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Introduction
Advances in DNA sequencing and bioinformatics have facili-
tated the disclosure of numerous oral microbial taxa and their 
associations with dental health or caries activity (Aas et al. 
2008; Tanner et al. 2016). The use of next-generation sequenc-
ing (NGS) technologies has revealed the high complexity of 
the oral microbiome (Belda-Ferre et al. 2012; Simón-Soro et al. 
2013), metatranscriptome (Benítez-Páez et al. 2014; Duran-
Pinedo and Frias-Lopez 2015), metaproteome (Belda-Ferre  
et al. 2015; Belstrom et al. 2016), and metabolome (Washio  
et al. 2016) at remarkable levels. Altogether, the data collected 
from these OMICS approaches are providing the foundation to 
better understand how hundreds of microbial species coinhabit 
and functionally interact in oral biofilms to cause disease or to 
maintain homeostasis (Duran-Pinedo and Frias-Lopez 2015; 
Simón-Soro and Mira 2015).

A symposium entitled “How the OMICS Are Contributing 
to the Understanding of Caries” was held in June 2016 during 
the 94th general session of the International Association for 
Dental Research (IADR) in Seoul, South Korea. The objec-
tives of this symposium were to 1) recognize the applications 
of OMICS technologies, including the advantages and disad-
vantages of each method; 2) gain knowledge on how the 
OMICS are contributing to the understanding of dental caries; 

and 3) outline the scientific evidence from current OMICS 
studies, which support the development of novel approaches 
for caries diagnostics and management. This review aims to 
summarize the information presented at the symposium and to 
expand the discussion of how OMICS is leading to paradigm 
shifts in oral microbiology and cariology.
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Abstract
Novel approaches using OMICS techniques enable a collective assessment of multiple related biological units, including genes, gene 
expression, proteins, and metabolites. In the past decade, next-generation sequencing (NGS) technologies were improved by longer 
sequence reads and the development of genome databases and user-friendly pipelines for data analysis, all accessible at lower cost. 
This has generated an outburst of high-throughput data. The application of OMICS has provided more depth to existing hypotheses as 
well as new insights in the etiology of dental caries. For example, the determination of complete bacterial microbiomes of oral samples 
rather than selected species, together with oral metatranscriptome and metabolome analyses, supports the viewpoint of dysbiosis of 
the supragingival biofilms. In addition, metabolome studies have been instrumental in disclosing the contributions of major pathways for 
central carbon and amino acid metabolisms to biofilm pH homeostasis. New, often noncultured, oral streptococci have been identified, 
and their phenotypic characterization has revealed candidates for probiotic therapy. Although findings from OMICS research have been 
greatly informative, problems related to study design, data quality, integration, and reproducibility still need to be addressed. Also, the 
emergence and continuous updates of these computationally demanding technologies require expertise in advanced bioinformatics for 
reliable interpretation of data. Despite the obstacles cited above, OMICS research is expected to encourage the discovery of novel 
caries biomarkers and the development of next-generation diagnostics and therapies for caries control. These observations apply equally 
to the study of other oral diseases.
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First Era of the OMICS: Entering the 
Technology Hype Cycle
When a technological breakthrough leads to an advent of a new 
technology, it generally follows a cycle of maturation and 
acceptance, also known as “Gartner hype cycle” (Fig. 1), 
named after the company that proposed this theory (Gartner, 
Inc.). The hype cycle starts with a technology trigger and 
proof-of-principle studies, which are noticed by the media and 
receive significant publicity. This early publicity produces a 
number of successful stories while heading toward the peak of 
inflated expectations. However, when the initial errors and fail-
ures of the new technology become apparent, the cycle enters 
the phase of trough of disillusionment. The technology can sur-
vive this phase to enter the slope of enlightenment only when 
significant investment occurs to overcome the problems. At the 
slope of enlightenment, the technology will continue to develop 
and become more widely accepted and used by consumers. 
Once it becomes mainstream, the cycle enters the plateau of 
productivity.

In general terms, the 454 Life Sciences (Roche), Illumina 
(Illumina), and SOLID (Life Technologies) platforms are the 
second generation or NGS. In 2005, the 454 pyrosequencing 
technology introduced parallel high-throughput sequencing 
that allowed simultaneous determination of hundreds of thou-
sands of 80- to 120-bases-long sequence reads in a single 
machine run. This was later expanded to 250 bp with the FLX 
system (Roche). The initial 35-bp-long reads in the Illumina 
system were also increased to 70 to 200 bp. These improve-
ments of sequencing technologies opened a new dimension for 
biomolecular research, which until then had relied on the tradi-
tional Sanger sequencing. The 454 technology was picked up 
by frontrunners in microbial ecology, and its applicability was 
first demonstrated on the ecosystem of deep sea water, disclos-
ing a previously unseen microbial diversity (Sogin et al. 2006). 
This was followed by new findings on other ecosystems such 
as soil, microbial mats, and murine and human gut. The first 
report revealing the vast diversity of oral microbial communi-
ties was published in 2008 (Keijser et al. 2008) and succeeded 
by the first core oral microbiome report (Zaura et al. 2009).

A new and promising technology will inevitably generate a 
race for “a first-time application.” For the oral microbiome, 
this race resulted in highly cited publications with long lists of 
bacterial names and conclusions obtained from the analysis of 
a few oral samples, rather than from well-designed and hypothesis-
driven studies. These limitations were not exclusive for oral 
microbiology research. Of all sequencing studies published in 
major ecological journals in 2009, only 18% analyzed replicate 
samples (Prosser 2010). In most cases, the lack of replicates 
was attributed to or justified by the high cost of these cutting-
edge technologies. Later, when expenses per sequencing run 
decreased significantly, the determination of the microbiomes 
associated with oral diseases—for example, periodontal dis-
ease (Griffen et al. 2012), endodontic infections (Ozok et al. 
2012), and caries (Gross et al. 2012)—became a trending topic 
in dental research.

The increased use of NGS technology also led to the first 
critical evaluations of the methodology, which described issues 
from bias due to DNA extraction, polymerase chain reaction 
(PCR), and sequencing (Lee et al. 2012; Abusleme et al. 2014) 
to the choice of sequencing primers (Nossa et al. 2010), sample 
contamination (van der Horst et al. 2013), and methods used 
for preprocessing and clustering data (Bonder et al. 2012). 
Data analysis during the first era of OMICS consisted of vari-
ous custom-made pipelines, which resulted in diverging out-
puts (Bonder et al. 2012). Furthermore, at that time, databases 
for functional classification were designed for eukaryotic 
organisms with many categories not suitable for prokaryotic 
organisms, for example, cytoskeleton proteins. These data-
bases also did not account for phage genes, many of which 
were assigned to categories like DNA replication. Research 
groups had no choice but to design their own analysis pipelines 
to assign short sequence reads to bacterial taxa and functions. 
However, the lack of computing expertise within the oral 
microbiology groups hampered the usability of OMICS tech-
niques. In addition, frequent updates in the NGS technologies 
contributed to the difficulties in performing the analyses. 
Staying on top of the technological progress required regular 
updates in advanced bioinformatics, an essential new compe-
tence for research in oral microbiology.

The first generation of oral metabolomics also had its own 
challenges with problems associating specific metabolites with 
oral bacterial pathways. The metabolome consists of a wide 
range of metabolites and is the last step in the biological hier-
archy from the genome through transcriptome and proteome to 
metabolome. While there are several databases to identify 
metabolites of Escherichia coli or mammalian cells, research 
of oral microbial metabolism has been difficult mostly because 
the metabolic pathways of oral bacteria are generally different 
from those of other organisms. Basic knowledge about oral 
bacterial metabolism, particularly carbohydrate metabolism by 
caries-associated bacteria (i.e., streptococci), was compiled by 
Carlsson in 1986 (Carlsson 1986). Later, Takahashi and others 
provided information about carbohydrate metabolism by 
Actinomyces (Takahashi and Yamada 1999), as well as amino acid 
metabolism by periodontal pathogens such as Porphyromonas 
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gingivalis and Prevotella intermedia (Takahashi and Yamada 
2000). A more comprehensive catalogue of metabolic path-
ways of oral bacteria was published subsequently (Takahashi 
2015).

Second Era of the OMICS:  
On the Slope of Enlightenment
The advances in sequencing technology continued to improve 
the resolution of sequence analysis. For example, the Illumina 
platform increased once again the length of the reads to 300 bp 
while the 454 technology increased to 800 bp, making the tax-
onomic and functional assignments more reliable. Moreover, 
sequencing costs were reduced considerably. Currently, 
Illumina sequencing of the 16S ribosomal RNA (rRNA) gene 
by the paired-ends technology can be performed at US$20–30 
per sample compared with the US$80–120 cost of 7 y ago. 
Following the advancement of gut microbiome research, 
genome databases specific to oral microorganisms were devel-
oped, including the Human Oral Microbiome database 
(HOMD) (Chen et al. 2010) and the CORE database (Griffen 
et al. 2011), which are curated to remove contaminants and 
improve reliability of the analysis. Equally important was the 
sequencing of genomes of oral bacteria by the Human 
Microbiome Consortium (Gevers et al. 2012). This was par-
ticularly relevant to reduce the number of unassigned reads in 
metagenomic analysis. Nevertheless, 40% to 50% of the 
metagenomic reads still remain unassigned or assigned as 
hypothetical proteins with unknown function; therefore, more 
work is still needed in this area (Belda-Ferre et al. 2012; 
Simón-Soro et al. 2013; Duran-Pinedo and Frias-Lopez 2015). 
A “wiki solution” (Salzberg 2007) and a gene knockout 
approach (Baba et al. 2006) were proposed to improve annota-
tion of bacterial genomes and elucidate gene function in model 
organisms.

In parallel to the improvement in sequence length and 
development of oral databases, several user-friendly pipelines 
have become available that allow research groups to analyze 
high-throughput sequence data without requiring program-
ming skills. For instance, the Ribosomal Database Project 
developed a 16S rNA gene analysis pipeline with complete 
quality filtering, barcode separation, taxonomic analysis, and 
estimation of diversity indexes in an online system (Barriuso et al. 
2011). Other applications developed for metagenomic analysis 
include the METAREP, a microbiome-specific version of the 
Integrated Microbial Genomes system (Markowitz et al. 2012), 
and the MG-RAST, which permits users to upload sequences 
remotely and provides full taxonomic and functional analyses 
based on a well-designed pipeline (Keegan et al. 2016). In the 
context of interpreting bioinformatic data, it is important to 
consider that the availability of tools and affordability of gen-
erating genomic information have led to a false sense of sim-
plicity, when the truth is that a vast knowledge of microbial 
ecology, microbial metabolism, and OMICS-related biostatis-
tics capacity is still required.

What Have We Learned?
One of the most significant findings from OMICS studies was 
the identification of previously unknown, thus “new” bacterial 
genera/species, which appeared to be associated with dental 
health or caries. Such was the case for Streptococcus A12 
(Huang et al. 2016) and Streptococcus dentisani (Camelo-
Castillo et al. 2014), which were both isolated from supragingi-
val plaque of caries-free individuals. A12 is able to inhibit the 
growth and intercellular signaling of the caries pathogen 
Streptococcus mutans and to buffer pH through the arginolytic 
pathway. Phylogenomic analyses comparing the A12 genome 
to reference genomes revealed that A12 is most closely related 
to Streptococcus australis but sufficiently different to represent 
a new species. Similar to A12, S. dentisani presents antimicro-
bial activity on S. mutans and is capable of metabolizing argi-
nine (Fig. 2). Compelling evidence supports the role of arginine 
metabolism in caries prevention (Marquis et al. 1987; Casiano-
Colón and Marquis 1988; Nascimento et al. 2013). Given their 
beneficial and health-associated properties, A12 and S. denti-
sani are currently being tested as probiotic strains for caries  
prevention. Other newly identified species are yet to be charac-
terized, such as Schlegelella species, which were detected by 
high-throughput 16S rRNA gene sequence analysis of DNA and 
RNA of carious dentin samples. In some subjects, Schlegelella 
and Pseudoramibacter represented a high proportion of the 
total microbiota detected in the carious samples (Simón-Soro 
and Mira 2015). Studies have also revealed new associations of 
relatively unknown taxa and caries pathogenesis. For example, 
Scardovia wiggsiae was significantly associated with severe 
early childhood caries (Tanner et al. 2011). In theory, microbi-
ome analysis and other OMICS approaches coupled with phe-
notypic characterization of newly identified species may 
support the identification of new microbial biomarkers for 
caries.

Another accomplishment from high-throughput sequence 
analyses was the validation of previously suggested ecological 
hypotheses with solid data sets. For example, Lactobacillus 
species have long been associated with late stages of caries 
progression (Becker et al. 2002). In a metagenome analysis of 
the bacterial communities found at the different stages of caries 
development, Lactobacillus species were detected only in deep 
carious dentin (Simón-Soro et al. 2013). Moreover, OMICS 
studies (Simón-Soro and Mira 2015) confirmed the previously 
proposed concept that both dental caries and periodontal dis-
ease are closely related to a dysbiosis of microbial consortia 
rather than by individual bacterial species (Marsh 2006). The 
dysbiosis is driven by environmental changes, such as a sugar-
frequent/acidic-pH environment in caries and a protein-rich/
neutral-to-weakly alkaline-pH environment in periodontal dis-
ease (Takahashi 2015).

OMICS studies also underpinned a pivotal aspect of the 
caries process—the presence of bacteria does not necessarily 
indicate metabolic activity. Specifically, the prevalence of bac-
teria revealed by metagenome analysis may not correlate well 
with the patterns of the active microbial community revealed 
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by metatranscriptome analysis of the same oral sample. 
Actinomyces, Corynebacterium, and Neisseria were the 3 most 
abundant taxa in the RNA-based community of a 24-h plaque 
sample, whereas Veillonella, Streptococcus, and Leptotrichia 
were the most prevalent in the total DNA-based metagenome 
of the same sample (Fig. 3; Benítez-Páez et al. 2014). This 
underlines the dynamic nature of microbial activity in biofilms 
by indicating that some genera were especially active at 24 h of 
biofilm development, whereas others were less active, albeit being 
present at higher proportions at that point of sampling. Interestingly, 
the recent use of the CLASI-FISH (Combinatorial Labeling and 
Spectral Imaging—Fluorescence in situ Hybridization) technique 
indicated that Corynebacterium could be the cornerstone of 
supragingival plaque architecture with long filaments that serve 
as anchor sites for many other microbes (Mark Welch et al. 2016). If 
these findings are confirmed, it could imply that Corynebacterium 

rather than Fusobacterium species are the 
bridging bacteria in biofilms. From there, 
novel antiplaque strategies have been pro-
posed directed toward Corynebacterium 
and other key biofilm bacteria (Ferrer and 
Mira 2016).

Metagenome analyses have begun to 
elucidate some aspects related to bacterial 
activity in dentin caries. High expression 
levels of collagenases and other proteases, 
such as serine-proteases, glycoproteases, 
carboxy-terminal proteases, and metallo-
proteases, were detected in samples of 
carious dentin (Simón-Soro et al. 2013). 
These findings suggest that the microbial-
encoded proteolytic arsenal, coupled with 
the activity of human metalloproteases, 
may play a significant role in the degrada-
tion of dentinal protein. Twenty percent of 
the collagenase DNA sequences from 
carious dentin samples corresponded to 
Prevotella species, but significant matches 
were also obtained to annotated collage-
nases from Bacteroides, Campylobacter, 
Capnocytophaga, Treponema, and others. 
Future RNA-based metatranscriptomic 
work combined with experimental assays 
should be performed to confirm if these 
bacterial-encoded collagenases are in fact 
able to degrade dentin proteins.

Our knowledge of the bacterial meta-
bolic pathways involved in caries was also 
expanded. The metabolism of dietary car-
bohydrates to acids by oral bacteria has 
long been known as the driving force of the 
caries process. Metabolomics is beginning 
to disclose the central carbon metabolism 
pathways in operation in supragingival 
plaque, including the Embden-Meyerhof-
Parnas pathway (EMP pathway; glycoly-

sis), the pentose-phosphate pathway, and the tricarboxylic acid 
cycle (TCA cycle). Contrary to dietary carbohydrates, proteins, 
peptides, and amino acids are continuously supplied by saliva 
and gingival crevicular fluid in the oral cavity, and they serve as 
vital metabolic substrates for the growth of plaque bacteria. 
Nowadays, it is possible to measure amino acid metabolism 
along with carbohydrate metabolism (Washio et al. 2016). 
Certain amino acids that are relatively strong acids can be con-
verted into relatively weak organic acids, carbon dioxide, and 
ammonia, which can neutralize acids in the biofilm. However, 
metabolic pathways responsible for alkalization that can coun-
teract cariogenic acidification as well as salivary clearance and 
buffering are yet to be fully clarified.

A recent study showed the contribution of major pathways 
for amino acid metabolism to the pH homeostasis processes in 
oral biofilm (Washio et al. 2016). In resting supragingival 
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Figure 2.  Phenotypic characterization of  Streptococcus dentisani. (A) Graphic shows the buffering 
of extracellular pH by Streptococcus dentisani strain 7746, which is a heath-associated oral bacteria 
recently identified by OMICS approaches. S. dentisani was grown in Brain Heart Infusion medium 
with (blue diamonds) and without (red squares) addition of 5 g/L arginine. (B) Streptococcus mutans 
UA159 (lab strain) cells after 30 min of exposure to the supernatant of S. dentisani strain 7746. The 
arrows shows pores in the cells wall formed as a consequence of the action of bacteriocins and thus 
potential probiotic activity of S. dentisani. This figure is available in color online.

Figure 3.  Total and active microbial composition in a 24-h supragingival dental plaque sample. 
DNA and RNA were extracted from the same sample and subject to direct sequencing to obtain 
the metagenome and metatranscriptome of the microbial community, respectively. Genera are 
ranked according to their proportion in the RNA-based, active fraction. Some organisms that 
are present at low levels in the DNA appear to be extremely active, such as Actinomyces and 
Corynebacterium. Others, like Neisseria and Streptococcus, appear to be less active at the time of 
sample collection, as indicated by their higher DNA to RNA ratios (Benítez-Páez et al. 2014).
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plaque, glutamate exhibited the highest concentration levels, 
but various metabolites related to amino acid metabolism, such 
as citrulline, ornithine, putrescine, γ-aminobutyric acid 
(GABA), and β-alanine, were also detected (Fig. 4). The rela-
tively high concentrations of citrulline and ornithine along 
with the relatively low concentration of arginine detected in 
plaque support that the arginine deiminase system (ADS) func-
tions to convert arginine to citrulline and ornithine and may 
contribute to acid neutralization in vivo. Likewise, the high 
concentration of glutamate and relatively high level of ammo-
nia production from glutamate indicate that glutamate metabo-
lism might also function as an acid neutralizer in vivo. 
Intriguingly, these end products of amino acid metabolism are 
known to be cytotoxic, induce tissue inflammation by modu-
lating immune responses, and promote apoptosis (Kurita-
Ochiai et al. 2008), and these processes contribute to 
periodontal disease. The role of amino acid metabolism by 
supragingival versus subgingival plaque bacteria in the devel-
opment of oral diseases deserves further investigation. Hence, 
metabolomic analysis might help to identify new biomarkers 
of oral diseases.

Metabolomic analyses can also be used to evaluate the 
effects of existing oral care products and future caries thera-
pies. For example, the metabolome of supragingival plaque 
collected after oral rinsing with a mixture of sodium fluoride 

and glucose confirmed that fluoride reduces bacterial acid pro-
duction from glucose by inhibiting the glycolytic enzyme eno-
lase (Takahashi and Washio 2011) as previously proposed 
(Guha-Chowdhury et al. 1997). Xylitol was also shown to have 
no effect on glucose metabolism or acid production in vivo 
(Takahashi and Washio 2011).

The Next Era of OMICS: Reaching the 
Plateau of Productivity
Having passed the various stages of the hype cycle of OMICS 
technologies, it is time to further reflect on future applications. 
To unravel causal relationships between the microbiome and 
changes in oral health status, there is an absolute need to per-
form well-designed longitudinal clinical studies. As with any 
clinical study, particular efforts should be made when planning 
the workflow of OMICS studies (Fig. 5). Study planning 
should start with defining the hypothesis and objectives fol-
lowed by the development of an appropriate study design that 
should include power analysis, before any resources are spent 
on sequencing and data analysis (Vincent et al. 2016). Several 
tools are available for power and sample size calculations 
based on preexisting OMICS data sets or users’ pilot data 
(Kelly et al. 2015). However, reliability of these tools still 
needs to be demonstrated, and the development of a simple 
user-interface is required to facilitate the applicability of these 
calculations. In addition, both positive and negative controls 
should be included in the assessments to allow identification of 
bias introduced in the different sample processing steps (Brooks 
2016). Finally, OMICS data sets require multivariate statistical 
analysis followed by correction for multiple testing. The selec-
tion of the most appropriate statistical tools will depend on the 
study design, for example, cross-sectional or longitudinal. 
Available tools that are aimed to compare independent groups 
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and also the least time-consuming step of the workflow, followed by the 
“bottleneck” of OMICS studies regarding the time: the data analysis step. 
The time needed for the analyses will depend on the OMICS approach 
used, the study design, and the complexity of the metadata available.
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include profile similarity analysis using ANOSIM or 
PERMANOVA or the biomarker selection tool LefSe (Segata et 
al. 2011). Some methods have been recently proposed to assess 
changes in OMICS data sets over time (Faust et al. 2015), but 
adaptation of these methods into simple user-friendly tools is 
still necessary. In summary, OMICS data will be only as good or 
as poor as the quality of the samples used for creating the data. 
Appropriate experimental design and standardization at every 
level will prevent from the “garbage in, garbage out” scenario.

The field of sequencing is one of the fastest-evolving tech-
nological advances in biotechnology. While the 454 pyrose-
quencing technology will be discontinued in 2017, new 
technologies of single-molecule sequencing devices are emerg-
ing for the new OMICS era. The Nanopore technology (Oxford 
Nanopore Technologies) has already been applied to sequence 
full-length 16S rRNA genes, but the high sequencing error rate 
may yet be a problem (Benítez-Páez et al. 2016). The new 
PACBIO sequencer (Pacific Biosciences) is also able to achieve 
reads of several kb in length with a much reduced error rate. 
These new technologies have the potential to revolutionize the 
field by improving genetic annotations through the assembly of 
more accurate assignments and gap-free full-genome sequences.

If we take the renowned Keyes’s diagram of dental caries as a 
starting point, 3 main pillars are collectively responsible for the 
disease: host features (e.g., immune system, genetic nature that 
predisposes the enamel structure, salivary composition, and buff-
ering effect), environmental components (e.g., dietary sugars, 
fluoride, oral hygiene habits, and personal factors influenced by 
socioeconomic status and lifestyle), and microbiological features 
(e.g., acidogenicity of dental plaque, presence of pH-buffering 
bacteria, levels of pathogenic microorganisms). A “perfect storm” 
will be formed when the confluence of these 3 pillars leads to an 
increased risk for caries development (Fig. 6). Currently, high-
throughput analysis of epidemiological data can be used to better 
understand the environmental effects on oral diseases, and whole-
genome association (WGA) studies can be applied to determine 
genetic predisposition to caries, such as abnormalities in enamel 

formation (Wright 2010). However, multi-
ple genes may be involved in caries predis-
position, which complicates the diagnostic 
value of gene-based studies (Shaffer et al. 
2013). Previous work regarding human oral 
microbiome has been merely descriptive, 
and the taxonomic characterization of 
healthy and diseased oral samples has many 
limitations. Future efforts should be directed 
toward associating the composition with the 
function of the oral microbiota. The relevant 
questions may be answered by elucidating 
what the microbes are doing rather than 
focusing primarily on who is performing 
those actions (Takahashi 2015). Also 
deserving more attention are the microbial 
interactions with the host (e.g., adhesion 
mechanisms between microbes and salivary 
proteins) (Nobbs et al. 2011) and the recog-
nition patterns with the oral immune system 

(Simón-Soro and Mira 2015).
Recently, the ecobiological heterogeneity of the salivary 

ecosystem and the relationships between microbiome, metabo-
lome, and host-related salivary parameters were demonstrated 
based on the analysis of saliva samples (Zaura et al. 2017). 
Given the dichotomy observed when correlating salivary bac-
teria and metabolites, it was suggested that individual salivary 
ecosystems are adapted to either saccharolytic or proteolytic 
metabolisms. The association between salivary ecotypes and 
risk for development of oral diseases remains to be assessed in 
clinical interventional studies. In summary, the use of OMICS 
approaches can decipher microbial composition and function, 
and relating those to host or environmental features will 
unravel the interactions between the 3 pillars of caries disease 
and how to modify them to reduce caries risk in the clinical 
practice from a holistic approach.

In addition to focusing on bacteria (e.g., which is the most 
abundant microbial component of the oral cavity), studies 
involving other kingdoms, such as viruses, fungi, Archaea, and 
protozoa, should provide a more realistic picture of the com-
plex interactions contributing to the compositional and func-
tional stability of the oral ecosystem. It was recently 
demonstrated that bacterial viruses (bacteriophages) might 
assist in maintaining a stable, healthy ecosystem compared 
with the dysbiosis of periodontal diseases (Wang et al. 2016). 
OMICS approaches have been successfully used to assess 
composition and functionality of complex communities grown 
in an in vitro biofilm model (Edlund et al. 2015). OMICS could 
also be used in search for optimal growth conditions of the so-
called unculturable organisms, which may grow in the pres-
ence of certain helper strains and/or compounds with 
siderophore activity (Vartoukian et al. 2016).

As OMICS approaches become more affordable and readily 
accessible, there is a clear need to integrate the massive amount 
of data being generated so far as to fully understand the inter-
play of the different oral microorganisms with the function of 
their metabolic mechanisms in dental health and caries disease. 

CARIES

HOST ENVIRONMENT

MICROORGANISMS

Metadata
Meta-analysis
Big Data

High-throughput 16S (bacterial) & ITS (fungal) data
Meta-genomic/transcriptomic/proteomic/metabolomic analyses

WGA studies
Immune system SNPs

Correla�on between
epidemiological data and 
microbial composi�on

Correla�on between
gene�c polimorphisms

and microbial effects

Interac�on between
immune system and     

microbial recogni�on

Epigene�c effects on tooth decay

Figure 6.  The “perfect storm” of dental caries and how the postgenomics era can help to 
understand caries. ITS, internal transcribed spacer; WGA, whole-genome association.
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Of great priority, future efforts should aim to explore the roles 
of the thousands of bacterial genes, proteins, and metabolites 
revealed by OMICS to ascertain their value as risk factors, bio-
markers, or therapeutic targets. Data generated from the OMICS 
studies remain to be carefully tested by the construction of new 
and well-designed study models. The plea for integrating 
genomic methodologies is not new and is also not exclusive to 
dental research (Rotroff and Motsinger-Reif 2016). The recent 
application of multi-OMICS methods in clinically relevant time 
frames has opened new opportunities for clinical interventions 
(Quinn et al. 2016). Noticeably, the tools needed to interpret 
and translate the OMICS data into clinical practice demand 
expertise from multiple disciplines, such as biology, dentistry, 
mathematics, statistics, and bioinformatics.

Conclusion
The application of OMICS techniques has provided more 
depth to existing hypotheses as well as new insights in the eti-
ology of dental caries, which emphasizes that some long-held 
caries paradigms should be revised. These would include the 
infectious nature of caries, the validity of the classical Koch’s 
postulates to the disease, and the antimicrobial effect of fluo-
ride in addition to its enamel protection features. Large-scale 
clinical studies involving OMICS and other oral physiological 
parameters should reveal new aspects of the heterogeneity of 
caries. Future efforts should also aim to investigate the associa-
tion between the composition and the function of the oral 
microbiota, including bacteria, viruses, fungi, Archaea, and 
protozoa. Despite current problems with study design and data 
analysis, OMICS research is expected to encourage the discov-
ery of novel caries biomarkers and the development of next-
generation diagnostics and therapies for caries control. These 
observations apply equally to the study of other oral diseases.
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