
RESEARCH ARTICLE

Whole genome analysis of selected human

and animal rotaviruses identified in Uganda

from 2012 to 2014 reveals complex genome

reassortment events between human, bovine,

caprine and porcine strains

Josephine Bwogi1,2*, Khuzwayo C. Jere3,4, Charles Karamagi2, Denis K. Byarugaba5,

Prossy Namuwulya1, Frederick N. Baliraine6, Ulrich Desselberger7, Miren Iturriza-Gomara3

1 EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda, 2 Department of Paediatrics and Child

Health, College of Health Sciences, Makerere University, Kampala, Uganda, 3 Department of Clinical

Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool,

Liverpool, United Kingdom, 4 Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department

of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi, 5 Department of

Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda,

6 Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of

America, 7 Department of Medicine, University of Cambridge, Cambridge, United Kingdom

* josephinebwn@yahoo.co.uk

Abstract

Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young

of various other mammals and birds worldwide. To investigate possible interspecies trans-

mission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified

in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The

backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation.

One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of pos-

sible animal origin. All eleven genes of one bovine RVA strain were closely related to those

of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it

emerged from multiple reassortment events involving different host species. The porcine

RVA strains had mixed genotype backbones with possible multiple reassortant events with

strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses

found in domestic animals in Uganda strongly suggested the presence of human-to animal

RVA transmission, with concomitant circulation of multi-reassortant strains potentially

derived from complex interspecies transmission events. However, whole genome data from

the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda

indicated that they were primarily transmitted from person-to-person.
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Introduction

Rotaviruses belong to the genus Rotavirus of the family Reoviridae, comprising nine species

(groups) designated as A, B, C, D, E, F, G, H and I [1, 2] and possibly a tenth species J [3].

Group A rotaviruses (RVA) are a leading cause of diarrhoea in children and young animals

worldwide [4, 5]. In children, the infection may lead to severe dehydration and may cause

death if the condition is not well managed [6]. Rotavirus infections in animals may affect pro-

ductivity and have important economic consequences [7].

The rotavirus genome consists of eleven segments of double-stranded RNA (dsRNA). All

RNA segments, with the exception of segment 11, are monocistronic, encoding either struc-

tural viral proteins (VP1 to VP4, VP6 and VP7) or non-structural proteins (NSP1 to NSP4).

Genome segment 11 codes for two proteins: NSP5 and NSP6 [8]. Rotaviruses can be differenti-

ated by a dual classification system, based on the two outer capsid proteins, VP7 and VP4, that

determine the G (VP7, glycoprotein) and P (VP4, protease sensitive) genotypes, respectively

[9]. At least 35 G types and 50 P types have so far been identified in humans and animals (rega.

kuleuven.be/cev. . ./virus classification/newgenotype) [10, 11].

Globally, genotypes G1, G2, G3, G4, G9 and G12 in combination with P[4], P[6] or P[8]

constitute more than 90% of the circulating human RVA strains [12]. The most common com-

binations of the G and P genotypes are G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]

[12, 13]. However, regional variability has been observed. In Africa, RVA genotypes such as

G8P[6] and G8P[8] are highly prevalent but uncommon elsewhere [14]. These uncommon

rotavirus strains are thought to have arisen from host interspecies transmission [15, 16].

More recently, RVAs have been classified based on the sequence diversity of all 11 seg-

ments, assigning specific genotypes according to established nucleotide homology cut-off val-

ues [10, 17, 18]. This classification system, combined with whole genome sequencing and

phylogenetic analysis, has been used to trace interspecies transmission events and potential

origins of new and emerging strains [10, 19, 20].

Interspecies transmission of RVAs is thought to be an important contributor to rotavirus

evolution, contributing to the diversity of viruses in both humans and animals [5, 8]. Other

mechanisms for rotavirus evolution include accumulation of point mutations, gene reasort-

ment or rearrangement, and gene recombination [5]. Genome evolution may occur either

intragenically or intergenogroup [21, 22]. The combination of interspecies transmission and

reassortment between RVAs of different species can lead to the emergence and spread of novel

rotavirus strains [23].

Globally, few RVA co-surveillance studies in animals and humans in the same geographical

region have been carried out. A study in the Netherlands found no evidence of interspecies

transmission, the animal and human rotaviruses appeared to evolve separately [24]. By con-

trast, a study in Slovenia found interspecies transmission, with evidence of transmission from

pigs to humans [25]. A study in Southern India found evidence of human-to-animal transmis-

sion of a G2 RVA strain [26]. Another study in Northern India found possible reassortment

between genes of animals and human RVAs resulting in circulation of unusual rotavirus geno-

types [27].

None of the above studies characterised whole genomes of RVAs from different species,

hence provided only a partial picture of a potentially more widespread phenomenon. In the

present study, whole genomes of RVAs identified from faecal samples of humans and animals

living in the same region in Uganda during 2012–2014 were sequenced and analysed in order

to investigate possible interspecies transmission events of RVAs in this setting.

Whole genome analysis of human and animal rotaviruses from Uganda

PLOS ONE | https://doi.org/10.1371/journal.pone.0178855 June 22, 2017 2 / 23

laboratory twinning initiative between Health

Protection Agency (now Public Health England),

Uganda Virus Research Institute and Laboratory

for Viral infections, Almaty, Kazakhstan (Project no

105508) and WHO funds for rotavirus surveillance

in Uganda. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: Dr Khuzwayo C. Jere has

received research grant support from

GlaxoSmithKline Biologicals. Prof Miren Iturriza-

Gomara has received research grant support from

GlaxoSmithKline Biologicals and Sanofi Pasteur

Merck Sharpe & Dohme. The remaining authors

declare they have no competing interests. The

content is solely the responsibility of the authors

and does not necessarily represent the official

views of the funding agencies. The funders had no

role in study design, data collection and

interpretation, or the decision to submit the work

for publication and does not alter adherence to

PLOS ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0178855


Materials and methods

Ethical approval

This study was approved by the Research and Ethics Committees of the School of Medicine,

College of Health Sciences, Makerere University (REF 2011–061); Uganda Virus Research

Institute (GC/127/319); Mulago National Referral Hospital; St. Francis Hospital Nsambya;

and Uganda National Council for Science and Technology (HS 1186). The caretakers/

guardians of the children gave written consent for the children to participate in the study.

In addition, the animal owners gave written consent for their animals to be included in the

study.

Human and animal recruitment, and sample collection

Human stool samples were collected from children under-five years old hospitalised with

acute diarrhoea in four hospitals located in Kampala and Masaka districts in central Uganda

(Fig 1). The study was carried out from September 2012 through September 2013. The stools

were investigated as previously described [28]. Eighteen out of 208 human RVA-positive sam-

ples were selected for whole genome sequencing. Selection was based on the availability of suf-

ficient material and adequate viral load for unbiased sequencing directly from the stool

sample, presence of G and P types found in animal RVAs, or the presence of unusual G and/or

P types.

Fig 1. The maps of Uganda, Kampala and Masaka districts showing the hospitals and households at which the study

children and animals (rotavirus positives that were sequenced) were recruited respectively.

https://doi.org/10.1371/journal.pone.0178855.g001
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Animal stool samples were collected from 116 symptomatic (with history of diarrhoea in

previous two weeks) and 984 asymptomatic (without history of diarrhoea in previous two

weeks) domestic animals (cattle, goats and pigs) in homes located in Bukoto county, Masaka

district from December 2013 through January 2014 (Fig 1, S1 Table). Out of the 41 RVA-posi-

tive animal samples whole genome analysis was possible on six samples (one bovine, one cap-

rine and four porcine). Among these, only the bovine RVA was associated with a history of

diarrhoea lasting four days in the two weeks prior to sample collection.

Rotavirus dsRNA extraction, cDNA synthesis and amplification from

human and animal samples

Rotavirus dsRNA was extracted from human stool suspension (approximately 100 mg of stool

were suspended in 200 μl of PBS or 200 μl of semi-formed stool was mixed with 150 μl of PBS)

using TRIZOL LS Reagent (Invitrogen, Carlsbad, CA, USA). The procedure of extraction was

as previously described [29]. The guanidinium isothiocyanate silica method was used to extract

rotavirus dsRNA from 10% faecal suspensions in PBS for all animal samples [30].

Oligonucleotide ligation to enable cDNA synthesis, and unbiased PCR amplification and

purification of the entire rotavirus genome were carried out on the human samples that yielded

Table 1. Whole genome constellation of characterised human and animal rotavirus strains circulating in Uganda, 2012–2014.

Species Strain Nomenclature VP7 VP4 VP6 VP1 VP2 VP3 NSP1 NSP2 NSP3 NSP4 NSP5

Human RVA/Human-wt/UGA/KTV-13-023/2012/G12P[6] G12 P[6] I1 R1 C1 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/MUL-13-183/2013/G12P[6] G12 P[6] I1 R1 C1 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/NSA-13-043/2013/G9P[8] G9 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/MUL-13-163/2013/G9P[8] G9 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/MUL-12-147/2012/G9P[8] G9 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/MUL-12-093/2012/G9P[8] G9 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/MUL-13-285/2013/G9P[8] G9 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/MUL-13-157/2013/G1P[8] G1 P[8] I1 R1 C2 M1 A1 N1 T1 E1 H1

Human RVA/Human-wt/UGA/MUL-12-104/2012/G3P[6] G3 P[6] 12 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-13-308/2013/G8P[6] G8 P[6] I2 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-13-166/2013/G3P[6] G3 P[6] I2 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-13-171/2013/G3P[6]** G3/G3 P[6]/P[6] I2 R2/R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-13-204/2013/G8P[6] G8 P[6] I2 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-13-496/2013/G8P[4] G8 P[4] I2 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-12-117/2012/G3P[6] G3 P[6] I2 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-13-160/2013/G8P[4] G8 P[4] I2 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MSK-13-048/2013/G9P[8] G9 P[8] I2 R2 C2 M2 A2 N2 T2 E2 H2

Human RVA/Human-wt/UGA/MUL-13-427/2013/G8P[4] G8 P[4] 12 R2 C2 M2 A2 N2 T2 E2 H2

Goat RVA/Goat-wt/UGA/BUW-14-A085/2014/G6P[1] G6 P[1] I2 R2 C2 M2 A11 N2 T6 E2 H3

Cattle RVA/Cow-wt/UGA/BUW-14-A035/2014/G12P[8] G12 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

Pig RVA/Pig-wt/UGA/BUW-14-A008/2014/G12P[8] G12 P[8] I1 R1 C1 M1 A8 N1 T1 E1 H1

Pig RVA/Pig-wt/UGA/BUW-14-A003/2014/G3P[13] G3 P[13] I1 R1 C1 M1 A8 N1 T7 E1 H1

Pig RVA/Pig-wt/UGA/KYE-14-A047/2014/G3P[13] G3 P[13] I1 R1 C1 M1 A8 N1 T1 E1 H1

Pig RVA/Pig-wt/UGA/KYE-14-A048/2014/G3P[13] G3 P[13] I1 R1 C1 M1 A8 N1 T1 E1 H1

** Sample contained mixed sequences of the same genotype in VP1, VP4 and VP7 genes

Colours represent the genome constellation: Green(Wa-like), Red(DS-1 like), White(non 1, non 2 genotype)

VP: viral structural protein, NSP: Viral non structural protein

https://doi.org/10.1371/journal.pone.0178855.t001
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Fig 2. VP1 gene (segment 1). Maximum Likelihood phylogenetic trees of nucleotide sequences of rotavirus genome

segment 1 of humans and animal RVA strains circulating in Uganda, 2012–2014. Bootstrap values above 70 are shown
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more than 2 ng/μl dsRNA as described previously [29, 31]. The purified rotavirus cDNA PCR

amplicons were subjected to standard bar-coding and library construction for Illumina

sequencing using the Nextera XT DNA Library Preparation Kit following the manufacturer’s

recommendations (Illumina Inc., CA, USA). For all animal samples and human samples that

yielded less than 2 ng/μl dsRNA, the ScriptSeq v2 RNA-Seq Library Preparation Kit (Epicentre,

Chicago, IL, USA) was used, following the manufacturer’s instructions with the slight modifica-

tion of an initial denaturation step (95˚C for 5 min). Each library was indexed with Illumina

compatible barcodes to allow multiplexing (http://dx.doi.org/10.17504/protocols.io.h4vb8w6).

The quality of the libraries was assessed using the VP6-specific qPCR [32] and the 2100 Bioana-

lyzer (Agilent Technologies, Santa Clara, CA, USA). The libraries were quantified with the

Qubit dsDNA High Sensitive assay (Life Technologies, Carlsbad, CA, USA), and sequenced

using the HiSeq 2500 Illumina platform at the Centre for Genomic Research, University of Liv-

erpool, UK.

Nucleotide sequence assembly, genotype assignment and phylogenetic

analyses

Illumina adapter sequences were trimmed from the raw Fastq sequence data using Cutadapt

version 1.2.1 and Sickle version 1.2 software [33]. Both de novo and mapping assembly tools

embedded in Geneious software [34] were employed to generate consensus sequences for all

analysed strains. To ensure that the multiple sequences detected in some of the samples were

not due to assembly artifacts, sequence reads that had more than one contig were mapped sep-

arately to both Wa and DS-1 rotavirus prototype strains using both medium and high custom

sensitivity parameters where only sequence reads with more than 80% overlap identity were

used to build the consensus. Mixed populations were only accepted as true populations when

the two consensus sequences generated through mapping and de novo assemblers were identi-

cal, could be translated to a functional protein without need for editing and had coverage of at

least 200. The presence of multiple sequences in a single specimen was confirmed at the J.

Craig Venter Institute by the Virology Project Team who blindly and independently assembled

the sequence reads on CLC command-line assembly module (CLC Bio’s clc_novo assemble

and CLC Bio’s clc_ref_assemble_long_program) [35].

RotaC version 2 (http://rotac.regatools.be/) [36], a classification tool for RVAs, was used to

assign genotypes to all eleven genome segments. The nucleotide sequences generated in this

study were deposited into the NCBI GenBank under the accession numbers KX632243-632352,

KX655437-KX655538, KX988264-KX988283, KY055416-KY055437, KY077640-KY077650 (S2

Table).

Phylogenetic analysis was conducted using MEGA version 6.06 [37]. Multiple alignments

of sequences from the study strains and reference strains from GenBank were carried out

using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) software [38]. The

phylogenetic trees were constructed using the Maximum-Likelihood method with the best-fit

substitution models. The substitution models that best fitted the sequence data were deter-

mined using the corrected Akaike Information Criterion (AICc). The models used in this

study were: GTR+G+I for VP1, VP2 and VP3; T92+G for VP4, VP6, VP7, NSP1, NSP3 and

NSP5; TN93+G+I for NSP2; and HKY +G for NSP4. The bootstrap (1000 replicates) values

were used to determine the reliability of each node in the tree. The lineages for VP4 P[6]

for 1000 replicates. The Ugandan human strains are labelled with blue circles and the Ugandan animal strains with red

triangles. The Pigeon strain RVA/Pigeon-tc/PN/PO-13/1983/G18P[17] served as the outgroup. The scale bar at the

bottom of the tree calibrates the genetic distance expressed as nucleotide substitution per site.

https://doi.org/10.1371/journal.pone.0178855.g002
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Fig 3. VP6 gene (segment 6). Maximum Likelihood phylogenetic trees of nucleotide sequences of rotavirus genome segment 6 of

human and animal RVA strains circulating in Uganda, 2012–2014. Bootstrap values above 70 are shown for 1000 replicates. The
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lineage I, P[4] lineage II and IV, P[8] lineage III, were assigned as previously suggested [16, 19,

39–42]. No literature was found with regard to the classification of P[1], P[7] and P[13] genes

into lineages. The lineages for VP7: G1, G3, G6, G8, G9, G12 were assigned as previously sug-

gested [39, 42–45]. Nucleotide distance matrices for each of the characterized RVA genomes

were determined using BioEdit program [46].

Results

The Illumina Hiseq sequencing yielded mean read lengths of 72.3 (SD 35) -119.1(SD 16.0) bp

for the human and 34.0 (SD 20.5) -79.4 (SD 32.4) bp for animal RVA strains. The maximum

expected read length was 125 bp. Complete nucleotide sequences were obtained for all the 11

segments of the 18 human strains and one bovine strain. Partial sequences were obtained for

some genome segments of the porcine and caprine rotavirus strains (S3 Table). The fragments

of the partial sequences ranged from 33.1% to 99.8% of the expected gene lengths (S3 Table).

Nonetheless, these sequence lengths were adequate for assigning genotypes (Table 1).

Whole genome classification of the analysed rotavirus strains

Complete genotype constellation of human strains. All but the genome segments

encoding VP7 and VP4 for seven of human rotavirus strains (KTV-13-023, MUL-13-183,

NSA-13-043, MUL-13-163, MUL-12-147, MUL-12-093 and MUL-13-285) had a Wa-like

genotype constellation (-I1-R1-C1-M1-A1-N1-T1-E1-H1). One of the human Wa-like RVAs

strain, MUL-13-157, contained a DS-1-like VP2 gene and was therefore classified as Wa-DS-

1-like mono-reassortant (Table 1). The non-G and non-P genes of the other 10 human rotavi-

ruses (MUL-12-104, MUL-13-308, MUL-13-166, MUL-13-171, MUL-13-204, MUL-13-496,

MUL-12-117, MUL-13-160, MSK-13-048 and MUL-13-427) were assigned a DS-1-like geno-

type constellation (-I2-R2-C2-M2-A2-N2-T2-E2-H2), and hence were classified as DS-1-like

human strains (Table 1).

Two distinct complete gene sequences of the same genotype were generated for genome

segments encoding VP7, VP4 and VP1 for human rotavirus strain MUL-13-171, compatible

with a mixed infection with two variant strains, by contrast, single sequences were generated

for the remaining eight genome segments (Table 1).

Complete genotype constellation of animal strains. The characterised bovine strain had

a Wa-like gene constellation. The G3P[13] porcine strains had predominantly Wa-like gene

constellation, with the exception of the NSP1 gene (A8), and also the NSP3 gene in one of the

strains (T7). The G12P[8] porcine strain also had a predominant Wa-like gene constellation

with the exception of the NSP1 gene (A8). The G6P[1] caprine strain had a predominantly

DS-1-like gene constellation with the exception of the genes encoding NSP1, NSP3 and NSP5

(Table 1).

Phylogenetic analysis

In order to identify the relationships among the RVA strains detected from human and animal

species in Uganda and investigate potential origin and evidence of interspecies transmission,

phylogenetic analyses were conducted for each gene of the investigated RVA strains and com-

pared with cogent RVA sequences available in the GenBank database.

Ugandan human strains are labelled with blue circles and the Ugandan animal strains with red triangles. Chicken strain RVA/

Chicken-tc/GBR/Ch-2/1979/G3P[30] served as the outgroup. The scale bar at the bottom of the tree calibrates the genetic distance

expressed as nucleotide substitution per site.

https://doi.org/10.1371/journal.pone.0178855.g003
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Fig 4. NSP2 gene (segment 8). Maximum Likelihood phylogenetic trees of nucleotide sequences of genome segment 8 of human

and animal RVA strains circulating in Uganda, 2012–2014. Bootstrap values above 70 are shown for 1000 replicates. The Ugandan
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In all the genes, except VP4 and VP7, the human strains clustered with Wa-like and DS-1

like human strains found in Africa including Democratic Republic of Congo (DRC), Tanzania,

and Kenya which are neighbouring countries to Uganda (Fig 2, Fig 3, Figs 4–6, S1–S4 Figs)

[16, 19, 29, 31, 39, 47–51].

The nucleotide sequences of the genes derived from human RVAs were 82.2–100% identi-

cal to each other (S4 Table, S2 Table). Some genes of a few human strains were closely related

to animal strains identified in this study or elsewhere. The VP1 gene sequences of MUL-13-

204 clustered with the cogent genes of the goat strain GO34 with a nucleotide identity of 97%

(Fig 2) [52]. The VP6 of human strain MUL-13-204 clustered with cogent genes of the porcine

RVA strain HP140 which may be a bovine-human reassortant and caprine strain BUW-14-

A085 and had 98% and 88.9% nucleotide identity, respectively (Fig 3) [53]. The nucleotide

sequences of the NSP4 gene of MUL-13-204 clustered with the cogent gene of a caprine rotavi-

rus strain GO34 and had 97% nucleotide identity (Fig 5) [52].

Some genes of the human strains were closely related to strains reported to have zoonotic

origin. The VP2 gene sequences of MUL-13-204 and MUL-13-157 were closely related (99.2%

and 91% nucleotide similarity, respectively), to that of human strain 1473 from Malawi, which

is artiodactyl-like; a human-bovine reassortant strain (S1 Fig) [29].

The NSP4 gene sequences of MUL-13-183 and KTV-13-023 clustered with porcine-like

human RVA strains KDH684 and KisB332 from Kenya and DRC, respectively, and had 99%

and 98% nucleotide identity, respectively (Fig 5) [16, 50].

Among the animal strains, the bovine strain, BUW -14- A035 showed high identity with

human RVA strains in all genes with nucleotide identities of 96.9% to 98.5% (Figs 2–8, S1–S4

Figs).

Porcine strains KYE-14-A047 and KYE-14-A048 collected from the same homestead clus-

tered together with nucleotide identity of 95.5–99.6% across all genes. Porcine strains BUW-

14-A003 and BUW-14-A008 were also collected from the same household, and the nucleotide

sequences of the genes: VP2, VP3, NSP2, NSP3, NSP4 and NSP5 clustered together (S1 Fig, S2

Fig, S4 Fig, Figs 4–6).

Each individual gene across the porcine strains clustered with porcine strains of this study

and from elsewhere, and with strains that had been identified in humans but had evidence of

zoonotic transmission (Figs 2–4, Fig 6, S1–S3 Figs) [16, 54–56]. The only exceptions were the

genes encoding the VP7 and VP4 of strain BUW-14-008, which were more closely related to

those from human strains (Fig 7, Fig 8) [57].

In addition, the NSP4 genes of the studied porcine strains clustered with the Ugandan

human RVA strains: MUL-13-183 and KTV-13-023 (Fig 5).

None of the nucleotide sequences of the caprine strain BUW-14-A085 clustered with those

of other animal and human sequences in this study, except the nucleotides sequences of the

gene encoding VP6 which clustered with the human strain MUL-13-204 (Fig 3).

All the remaining genes of the caprine strain BUW-14-A085 clustered with those identified

in other caprine strains or primarily shared among bovine and caprine strains. The NSP2 clus-

ter, however, included cogent genes of RVAs from diverse animal species: caprine, bovine,

pigs, dogs, sheep and antelope RVA strains (Fig 4). Sequences of VP1, VP2, VP3 and NSP5

genes of BUW-14 A085 clustered with human strains of zoonotic origin (Fig 2, Fig 6, S1 Fig,

S2 Fig) [18, 53, 58, 59].

human strains are labelled with blue circles and the Ugandan animal strains with red triangles. Pigeon strain RVA/Pigeon-tc/PN/PO-

13/1983/G18P[17] served as the outgroup. The scale bar at the bottom of the tree calibrates the genetic distance expressed as

nucleotide substitution per site.

https://doi.org/10.1371/journal.pone.0178855.g004
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Fig 5. NSP4 gene (segment 10). Maximum Likelihood phylogenetic trees of nucleotide sequences of genome segment 10 gene

of human and animal RVA strains circulating in Uganda, 2012–2014. Bootstrap values above 70 are shown for 1000 replicates.

The Ugandan human strains are labelled with blue circles and the Ugandan animal strains with red triangles. Pigeon strain RVA/

Pigeon-tc/PN/PO-13/1983/G18P[17] served as the outgroup. The scale bar at the bottom of the tree calibrates the genetic

distance expressed as nucleotide substitution per site.

https://doi.org/10.1371/journal.pone.0178855.g005
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Fig 6. NSP5 gene (segment 11). Maximum Likelihood phylogenetic trees of nucleotide sequences of genome

segment 11 of human and animal RVA strains circulating in Uganda, 2012–2014. Bootstrap values above 70 are
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Discussion

Interspecies transmission of rotaviruses is thought to occur frequently due to the close prox-

imity or sharing of animal and human dwellings in some communities, particularly in low

income countries [16]. In view of this, we sought to investigate whether interspecies trans-

mission of RVAs was occurring and possibly contributing to the genetic diversity of RVA

strains in Uganda.

The human rotaviruses analysed in the present study were closely related to RVAs from

other parts of Africa including neighbouring countries: Kenya, Democratic Republic of the

Congo (DRC) and Tanzania. Direct reassortment with porcine or porcine-like human RVAs

such as those found in Kenya and DRC may potentially have led to the emerging of NSP4

genes in the human strains MUL-13-183 and KTV-13-023 [16, 50]. By contrast, the VP2 genes

of MUL-13-204 and MUL-13-157 strains, because of their close relationship to human RVA

strain 1473 from Malawi [29], may have a different origin. The VP6 genes of MUL-13-204

may have been a result of interspecies transmission and reassortment events. Although the

NSP4 gene of the human strain MUL-13-204 was closely related to those of other human

strains characterised in the present study, it clustered with the NSP4 gene of strain GO34, a

caprine rotavirus strain from Bangladesh that is thought to be of bovine origin [52]. These

findings highlight the challenges in identifying the geographical and temporal origin of such

interspecies transmission through sequence analysis of data obtained in discrete cross-sec-

tional studies.

In some of the RVA genes there was close similarity among the Ugandan human and ani-

mal strains. However, phylogenetic analysis of sporadic strains is not enough to elucidate

where and when interspecies transmission and reassortment events took place. Nonetheless, in

this study, the identification of one bovine strain (BUW-14-A035) in which all gene segments

were highly related to human strains circulating in Uganda, was highly suggestive of a direct

anthroponotic transmission event.

In order to establish the origin and, or timing of such RVA transmission events, future

studies analysing large numbers of RVA strains collected from humans and other mammalian

species over a longer period are warranted. The relative small number of samples is one limita-

tion of this study. In addition, the human strains were all from moderate to severe cases of gas-

troenteritis. Therefore, zoonotic RVAs may have been missed if they circulate at low frequency

or were associated with mild disease or asymptomatic infections. However, this study provides

confirmation that RVAs causing moderate to severe diarrhoea in humans in Uganda are of

common genotypes that have been detected globally and are primarily transmitted from per-

son-to-person. Therefore rotavirus control measures targeting humans should be expected to

significantly reduce RVA transmission and burden of moderate or severe rotavirus diarrhoea

in Uganda.

Failure to detect two distinct variants for all 11 genes of human strain MUL-13-171 may be

due to the variant strains sharing the same sequence in the remaining genes. Also the variants

may represent drift and the accumulation of point mutations during the infection and shed-

ding period. Although the presence of quasispecies is expected among RNA viruses, in the

acute phase of infections minority species are present at very low levels [60]. It is potentially

possible that we were only able to detect variants among those genes that through immune

pressure may be driven to hyper variability, such as VP7 and VP4. The heterozygosity detected

shown for 1000 replicates. The Ugandan human strains are labelled with blue circles and the Ugandan animal

strains with red triangles. Pigeon strain RVA/Pigeon-tc/PN/PO-13/1983/G18P[17] served as the outgroup. The

scale bar at the bottom of the tree calibrates the genetic distance expressed as nucleotide substitution per site.

https://doi.org/10.1371/journal.pone.0178855.g006
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Fig 7. VP4 gene (segment 4). Maximum Likelihood phylogenetic trees of nucleotide sequences of rotavirus

genome segment 4 of human and animal RVA strains circulating in Uganda, 2012–2014. Bootstrap values above 70
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among the three genes may therefore be associated with prolonged shedding and selective

pressure, or as discussed above, with mixed infection [35].

In this study, G12P[8] strains, commonly associated with infection in humans [13, 61, 62]

were detected in a pig and a cow. Furthermore, the cow had recent history of diarrhoea. All 11

genes of the bovine RVA strain were of likely human origin due to their high degree of nucleo-

tide identity to those of human RVA in this study and human RVAs strains collected elsewhere

[41]. Whereas most interspecies transmission reports observed bovine to human transmission

[58, 59], the present study found evidence of human to bovine RVA transmission in Uganda.

Since the bovine RVA infection may have been associated with disease, this warrants further

research on animal husbandry and feeding practices that may promote inter-species transmis-

sion of RVA in this region and drive the emergence of reassortant strains.

G12P[8] strains have been occasionally characterised in pigs, especially those living in close

proximity with humans and cows [62, 63]. In this study, we identified one porcine G12P[8]

RVA strain (BUW-14-A008) from a household that also housed cattle. Although cattle and

human samples collected from this household were rotavirus negative at the time of sampling,

it is conceivable that this strain, which had 5 genes (VP1, VP4, VP7, NSP1 and NSP4) closely

related to those from human RVAs, may have been derived through human-to-animal trans-

mission and reassortment, as G12P[8] RVAs have the potential to infect all three hosts in the

household. In addition, a second porcine strain from the same household (BUW-14-A003:

G3P[13]) showed that despite the differences in their VP4 and VP7 genotypes, some genes

(VP2,VP3, NSP2, NSP3, NSP4 and NSP5) clustered closely suggesting possible complex

exchanges of RVA genes between pigs and humans. A study on RVAs in pigs in East Africa

showed possible human to pig transmission of RVAs, where P[8] strains were closely related

genetically to human RVAs [64]. These finding are in agreement with the hypothesis on the

common origin of porcine and Wa-like human RVAs by Matthijnssens J et al [18].

The high nucleotide identity between all gene segments of porcine strains KYE-14-A047

and KYE -14-A048 suggests that the two pigs were infected by the same strain and provides

evidence of ongoing transmission within a household. Similar observations have been reported

in South Africa, where five sequences of rotavirus isolates from two calves on the same farm

had high nucleotide identity [65].

There are few reports on whole genome sequencing of caprine RVA strains [52, 66]. Our

study found that a potentially complex series of reassortment events may have led to the origin

of the caprine RVA strain BUW-14-A085 with RVA genes of potential human, bovine and

porcine origin. This was similar to what was reported for a caprine RVA strain, GO34, in Ban-

gladesh [52]. In Uganda, most of the animals live in close proximity with each other. This

could explain the observed RVA reassortment events. The caprine strain, BUW-14-A085 had

an overall genotype constellation of G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3, which has

been found in cattle [58, 67] and thus, may have originated through direct bovine-to-goat

transmission.

Conclusions

The present study shows occurrence of interspecies transmission of RVAs of human and ani-

mal origins in Uganda with possible reassortment among rotaviruses from different host

are shown for 1000 replicates. The Ugandan human strains are labelled with blue circles and the Ugandan animal

strains with red triangles. Chicken strain, RVA/Chicken-tc/GBR/Ch-2/1979/G3P[30] served as the outgroup. The

scale bar at the bottom of the tree calibrates the genetic distance expressed as nucleotide substitution per site.

https://doi.org/10.1371/journal.pone.0178855.g007
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Fig 8. VP7 gene (segment 9). Maximum Likelihood phylogenetic trees of nucleotide sequences of rotavirus

genome segment 9 of human and animal RVA strains circulating in Uganda, 2012–2014. Bootstrap values above
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species. Whereas previous reports on RVA evolution have been mainly on RVA transmission

from animals to humans, this study suggests that domestic animals may also become infected

by RVAs from humans. The complex reassortment events of rotaviruses from different host

species may lead to the emergence of novel rotavirus strains with the potential to influence the

epidemiology of rotaviruses in this setting. Therefore, continued surveillance of rotavirus

strains from both animals and humans is necessary to monitor changes in the rotavirus epide-

miology over time. Whole genome sequencing of rotaviruses from domestic animals and

humans living in close proximity can increase our understanding of the molecular epidemiol-

ogy and evolution of RVAs in Uganda and other countries. Such studies, if conducted in a sys-

tematic way, will help to elucidate the complex interspecies transmission patterns that lead to

the diversity of rotavirus strains seen among the different species. Ultimately, this should lead

to a better understanding of the genes or gene combinations that govern successful transmis-

sion between hosts or that are likely to result in host restriction.
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S2 Fig. VP3 gene. Maximum Likelihood phylogenetic trees of nucleotide sequences of rotavi-

rus genome segment 3 encoding VP3 gene of human and animal strains circulating in Uganda,

2012–2014. Bootstrap values above 70 are shown for 1000 replicates. The Ugandan human

70 are shown for 1000 replicates. The Ugandan human strains are labelled with blue circles and the Ugandan
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strains are labelled with blue circles and the Ugandan animal strains are labelled with red trian-

gles. Pigeon strain RVA/Pigeon-tc/PN/PO-13/1983/G18P[17] served as the outgroup. The

scale bars at the bottom of the trees calibrate the genetic distance expressed as nucleotide sub-

stitution per site.

(TIF)

S3 Fig. NSP1 gene. Maximum Likelihood phylogenetic trees of nucleotide sequences of rotavi-

rus genome segment 5 encoding NSP1 of human and animal strains circulating in Uganda,

2012–2014. Bootstrap values above 70 are shown for 1000 replicates. The Ugandan human

strains are labelled with blue circles and the Ugandan animal strains are labelled with red trian-

gles. Pigeon strain RVA/Pigeon-tc/PN/PO-13/1983/G18P[17] served as the outgroup. The

scale bars at the bottom of the trees calibrate the genetic distance expressed as nucleotide sub-

stitution per site.

(TIF)

S4 Fig. NSP3 gene. Maximum Likelihood phylogenetic trees of nucleotide sequences of rotavi-

rus genome segment 7 encoding NSP3 of human and animal strains circulating in Uganda,

2012–2014. Bootstrap values above 70 are shown for 1000 replicates. The Ugandan human

strains are labelled with blue circles and the Ugandan animal strains are labelled with red trian-

gles. Pigeon strain RVA/Pigeon-tc/PN/PO-13/1983/G18P[17] served as the outgroup. The

scale bars at the bottom of the trees calibrate the genetic distance expressed as nucleotide sub-

stitution per site.

(TIF)
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