded within a tolerance range (T ). The
rPPG-/ECG- frequency is the index of the maximum frequency peak of the rPPG-/ECG- spectrum
(see Fig. 4). To enable the statistical analysis, we estimate a success-rate curve by varying
T ∈ [0, 10] (e.g., T = 3 means allowing 3 bpm difference), and use the Area Under Curve (AUC)
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Table 1. The globally averaged SNR (dB) over 23 benchmark videos of each rPPG algorithm
by using different filters in the pre-processing. The bold entry denotes the best result obtained
by each rPPG algorithm using the corresponding filter.

Pre-processing G G-R HUE PCA ICA CHROM PBV POS
None (baseline) -15.84 -8.39 -6.90 -11.00 -8.96 -4.62 -4.22 -4.12

BPF -15.16 -7.81 -5.32 -8.38 -6.04 -3.38 -1.84 -2.57
ASF -9.16 -3.80 -1.78 -1.67 -1.01 -1.23 -0.40 -0.23

ASF+BPF -8.42 -3.20 -1.20 -0.78 -0.32 -0.70 0.37 0.51

Table 2. The AUC of success-rate obtained each rPPG algorithm over 23 benchmark videos
by using different filters in the pre-processing. The bold entry denotes the best result obtained
by each rPPG algorithm using the corresponding filter.

Pre-processing G G-R HUE PCA ICA CHROM PBV POS
None (baseline) 0.00 0.03 0.04 0.07 0.08 0.07 0.11 0.06

BPF 0.05 0.23 0.37 0.32 0.35 0.57 0.69 0.62
ASF 0.15 0.52 0.63 0.64 0.67 0.67 0.72 0.72

ASF+BPF 0.30 0.59 0.71 0.72 0.72 0.79 0.83 0.83

as the output quality indicator (i.e., larger AUC means better performance). Note that the AUC is
normalized by 10, the total area. Similar to the SNR, the success-rate of an rPPG algorithm is
measured across all video frames in the entire dataset.

We mention that the use of ECG in this work is limited to the experimental setup. It is not
essential to the application of rPPG, i.e., ECG is used as a reference to verify whether an rPPG
measurement is correct or not. This is similar to all prior works/studies that need a ground-truth
for benchmarking. In the off-the-shelf fitness applications, the rPPG can be used independently,
without the assistance of ECG.

4.3. Compared methods

We compared three filtering methods, i.e., Band-Pass Filter (BPF), Amplitude-Selective Filter
(ASF), and ASF + BPF, as the pre-processing step in eight existing rPPG algorithms, i.e.,
G [1, 13], G-R [14], HUE [15], PCA [2], ICA [3], CHROM [5], PBV [6], and POS [7]. The
baseline for each rPPG algorithm is the bare version (None) without pre-processing, i.e., only the
core algorithm for pulse extraction is addressed. Note that the recently developed 2SR method [4]
is not used in the benchmark as it does not use the temporal RGB- signals as the input for pulse
extraction. This is to make a fair comparison between the different pre-processing methods by
using exactly the same RGB-signals as the input, i.e., 2SR uses the spatial covariance matrix
and is thus not compatible with RGB-signals, although its essence is similar to HUE [15]. Both
the filters and core rPPG algorithms have been implemented in MATLAB and run on a laptop
with an Intel Core i7 processor (2.70 GHz) and 8 GB RAM. The implementation of ASF strictly
follows Algorithm 1.

We stress that our benchmark focuses on comparing different filters, but not on comparing
different core rPPG algorithms. Thus only the parameters of filters are changed, while the
parameters of core rPPG algorithms are fixed according to the original papers. Four parameters
are defined for the benchmarked filters: the temporal window length (L) for pre-processing the
RGB-signals, the frequency-band ([bmin , bmax ]) for BPF, the maximum amplitude threshold
(amax ) and the small offset (∆) for ASF. The default parameter settings are: L = 128 frames,
[bmin , bmax ] = [6, 24], amax = 0.002, and ∆ = 0.0001. The parameters related to ASF will be
varied for investigating their sensitivity.
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Fig. 5. The SNR comparison between eight rPPG algorithms as a function of pre-processing.
Different panels show the results obtained by using different filters (e.g., None, BPF, ASF
and ASF+BPF) in the pre-processing, where the median values are indicated by red bars,
the quartile range by blue boxes, the full range by whiskers, disregarding the outliers (red
crosses).
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Fig. 6. The success-rate curves (and corresponding AUC) obtained by eight rPPG algorithms
over 23 benchmark videos by using different filters in the pre-processing. Each panel
shows the contribution of three filters (i.e., BPF, ASF and ASF+BPF) to a particular rPPG
algorithm, where different colors denote the AUC for different filters and the percentage
numbers exemplify their success-rate at T = 3, i.e., allowing 3 bpm difference with the
ECG-reference.

5. Results and discussion

This section presents the benchmarking results. We first discuss the overall performance of
different filters on the entire dataset, and then discuss the parameter sensitivity of ASF.

5.1. Overall discussion

Table I-II summarizes the globally averaged SNR and the AUC of success-rate of eight rPPG
algorithms (obtained over 23 benchmark videos) for different filters in the pre-processing, based
on the default parameter settings specified in Section 4.3. It shows that (i) all benchmarked filters,
when being used as the pre-processing step, improve the baseline result of all rPPG algorithms to
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Fig. 7. Spectrograms obtained by eight rPPG algorithms on a fitness video by using different
filters in the pre-processing. From top to bottom: baseline without pre-processing (None),
Band-Pass Filter (BPF), Amplitude-Selective Filter (ASF), and the combination of ASF and
BPF (ASF+BPF).

different extents; (ii) ASF yields the most substantial improvement from the baseline, where the
SNR difference between rPPG algorithms largely disappears except for the simplest approaches
that either only use G or G-R; and (iii) ASF+BPF, i.e., the combination of two filters, achieves the
best performance, although its improvement on top of ASF is not as large as that from the baseline
to ASF. The distribution of the SNR over 23 videos in Fig. 5 confirms our observation that ASF
brings the largest improvement. Fig. 6 shows success-rate curves of individual rPPG algorithms
by using different filters. We observe that (i) all the improvements gained in SNR are reflected by
the success-rate of pulse-rate estimation, i.e., higher SNR implies higher success-rate; (ii) ASF
is particularly beneficial for non-model based rPPG (e.g., G-R, HUE, PCA and ICA), for which
it achieves a success-rate that is almost twice higher than that of BPF. The improved results of
BSS-based approaches suggest the success of noise suppression, as the cleaned AC-components
in RGB-signals lead to the correct pulse extraction, including the source de-mixing and pulsatile
component selection.

Figure 7 exemplifies the spectrograms of eight rPPG algorithms by using different filters in the
pre-processing. It shows that (i) BPF mainly eliminates the large low-frequency distortions in the
baseline (possibly due to the motion drift) that are obviously outside the assumed pulse frequency-
band (e.g., [6, 24]), but cannot deal with the in-band distortions (e.g., horizontal and vertical body
motions). We mention that the “motion drift” could due to the fact that the subject can hardly
stay in the same position on a treadmill when he/she is running, but drifts to different positions
during the long-term exercise. The motion drift is a (long-term) low-frequency distortion as
compared to the instant horizontal and vertical body motions due to running. The unsuppressed
motion components in RGB-signals are especially harmful for BSS-based approaches, i.e., the
large periodic motion variations may drive the signal de-mixing and also confuse the component
selection, having the motion-source retrieved in the end (see the spectrograms of PCA and ICA
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Fig. 8. Spectrograms obtained by eight rPPG algorithms on a fitness video by using ASF
in the pre-processing (Pre-ASF) or the post-processing (Post-ASF). From top to bottom:
baseline without pre-/post- processing (None), Pre-ASF, and Post-ASF.

using BP). Even model-based approaches cannot remove these in-band distortions completely
(see two clear motion-frequency traces remaining in the spectrograms of PBV and POS using
BP); (ii) ASF significantly suppresses the distortions in the spectrograms of all rPPG algorithms
expect G, especially it improves the non-model based approaches. By its nature, ASF eliminates
the large motion distortions across the entire frequency spectrum. This is highly attractive for
fitness applications, where the vigorous body motions may occur in any frequency range and
may well be in the pulse frequency-band during the exercise, but can hardly enter the (lower)
pulsatile amplitude-range. If body motions enter the pulsatile amplitude range, they are obviously
comparable in amplitude to the pulse and therefore less challenging for the core rPPG algorithm
to handle. Nevertheless, small periodic distortions may still be problematic for the component
selection in BSS-based approaches; and (iii) ASF+BPF gives the cleanest spectrogram for each
algorithm. Adding BPF on top of ASF to further restrict the out-band noise will, anyway, improve
the results, but we conclude that ASF dominates the improvement and BPF only marginally adds
to that.

Figure 8 demonstrates that pre-processing of the color-channels with ASF is to be preferred
over post-processing of the pulse-signal, as the pre-processing cleans the RGB-signals at an
earlier stage and improves the pulse extraction. The main reasons for the observed benefits in the
ASF pre-processing are the following: (i) ASF eliminates large motion-induced color variation
directions (e.g., specular changes), thus correcting the color projection direction estimated
by BSS-based/model-based approaches for pulse extraction; (ii) ASF removes large motion
components, especially improving the component selection in BSS-based approaches, i.e., the
motion components in fitness are usually periodic. Using ASF in the post-processing can more or
less clean the spectrogram as compared to the baseline results, as it removes the large distortions
residing in the pulse-signal. However, putting ASF in the post-processing is much less effective,
which is in line with our earlier expectation.

The benchmark shows that by adding only the ASF pre-processing step, the task of choosing
a core rPPG algorithm for pulse extraction becomes less critical. This is different from the
conclusions drawn in earlier studies [4–7] that selecting a proper rPPG algorithm for a specific
task is highly important, because different algorithms show very different performances, i.e.,
model-based rPPG (e.g., CHROM, PBV and POS) is much more robust than non-model based
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Fig. 9. The 3D mesh shows different SNR (first row) and AUC of success-rate (second row)
when varying the parameters of ASF for eight rPPG algorithms. The two varied parameters
are: the sliding window length L (first column) and the maximum amplitude threshold amax

(second column). When changing the investigated parameter, the other one remains constant.
The red/blue color represents the high/low values for SNR and AUC of success-rate.

rPPG (e.g., PCA and ICA) in fitness. This paper shows that the performance differences between
the various rPPG algorithms are minimal when using ASF as a pre-processing tool. But we
also note that the single channel method (G) is hardly improved when combing it with ASF,
which suggests that exploiting the multi-channel information of an RBG camera (i.e., channel
combination) to cancel distortions is still essential for creating a robust rPPG.

We stress that the spectrograms in Fig. 7 and Fig. 8 are plotted from the raw rPPG-signals
given by different methods, without the assistance of ECG, i.e., ECG is only used to check
whether the rPPG spectrograms are correct or not.

5.2. Parameter discussion

To investigate the parameter sensitivity of ASF, we vary two parameters, i.e., the sliding window
length (L) and the maximum pulsatile-amplitude threshold (amax ), in the default settings and
re-run the overall benchmark for each rPPG algorithm. The ∆ in ASF, only serving to prevent
zero-entries in the frequency spectrum, is not varied as it is not expected to be critical to the
filtering performance when it has been set to a small value. Note that BPF is not considered in
this experiment, as we focus on validating the independent performance of ASF.

Figure 9 shows different SNR and AUC of success-rate for eight rPPG algorithms when setting
(a) L to [32, 64, 128, 256, 512] and (b) amax to [0.001, 0.002, 0.003, 0.004, 0.005], separately.
From Fig. 9(a), we observe that for each rPPG algorithm, a longer window length improves both
the SNR and success-rate. We expect this is because a longer time-signal has higher frequency
resolution that improves the separability of pulse and motion frequencies. The results obtained
by the default setting L = 128 in the overall benchmark are not optimal. Obviously, the gains in
performance from using a long window come at the price of an increased latency. From Fig. 9(b),
we observe that (i) changing amax causes variations in both the SNR and success-rate, although

                                                                       Vol. 8, No. 3 | 1 Mar 2017 | BIOMEDICAL OPTICS EXPRESS 1979



the effect is not significant; (ii) increasing amax leads to quality drops for all rPPG algorithms,
as the larger maximum threshold may include the motion components as well. However, a large
amax can never make the results worse than the baseline version without filtering. The filter
will become less selective, but will not introduce additional distortions/artifacts; (iii) decreasing
amax may cause serious problems, since it creates a more selective (narrow-band) filter that may
also suppress the pulse-induced signal components.

As a final remark, we emphasize that the proposed ASF is a generic filtering method that
is compatible with a broad range of rPPG algorithms using RGB-signals as the input. The
proposed ASF is a principle-new method that is simple/intuitive to understand, easy to implement,
computationally low-cost, and very effective in dealing with significant noise distortions in a
measurement, which also shows a large potential to be extended/optimized in future.

6. Conclusion

In this paper, we exploit a new biometric signature, i.e., the relative pulsatile amplitude, to design
a very effective yet computationally low-cost filtering method for improving the robustness of
rPPG. Based on the observation that the human relative pulsatile amplitude varies in a specific
lower range as a function of RGB channels, we use the spectral amplitude of, e.g., the R-channel,
to select the frequency components in RGB channels within the assumed pulsatile amplitude-
range for pulse extraction. We named this method “Amplitude-Selective Filtering” (ASF), which
uses the amplitude to eliminate noise distortions, instead of the more common frequency criterion
used in the Band-Pass Filtering (BPF). The proposed ASF can be used as a pre-processing step
in general rPPG algorithms to improve their robustness. Our benchmark containing challenging
fitness videos shows that using ASF (ASF+BPF) in the pre-processing brings significant and
consistent improvements. It improves different multi-channel pulse extraction methods to the
extent where quality differences between individual approaches almost disappear. The novelty
of the proposed method is using the simple amplitude-based pre-filtering to achieve large
improvements for different rPPG methods in challenging fitness applications. The proposed
method is easy to understand, simple to implement, and low-cost in running. It is the first time
that the physiological property of pulsatile amplitude is used as a biometric signature for generic
signal filtering.
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