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Chapter summary

The emergence and spread of drug-resistant pathogens, and our inability to develop new 

antimicrobials to combat resistance, has inspired scientists to seek out new targets for drug 

development. The Mycobacterium tuberculosis complex is a group of obligately aerobic bacteria 

that have specialized for inhabiting a wide range of intracellular and extracellular environments. 

Two fundamental features in this adaptation are the flexible utilization of energy sources and 

continued metabolism in the absence of growth. M. tuberculosis is an obligately aerobic 

heterotroph that depends on oxidative phosphorylation (OXPHOS) for growth and survival. 

However, several studies are redefining the metabolic breadth of the genus. Alternative electron 

donors and acceptors may provide the maintenance energy for the pathogen to maintain viability 

in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may 

ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal 

oxidases. However, it may also open up opportunities to develop novel antimycobacterials 

targeting persister cells. In this review, we discuss the progress in understanding the role of 

energetic targets in mycobacterial physiology and pathogenesis, and the opportunities for drug 

discovery.
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OVERVIEW OF RESPIRATION AND OXIDATIVE PHOSPHORYLATION IN 

MYCOBACTERIUM TUBERCULOSIS

The genus Mycobacterium comprises a group of obligately aerobic bacteria that have 

adapted to inhabit a wide range of intracellular and extracellular environments. Fundamental 

to this adaptation is the ability to respire and generate energy from variable sources, and 

sustain metabolism in the absence of growth. The pioneering work of Brodie and colleagues 

on Mycobacterium phlei established much of the primary information on the electron 

transport chain and oxidative phosphorylation system in mycobacteria (reviewed in (1)). 

Mycobacteria can only generate sufficient energy for growth by coupling the oxidation of 

electron donors derived from organic carbon catabolism (e.g. NADH, succinate, malate) to 

the reduction of O2 as a terminal electron acceptor. Mycobacterial genome sequencing 

revealed that branched pathways exist in mycobacterial species for electron transfer from 

many low potential reductants, via quinol, to oxygen (Figure 1).

During aerobic growth, electrons are transferred to oxygen via two terminal respiratory 

oxidases: an aa3-type cytochrome c oxidase (encoded by ctaBCDE) belonging to the heme-

copper respiratory oxidase family and cytochrome bd-type menaquinol oxidase (cydABCD) 

(Figure 1). Despite the acknowledged importance of oxygen in the physiology and 

pathobiology of M. tuberculosis, the molecular mechanisms governing the regulation of 

terminal oxidase expression remains largely unknown. In the absence of oxygen, 

mycobacterial growth is inhibited, even if alternative electron acceptors are present (e.g. 

nitrate, fumarate). Despite growth being inhibited, mycobacteria are able to metabolize 

exogenous and endogenous energy sources under low oxygen for maintenance functions. 

The electron acceptors and mechanisms to recycle reducing equivalents under these 

conditions are poorly understood. ATP synthesis is obligatorily coupled to the electron 

transport chain and the F1F0-ATP synthase, irrespective of the oxygen concentration or the 

protonmotive force (pmf), but the reasons for this remain unexplained. The aim of this 

chapter is to discuss the progress in understanding the role of energetic targets in 

mycobacterial physiology and pathogenesis, and the opportunities for drug discovery.

TARGETING THE PROTONMOTIVE FORCE IN MYCOBACTERIUM 

TUBERCULOSIS

All bacteria require a protonmotive force (pmf) to grow and remain viable under replicating 

and non-replicating conditions. During respiration, energy is conserved by the generation of 

a pmf across a proton-impermeable membrane. The pmf (electrochemical potential) consists 

of two gradients: an electrical potential (∆ψ), due to the charge separation across the 

membrane (positiveoutside/negativeinside), and a chemical transmembrane gradient of protons 

(∆pH, acidicoutside/alkalineinside) (Figure 2). At neutral pH, the pmf is predominantly in the 

form of a ∆ψ, but as the external pH drops, the ∆pH increases and the ∆ψ decreases to 

maintain a constant pmf. Dissipation of the pmf leads to a rapid loss of cell viability and cell 

death.
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A variety of mechanisms are used to generate the pmf in mycobacteria (Figure 2). 

Mycobacteria generally grow at neutral pH and under these conditions generate a pmf of 

approximately −180 mV (2). Under hypoxia, M. tuberculosis generates a total pmf of −113 

mV, (−73 mV of ∆ψ and −41 mV of Z∆pH) (3). In obligately aerobic bacteria like M. 
tuberculosis, the generation of a pmf is mediated primarily by the proton-pumping 

components of the electron transport chain (Figure 2, mechanism 3). As oxygen becomes 

limiting for growth, many bacterial pathogens switch to alternative electron acceptors (e.g. 

nitrate, fumarate) and proton release is coupled to a terminal reductase (e.g. nitrate 

reductase) via a pmf redox loop mechanism (4) (Figure 2, mechanism 2). M. tuberculosis 
harbors both nitrate reductase and fumarate reductase, but little direct experimental data has 

accumulated to suggest that they contribute to pmf generation under hypoxia. The 

membrane-bound F1F0-ATP synthase can usually operate as a reversible ATP-driven proton 

pump to generate the pmf (5). However, in M. tuberculosis the enzyme shows extreme 

latency in the hydrolysis reaction (6). End-product (e.g. lactate) efflux can generate a pmf 
(7) (Figure 2, mechanism 1) and it has been proposed that fumarate may be used as a 

mechanism to generate succinate as an excreted end product for maintenance of the 

membrane potential, under hypoxia, in M. tuberculosis (8).

There are a number of compounds that target the pmf in bacteria (Figure 3A), including 

agents that inhibit the major proton pumps (e.g. rotenone) and those that facilitate proton 

transport through the cytoplasmic membrane (protonophores, e.g. CCCP). The majority of 

protonophores are non-specific and functional in both prokaryotic and eukaryotic cell 

membranes. Individual components of the pmf can be collapsed using specific inhibitors. 

For example, the membrane potential can be collapsed by compounds that catalyze 

electrogenic cation transport across the cell membrane (e.g. valinomycin) (Figure 3A). 

Valinomycin is a dodecaepsipeptide that forms a macrocyclic molecule allowing for rapid 

K+ movement down its electrochemical gradient. The chemical transmembrane gradient of 

protons (∆pH) can be collapsed by nigericin through its K+/H+ antiporter (electroneutral) 

activity (Figure 3A). Growth of mycobacteria is sensitive to compounds that dissipate the 

membrane potential (e.g. protonophores and valinomycin) and these compounds are 

bactericidal towards growing and non-growing (aerobic or hypoxic) cells, further 

highlighting the importance of the membrane potential in mycobacterial viability (2, 3). Rao 

et al. (3) have reported that thioridazine, a compound purported to target NDH-2, results in 

dissipation of the ∆ψ and significant cell death. They suggest that NADH is an important 

electron donor for the generation of the ∆ψ, under hypoxic conditions. Inhibitors of 

succinate dehydrogenase (SDH) (e.g. 3-propionate) are also able to dissipate the ∆ψ under 

hypoxia, suggesting SDH is an important generator of the ∆ψ under hypoxia (9).

As the external pH of the growth medium changes and becomes mildly acidic, mycobacteria 

are able to generate a considerable transmembrane pH gradient (Z∆pH) and maintain a 

constant pmf (2). While proton translocation via the respiratory chain generates the pmf, 
during respiration with oxygen as the terminal electron acceptor, it is not clear how the pmf 
is established in the absence of oxygen under microaerobic growth conditions. Anaerobic 

bacteria are able to generate a significant pmf (−100 mV) using their membrane-bound 

F1F0-ATP synthase in the ATP hydrolysis direction (5). The ATPase activity (proton-

pumping) of the enzyme is fuelled by ATP produced by substrate level phosphorylation. 
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This mechanism does not appear to operate in mycobacterial cells where the F1F0-ATP 

synthase has been reported to have latent ATPase activity when measured in inverted 

membrane vesicles (6, 10). Whether the enzyme is also latent in actively growing cells is not 

known and therefore the potential does exist for this enzyme to function as a primary proton 

pump in the absence of oxygen and a functional respiratory chain to generate the pmf. The 

mechanisms controlling this extreme latency in the ATP hydrolysis direction is an area that 

could unlock new avenues for drug development and requires further investigation at a 

molecular and structural level.

The clinically-approved antimycobacterial bedaquiline (Sirturo™, TMC207) is a potent 

nanomolar inhibitor of the mycobacterial F1F0-ATP synthase that binds to the enzyme’s 

oligomeric c ring to inhibit ATP synthesis (11–16). We have recently reported that 

bedaquiline activates respiration and is a potent uncoupler of respiration-driven ATP 

synthesis in mycobacteria (17). However, unlike classical uncouplers/protonophores, 

bedaquiline does not translocate protons per se but perturbs respiration by binding to F0 

(oligomeric c ring) of the ATP synthase, likely disrupting the subunit a-c subunit interface in 

F0, thereby uncoupling proton flow from ATP synthesis by the F1F0-ATP synthase (Figure 

3B). This uncoupling is electroneutral, consistent with no observed change in the membrane 

potential. Feng et al. (18) further demonstrate the potential of targeting the pmf of M. 
tuberculosis and report that a number of tuberculosis drugs (e.g. clofazimine, BDQ, SQ109) 

are active uncouplers of the pmf in addition to binding to enzyme targets, highlighting the 

multi-targeting nature of these molecules.

M. tuberculosis encounters acidic microenvironments in the host and must maintain their 

intracellular pH homeostasis to survive. Compounds that dissipate the transmembrane pH 

gradient lead to a rapid loss in cell viability at acidic pH and the lethal intracellular pH for 

mycobacterial species in the pH range 5.5–6 (2). To address pH homeostasis as a drug target, 

Nathan and colleagues developed a whole cell screen to identify compounds that dissipate 

the ∆pH gradient in M. tuberculosis (19). This study identified a number of candidate 

molecules, including PZA, that disrupted intracellular pH homeostasis and caused cell 

killing (loss of viability) highlighting this as a potential pathway for drug development (19) 

(Figure 3B).

TARGETING PRIMARY DEHYDROGENASES IN MYCOBACTERIUM 

TUBERCULOSIS: THE UNTAPPED SOURCE OF METABOLIC DRUG 

DISCOVERY

M. tuberculosis encodes several primary dehydrogenases that serve as direct reductants for 

electron transport (Figure 1). Many of these have attractive properties for drug development, 

such as essentiality or lack of presence in the human genome. Unfortunately, the unifying 

feature of these enzymes is a paucity of information regarding their physiological and 

biochemical roles. Increasing our understanding of these processes will likely reveal 

mechanisms to perturb the viability within, and reactivation from, dormant mycobacteria.
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NADH:Menaquinone Oxidoreductases

Mycobacterium tuberculosis possesses two classes of NADH:menaquinone oxidoreductase 

to couple the oxidation of NADH from central metabolism to energize the electron transport 

chain (20) (Figure 1). Like mitochondria, M. tuberculosis harbours a proton-pumping type I 

NADH dehydrogenase complex (NDH-1, complex I) that transfers electrons to 

menaquinone, conserving energy by translocating protons across the membrane to generate a 

pmf (Figure 1 and Figure 2). In M. tuberculosis, the nuo operon is neither essential for 

growth nor persistence in an in vitro Wayne model (3). Moreover, the nuo operon has been 

lost from the genome of the intracellular parasite Mycobacterium leprae except for a single 

remaining nuoN pseudogene (21). These data suggest NDH-1 does not represent a 

compelling target for drug development. However, M. tuberculosis mutants lacking the 

NDH-1 subunit nuoG had reduced virulence in mice (22). There is evidence that nuoG and 

potentially other subunits of NDH-1 are anti-apoptosis factors and are indeed potential 

candidates for vaccine development.

The second class of NADH:menaquinone oxidoreductase is the non-proton translocating 

type II NADH dehydrogenase (NDH-2) that does not conserve energy (Figure 1). NDH-2 is 

a small monotopic membrane protein (50–60 kDa) that catalyses electron transfer from 

NADH via FAD (non-covalently bound redox prosthetic group) to quinone. M. tuberculosis 
harbors two copies of NDH-2 (ndh Rv1854c and ndhA Rv0392c) (20), which are well 

conserved among slow-growing mycobacterial species. In M. tuberculosis, Ndh (1392 bp) 

and NdhA (1413 bp) share 65% identity and the FAD- and NADH-binding motifs are highly 

conserved. The Ndh and NdhA proteins of M. tuberculosis have been shown to be functional 

NADH dehydrogenases that transfer electrons to the quinone pool via a two-site ping-pong 

reaction mechanism (23, 24). Several studies have suggested that ndh is essential for growth 

of M. tuberculosis (20, 25, 26), but the reasons for this essentiality remain unknown.

Unlike NDH-1, NDH-2 has not been reported in mammalian mitochondria, leading to the 

proposal that NDH-2 may represent a potential drug target for tuberculosis. Several 

antimycobacterial compounds have been reported to target NDH-2 (3, 20, 23, 27–30) 

(Figure 4). For example, drugs of the phenothiazine family (e.g. thioridazine, 

trifluoperazine, chlorpromazine) have potent activity in vitro against drug-susceptible and 

drug-resistant M. tuberculosis strains (31, 32) and show activity in a mouse model of 

pulmonary tuberculosis (20). However, the levels of phenothiazines required for 

antitubercular activity (>0.5 mg/L of plasma) appear to be clinically unachievable in patients 

(33); the development of phenothiazines as antitubercular drugs is currently limited by the 

wide range of potentially serious off-target effects displayed during use, including cognitive 

effects in the central nervous system at concentrations lower than their antimycobacterial 

activity (34). In contrast to the phenothiazines, quinolinyl pyrimidines inhibit NDH-2 from 

M. tuberculosis in the nanomolar range and show no toxicity to the eukaryotic organism S. 
cerevisiae, and no membrane disruption activity in a red blood cell haemolysis assay (30). 

The high potency and preliminary lack of toxicity against higher order species are 

promising. Scopafungin, gramicidin S, and polymyxin B have been identified as inhibitors 

of M. smegmatis NDH-2 and further work with M. tuberculosis is needed to determine their 

efficacy against the pathogen (35, 36).

Cook et al. Page 5

Microbiol Spectr. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mode of action studies are required to understand how NDH-2 inhibitors work at a 

molecular and structural level and why inhibition of NDH-2 activity leads to cell death. 

Yano et al. (37) have shown that clofazimine (CFZ), a long-standing clinical drug for 

leprosy, is a redox-active (phenazine derivative) prodrug activated by NDH-2. The authors 

propose a model in which the drug inhibits the growth of mycobacteria by a redox cycling 

pathway involving the enzymatic reduction of CFZ by NDH-2 following by non-enzymatic 

reoxidation of CFZ by O2, leading to the production of toxic reactive oxygen species (ROS) 

(37). Hartkoorn et al. (38) report that CFZ-resistant mutants of M. tuberculosis map to the 

transcriptional regulator Rv0678 leading to the upregulation of the multisubstrate efflux 

pump, MmpL5. The authors show that CFZ-resistant mutants are cross-resistant to 

bedaquiline suggesting a common mechanism of resistance (38). In slow- and fast-growing 

mycobacterial species, reduction in NDH-2 activity has been linked to isoniazid and 

ethambutol resistance (39). Taken together these studies suggest that the development of 

NDH-2 inhibitors will need to determine what effect these compounds have on current drug 

therapy regimens, particularly in regard to the development of cross resistance.

Structure-aided drug design against NDH-2 is now possible with the first high-resolution 

bacterial structures published (40, 41). The bacterial NDH-2 structure reveals a 

homodimeric organization and localization to the cytoplasmic membrane by the membrane-

anchoring domain highlighted with two amphipathic C-terminal helices (40, 41). Unique 

binding sites for quinone and NADH sites were also proposed, allowing concomitant 

oxidation of NADH from the cytoplasm with reduction of quinone from the membrane with 

the ability of both substrates to access the FAD cofactor sequentially (40). This implies that 

NDH-2 harbours two potential drug target sites and both warrant investigation. Most 

common structure-based drug design approach relies on the protein-ligand complex structure 

model (42). The ligand-complex structures have been solved for both yeast (43) and 

bacterial NDH2 (Y. Nakatani, unpublished data) allowing for the rational design of small 

inhibitor molecules targeting the NADH-binding site, and with further quinone-ligand 

structures, the quinone-binding site.

Succinate:Quinone Oxidoreductase: A Chink in the Carbon-Metabolic Armor

Succinate dehydrogenase (SDH), or complex II (Figure 1), enzymes are well known for their 

role in the citric acid cycle. They couple the oxidation of succinate to the reduction of 

quinone via both FAD and heme co-factors (44), thereby playing important roles in both 

carbon metabolism and pmf generation. M. tuberculosis encodes two SDH enzymes (sdh1, 

Rv0249c-Rv0247c; sdh2, Rv3316-Rv3319), as well as a separate fumarate reductase with 

possible bidirectional behaviour. It is unprecedented in the current literature for an organism 

to encode three functionally redundant enzymes for this reaction, which complicates both 

physiological analysis and drug design. Furthermore, while a vast amount of literature exist 

regarding the SDHs of E. coli and mitochondria, the SDHs encoded by mycobacteria have 

distinct phylogeny, prosthetic groups and predicted biochemistry (9, 45). Despite these 

challenges, using SDHs as drug-targets remains promising, as succinate is a major focal 

point in both the central carbon metabolism and respiratory chain of M. tuberculosis. The 

bacilli must find a way to drive the endergonic oxidation of succinate (Em = +113 mV versus 

Em = −74 for menaquinone); a reaction required for generating a membrane potential under 
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hypoxia (9) and maintaining the balance of menaquinone:menaquinol (46). Under hypoxia, 

succinate can he electronically secreted or stored until a suitable electron acceptor is 

accessed (47). The versatility of succinate therefore suggests that disrupting its oxidation 

may result in clinically advantageous outcomes: inhibitors may have primary lethality, force 

a premature exit from non-replicating persistence or compromise bacilli reactivation, 

depending on which aspect of succinate metabolism is affected by modulating SDH activity.

Drug development targeting SDH enzymes will need to consider how to achieve selectivity 

for the multiple M. tuberculosis enzymes without off-target effects on human counterparts. 

Fortunately, several key differences between these homologues exist within the hydrophobic, 

menaquinone-binding portion of the complex. Enzymes are classified as Type A-E 

according to their heme content and number of transmembrane subunits (45, 48). Sdh2 is a 

Type A enzyme (2 subunits, 2 hemes) (49), while Sdh1 was proposed to be similar to the 

Bacillus-like Type B enzymes (1 subunits, 2 hemes) (9). The mammalian SDH and M. 
tuberculosis FRD are of different types (Type C and D respectively), and so are different in 

terms of electron-transfer and menaquinone-reduction. It follows that compounds targeting 

the hydrophobic subunits of SDH are ideally suited for achieving selective inhibition.

There have been no reported screens for inhibitors of mycobacterial SDH activity. A 

commonly used inhibitor of SDH is 3-nitropropionate, targeting the A subunit (50, 51), 

which has been reported to inhibit mycobacterial SDHs (9, 47). However, inhibitors 

developed against the dicarboxylate-binding site are likely to also inhibit mitochondrial SDH 

due to high A subunit similarity and hence this is likely to be a poor direction for lead 

candidate identification. Despite this, routine inhibitors such as the A subunit-targeting 

carboxin and quinone-mimic HQNO have been found to display selectivity between 

organisms (52) and so this enzyme may yet serve as a lesson about development of drugs 

against targets also present in mitochondrial genomes.

Alternative Dehydrogenases: OXPHOS Intrinsically Linked to Growth Reactivation

While mycobacteria are primarily heterotrophs, there is strong evidence that they can 

support chemolithotrophic on certain gases. M. tuberculosis is capable of supporting 

carboxydotrophic growth by utilizing carbon monoxide dehydrogenases (53) (CODH 

structural subunits, Rv0375c-Rv0373c) (Figure 1). These enzymes oxidize CO to CO2 

concomitant with the reduction of various types of acceptors, ferredoxins or cytochromes for 

example (54, 55). The mycobacterial enzymes have additionally been proposed to oxidize 

NO (56). Aerobic CODHs are three subunit enzymes that can be distinguished from their 

anaerobic counterparts by their molybdenum active sites (57, 58). They are typically induced 

under autotrophic conditions (59), although catabolite repression has been implicated in 

mycobacterial CODH regulation (60). Genetic essentiality has not been rigorously 

confirmed, although several transposon mutagenesis studies have putatively identified that 

the large subunit of CODH is essential (26, 61). The physiological electron acceptor of 

CODH has not been identified in mycobacteria and doing so would likely reveal a more 

robust site for drug design, as opposed to targeting the gas-binding catalytic site.

While CO is abundant during host infection (62) and is likely an important energy source for 

the bacillus, the possibility of deleterious effects during CODH inhibition must be 
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considered. CO and NO are inducers of the mycobacterial DosR response (63–65), both 

being apparent substrates of the mycobacterial CODH (56). As suggested previously (66), 

the metabolism of CO by CODH could serve as a reactivation signal by depleting the 

inducer. The potential metabolism of NO by CODH only further serves this hypothesis. It is 

therefore possible that inhibiting CODH will force a greater proportion of bacilli into a non-

replicating persistent state, by allowing accumulation of DosR inducers. Instead, CODH is a 

very promising target for activators, as opposed to inhibitors, as it could force these drug-

resistant persisters to reactivate growth. This would allow the repurposing of classical anti-

tubercular compounds in effective short-term regimens. Currently only molecules with 

broad-spectrum inhibitory activity, such as cyanide and derivative isonitriles, are reported 

(67) and no activators have been reported at the time of writing.

Another potential respiratory electron donor in mycobacteria is F420H2. A low-potential 

two-electron carrier, F420 plays a unique and central role in the redox metabolism of 

mycobacteria, but is absent from human cells and gut microbiota (68). F420 is reduced 

during central carbon catabolism of M. tuberculosis by an F420-dependent glucose 6-

phosphate dehydrogenase (69). Multiple F420H2-dependent reductases in turn couple the 

reoxidation of F420H2 to the reduction of diverse endogenous and exogenous heterocyclic 

organic compounds (68, 70, 71), among them quinones. It has been demonstrated that three 

such reductases of the split β-barrel family in M. tuberculosis, Rv3547, Rv1558, and 

Rv3178, can reduce quinone compounds through hydride transfer (72). It has been proposed 

that this activity maintains the quinone pool in a reduced state during oxidative stress (72); 

while rapid activity has been observed with nonphysiological quinones (72), it has yet to be 

confirmed if F420H2 oxidation can reduce menaquinone and generate pmf in whole cells. 

Irrespectively, mutants unable to synthesize or reduce F420 are hypersusceptible to oxidative 

stress, antibiotic treatment, and hypoxia (72–74); hence inhibitors of the F420 system 

(including F420 analogs) might selectively kill persistent mycobacteria and would act 

synergistically with first-line antimycobacterials. However, there may be even more promise 

in exploiting the mycobacterial FDORs to activate prodrugs. The 5-nitroimidazoles 

delamanid and pretomanid are reductively activated by Rv3547, resulting in production of 

reactive nitrogen species and des-nitro products that are proposed to kill M. tuberculosis 
through a combination of respiratory poisoning and inhibition of mycolic acid synthesis (71, 

75–77). Delamanid is the second new drug in 40 years (following bedaquiline) to be 

clinically-approved for TB treatment (78). Acquired resistance to delamanid in XDR-TB has 

been reported to be mediated by mutations in fbiA (F420 biosynthesis protein) and fgd1 
(F420-dependent glucose-6-phosphate dehydrogenase) (79).

The enzymes discussed above demonstrate the potential array of treatment options that could 

be achieved with sufficient ingenuity. Valuable outcomes, such as direct lethality and 

modulation of growth state, can be hypothesized and the potential to overcome undesirable 

target properties are readily apparent. NDH-2 has been extensively studied and large high 

throughout screens for inhibitors performed with some success (20, 30, 80). Other primary 

dehydrogenases have received little attention. M. tuberculosis encodes far more primary 

dehydrogenases that are not covered here due to paucity of understanding in the context of 

mycobacterial oxidative phosphorylation. Most notably, there is need to understand the role 

of the tricarboxylic acid cycle-linked malate:quinone oxidoreductase (Rv2852c) in the redox 
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and ion homeostasis of M. tuberculosis (81, 82). Two quinone-linked glycerol-3-phosphate 

dehydrogenases (Rv3302c & Rv2249c) need to dissected from a further two NAD(P)H 

linked counterparts (Rv0564c & Rv2982c). In addition, the physiological conditions that 

would promote the activity of two L-Lactate dehydrogenases (Rv0694 & Rv1872) need to 

be assessed and it is not yet determined if quinone reduction by proline dehydrogenase 

occurs purely as a consequence of its previously demonstrated methylglyoxal-detoxification 

activity (83).

MENAQUINONE BIOSYNTHESIS: PROMISING DRUG TARGETS

Lipoquinones serve as the membrane-bound electron shuttles between primary 

dehydrogenases and terminal reductases in respiratory chains. Whereas ubiquinone (UQ) 

serves as the predominant quinone in mitochondria and many Gram-negative bacteria, 

menaquinones (MK) are the predominant lipoquinones of mycobacteria and many other 

Gram-positive bacteria (84). It has recently been reported that polyketide derived quinones 

(PkQ) are alternate lipoquinones that are expressed and function as electron carriers in 

mycobacterial biofilms (85). The biosynthesis of MK requires two separate pathways 

(Figure 5). 1,4-Dihydroxy-2-naphthoate is synthesized from chorismate. The naphthoate 

ring is then prenylated with a polyisoprenyldiphosphate, derived from isopentenyl 

diphosphate and dimethylallyl diphosphate, to form demethylmenaquinone and, 

subsequently, the C2 position of the ring structure is methylated. In mycobacteria the β-

isoprene unit of the prenyl group is reduced to form MK-9 (II−H2) after the formation of 

MK (86). MK synthesis has been relatively extensively studied in E. coli (due in part to the 

availability of the men mutants, which can easily be generated in this organism, as it can 

utilize ubiquinone as an electron carrier in aerobic conditions). In E. coli the synthesis of 

MK is accomplished by nine enzymes (MenA−MenI, and UbiE, see Figure 5). These 

enzymes are encoded by 2 clusters of genes. The men cluster consisting of the menB, C, D, 
E, F, H and a separate cluster containing menA and ubiE. It was originally thought that 

MenB catalyzed the conversion of 2-succinylbenzoyl-CoA to 1,4-dihydroxy-2-naphthoate; 

however recent evidence indicates that MenB forms 1,4-dihydroxy-2-naphthoyl-CoA, which 

MenI then hydrolyzes to 1,4-dihydroxy-2-naphthoate (87). MK synthesis in Gram-positives 

in general has largely been under-represented in the literature; however, the general pathway 

in M. tuberculosis appears to be similar to that of E. coli. In M. tuberculosis the menA-E 
genes appear to be found in a single cluster along with the two genes annotated as possible 

methyl transferases involved in lipoquinone synthesis (Rv0558 and Rv0560c). One or both 

of these genes presumably encode the protein(s) (MenG, which has analogous function to 

UbiE in E. coli) that methylate demethylmenaquinone. The gene encoding the protein with 

the most similarity to MenF in E. coli is Rv3215 annotated as entC (isochorismate synthase) 

and the gene encoding the protein most similar to MenI is Rv1847. In addition, M. 
tuberculosis harbours Rv0561c, which is clustered with menA-E and encodes MenJ the 

enzyme that reduces the β-isoprene of MK (86). Interestingly, M. tuberculosis does not have 

a gene that is easily identifiable as encoding a protein with similar function to MenH. 

Rv0045c, Rv1938 and Rv2715 are all potential candidates, although none encode a protein 

with a high degree of similarity to MenH from E. coli. The isoprenoid tail of the 

menaquinone must be generated by a isoprenyl diphosphate synthase as described above and 
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together with 1,4-dihydroxy-2-napthoic acid are the substrates for MenA (Rv0534c). 

However, the specific synthase generating this isoprenyl diphosphate has yet to be identified.

Surprisingly, not all of the enzymes involved in the mycobacterial MK biosynthetic pathway 

appear to be viable drug targets, or even essential. Initial studies (25) predicted that the 

mycobacterial menC, menD, menE, and menF genes were essential for bacterial survival. 

Subsequently, these predictions were supported by high-resolution phenotypic profiling 

experiments (26), which added menF, and menA to the list of predicted essential genes. 

MenA [demethylmenaquinone synthase, Rv0534c (88, 89)], MenB [1,4-dihydroxy-2-

naphthoyl-CoA synthase, Rv0548c (20–22)], and MenE [o-succinylbenzoyl-CoA synthase, 

Rv0542c (90–92)] from mycobacteria are under study as potential drug targets having been 

genetically or pharmacologically demonstrated to be essential. This is exemplified by the 

development of Aurachin RE analogues, which inhibit MenA and result in growth inhibition 

of drug-resistant M. tuberculosis (89). It seems probable that MenC, D and F are potential 

drug targets in addition to MenA, B and E. MenG has yet to be definitively identified in 

mycobacteria. As noted above two genes are annotated as possible methyl transferases 

involved in lipoquinone synthesis (Rv0558 and Rv0560c). Both of these genes reside in the 

Men cluster in M. tuberculosis; however, only Rv0558 is predicted to be essential (25, 26, 

93). Thus, further study is indicated.

MenI has only recently been identified as the enzyme that hydrolyzes 1,4-dihydroxy-2-

naphthoyl-CoA to 1,4-dihydroxy-2-naphthoate in E. coli (87). An orthologous gene has not 

been positively identified in mycobacteria, although Rv1847 appears to be the highest 

probability match. This gene is predicted to be non-essential for mycobacterial survival (25, 

26, 93). This is perhaps unremarkable as deletion of MenI in E. coli does not eliminate MK 

synthesis, only reducing the levels of MK in the bacteria by 67% (87), suggesting other non-

specific thioesterase activities can compensate. Similarly Rv0045c, Rv1938 and Rv2715 
encode potential, but low probability, candidates for 2-succinyl-6-hydroxy-2,4-

cyclohexadiene-1-carboxylate synthase (MenH) in M. tuberculosis, none of which are 

predicted to be essential. In this case it should be noted that 2-succinyl-5-enolpyruvyl-6-

hydroxy-3-cyclohexadiene-1-carboxylate can undergo spontaneous elimination to form 2-

succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (94). Thus, mycobacterial MenI and 

MenH do not appear to be likely drug targets. MenJ is unique among the men genes in that it 

is non-essential for growth in culture (25, 26, 86), but is essential for bacterial survival in 

mouse macrophages (86, 95). Thus, MK with partially saturated isoprenyl moieties appear to 

be a novel virulence factor and MenJ is a contextually essential enzyme and a potential drug 

target (86). Sulfated MK synthesis does not appear to present an important drug target. The 

function of this unique lipid is, as yet, unknown; however, it has been reported that the 

synthesis of sulfated MK, reduces the virulence of the organism in mouse infection models 

(96).

TARGETING OXYGEN REDUCTION IN MYCOBACTERIA

All mycobacteria sequenced to date harbour genes for a cytochrome c pathway consisting of 

a cytochrome bc1 (related to the mitochondrial complex III) and an aa3-type cytochrome c 
oxidase (complex IV) (Figure 1). The cytochrome bc1 transfers electrons from menaquinol 
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to the cytochrome c oxidase, a process linked to proton translocation across the membrane. 

Since the cytochrome c oxidase is also capable of pumping protons, this pathway is the most 

energetically favourable respiratory branch in mycobacteria. In contrast to mitochondria, 

actinobacteria do not possess genes for soluble cytochrome c or any other c-type cytochrome 

(97, 98). Instead, the complex III and IV form a supercomplex that facilitates the direct 

transfer of electrons from menaquinol to oxygen (98–100). The bc1 complex (encoded by 

the qcrCAB operon) is composed of the cytochrome b (qcrB) that contains two b-types heme 

groups, a 2Fe-2S iron-sulfur cluster located on the Riske protein QcrA, and a di-heme c-type 

cytochrome c1 (qcrC), as initially described in Corynebacterium glutamicum (101).

The aa3-type cytochrome c oxidase is encoded by the ctaB, ctaC, ctaD and ctaE genes. The 

genes ctaD and ctaC are in close proximity with the qcrCAB operon, whereas ctaB and ctaE 
are located elsewhere in the genome. The cytochrome c oxidase contains three redox 

centers: CuA (located on CtaC, subunit II) and the haem a (located on CtaD, subunit I) are 

the primary electron acceptors from the bc1 complex, whereas the a3-CuB unit (located on 

CtaD) is the oxygen-reducing element. The cytochrome c oxidase is annotated as essential 

(25), whereas attempts to delete qcrCAB in M. tuberculosis were unsuccessful (102), 

suggesting that the cytochrome c pathway is required for the survival of slow-growing 

mycobacteria. qcrCAB could be deleted in Mycobacterium smegmatis, but led to a profound 

growth impairment in vitro (102). Recently, the thioredoxin CcsX was shown to be required 

for haem insertion into membrane-bound heam-contaning proteins (103). Deletion of ccsX 
in M. tuberculosis had a marked growth defect due to a deficient haem insertion in 

membrane-proteins, including QcrC. Nevertheless, the mutant strain could still multiply 

(103), suggesting that the perturbation, or inactivation, of the cytochrome c branch may be 

viable under certain circumstances. Interestingly, the cytochrome bd oxidase was 

upregulated in the ccsX mutant strain, suggesting that the cytochrome bd oxidase can act as 

a robust alternate terminal oxidase when the integrity of the cytochrome c branch is 

compromised (103).

Several inhibitors of the cytochrome bc1 are known. The archetype is stigmatellin, a natural 

antibiotic that inhibits most cytochrome bc1 by impeding the interaction of the quinol with 

the QcrB subunit. The recent discovery of small-molecules targeting QcrB has triggered 

interest on the respiratory cytochrome c pathway (104–07). A number of groups have 

identified a series of imidazopyridine amide (IPA) compounds that interfere with energy 

metabolism (104–06, 108). The most advanced derivatives of the IPA series are active in the 

low nanomolar range in vitro (106, 108, 109). The series is surprisingly highly selective to 

mycobacteria since it does not inhibit the growth of any other bacteria or microorganism 

classes that were tested (104, 106). Whole-genome sequencing of spontaneous-resistant 

mutants to the IPA drugs revealed that a single amino acid substitution at the position 313 in 

QcrB confers high resistance to Q203 (104, 106). Subsequently, additional mutations were 

identified in a strain deficient for the expression of the cytochrome bd oxidase (105). Since 

all the mutations conferring resistance are in close proximity to the Qp menaquinone-

binding site, it is likely that the IPA compounds inhibit respiration by interfering with the 

binding of menaquinol at the Qp site of QcrB. Even though target engagement remains to be 

demonstrated, the observation that the IPA series trigger a rapid ATP depletion (105, 106) 

suggests that the cytochrome bc1 is the direct target. The drug candidate Q203 recently 
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progressed to clinical development phase I under a US-FDA investigational new drug 

application, marking the first step to validate the vulnerability of the cytochrome c pathway 

in human tuberculosis.

Several other compound series targeting QcrB have been reported (105, 107), arguing for a 

high vulnerability of this respiratory branch under conditions used for compound screening. 

Of particular interest, the approved drug lansoprazole is a prodrug targeting QcrB in 

mycobacteria (107). Despite the high vulnerability of the cytochrome bc1, it is puzzling to 

note that all the inhibitors discovered to date bind to a narrow region of the QcrB subunit 

that is predicted to interact with menaquinol. A better understanding of the biology of the 

cytochrome c branch may allow for the identification of lead molecules that bind to alternate 

positions. Although exciting drug development advances have been made, much work 

remains to be done to understand the biology of the cytochrome bc1, and under which 

conditions the cytochrome c branch is essential for survival. As such, it was observed that 

the high expression of the cytochrome bd-type oxidase in laboratory strains of M. 
tuberculosis can alleviate partly the potency of cytochrome bc1 inhibitors (105). Although 

this was not the case for clinical isolates that seem to regulate more tightly cytochrome bd 
expression (105), it is imperative to clarify the synthetic genetic interaction between the two 

terminal oxidases to exploit the full potential of QcrB inhibitors for the treatment of 

tuberculosis. Furthermore, the conditions under which alternate terminal acceptors can 

compensate for the inhibition of the bc1 complex must also be delineated in order to develop 

a rational drug combination targeting oxidative phosphorylation. It is interesting to note that 

ongoing reductive evolution in Mycobacterium leprae and Mycobacterium ulcerans resulted 

in the deletion of the cytochrome bd oxidase, nitrate reductase and fumarate reductase (21, 

110), leaving the cytochrome c oxidase branch as the only functional terminal electron 

acceptor. Therefore, drugs targeting the cytochrome bc1 hold great promise for the treatment 

of leprosy and Buruli ulcer infections.

Cytochrome bd-type Oxidase and CydDC

M. tuberculosis and other mycobacterial species harbour genes for the cytochrome bd-type 

menaquinol oxidase (cydAB) (111) (Figure 1). Cytochrome bd oxidase (CbdO) could be 

viewed as one of the most scientifically neglected and least understood respiratory enzymes 

in the electron transport chain of M. tuberculosis. The rather modest interest in this M. 
tuberculosis enzyme might stem from its dispensability for optimal growth and survival in 

mouse models (25, 61). In the absence of structural or biochemical data for CbdO of M. 
tuberculosis it is assumed that this enzyme functions similarly to its well characterized E. 
coli homolog as a high-affinity terminal oxidase that accepts electrons from menaquinol to 

reduce oxygen under hypoxic conditions (112–14). This enzyme activity contributes to the 

maintenance of a pmf and facilitates the scavenging of oxygen necessary to colonize oxygen 

poor niches or to protect oxygen labile enzymes (112, 114– 116). From an energetic point of 

view, cytochrome bd oxidase is less efficient than cytochrome c oxidases because it does not 

pump protons, but instead generates a pmf by transmembrane charge separation at an H+/e 

ratio of 1 (113). This would appear useful for cells under conditions where the role of CbdO 

is not primarily to create a pmf, but serve as an electron sink, for example during reductive, 

oxidative, or nitrosative stress defenses (117) or during disulfide-bond formation (114).
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Downstream of the cydAB gene locus of M. tuberculosis another operon, cydDC, encodes a 

putative ABC-transporter. In E. coli this transporter was shown to transport glutathione and 

cysteine to the periplasm where these molecules contribute to redox homeostasis and 

disulfide bond formation (114). Similar to CbdO, CydDC of M. tuberculosis is largely 

uncharacterized and its physiological role is unclear. Mouse infection studies with 

transposon mutant libraries indicate that mutants with insertions in CydDC are at a 

disadvantage compared to the wild-type cells (118). However mouse challenge with single 

cydC mutants show no growth attenuation and only a subtle decrease in bacillary loads in 

lungs during latent infection (119), although a subsequent study was unable to reproduce 

this phenotype (120). It is important to note that mice do not form hypoxic granulomas, 

which could explain why neither cydAB nor cydDC mutants are attenuated in this animal 

model.

Cytochrome bd oxidase and the CydDC transporter appear to protect mycobacteria from 

chemotherapeutic challenge. For example, disruption of cydC in M. tuberculosis caused 

increased bacterial clearance in mouse model infections treated with isoniazid when 

compared to wild-type infections (120). An even more striking observation has been the role 

of CbdO, specifically, in protection of M. tuberculosis from respiratory chain inhibitors. 

Berney et al. demonstrated that cydA deletion greatly enhances the early bactericidal 

activity, killing in the first seven days, in M. tuberculosis treated with the F1F0-ATP synthase 

inhibitor bedaquiline (121). In another study, cydA inactivation in M. tuberculosis H37Rv 
enhanced the minimum inhibitory concentration (MIC) of cytochrome c oxidoreductase 

inhibitors by more than four orders of magnitude (105). Consistent with these data, deletion 

of cydA in M. smegmatis greatly decreased the MIC of bedaquiline (17) and led to complete 

sterilization after clofazimine treatment for 72 hours, while effects on the wild-type and 

cytochrome bc1 mutant were only bacteriostatic (122). However, the mechanism of action of 

this phenotypic resistance and the more pronounced role in protection from respiratory chain 

inhibitors is unclear.

CdbO and CydDC enzymes also appear important in adaptation to adverse conditions and 

persistence. Kana et. al. showed that inactivation of cydA in M. smegmatis inhibits cell 

growth under hypoxic conditions (111). It is intriguing to note that inactivation of the 

cytochrome c maturation pathway in M. tuberculosis led to an upregulation of CbdO 

concomitant with increased resistance to hydrogen peroxide (103). Accordingly cydA 
deletion in M. smegmatis (122) and M. tuberculosis (Berney, M. unpublished results) 

increases susceptibility to peroxide. Taken together, with the observed protection from 

antibiotics one can assume that cytochrome bd oxidase and potentially CydDC are important 

in pathogenicity and adaptation to adverse conditions. Interestingly, cydAB and cydDC are 

upregulated as part of hypoxia induced dormancy (123) and may facilitate M. tuberculosis 
transition to non-replicating persistence (124). Bacilli in this state are tolerant to antibiotics 

(125, 126), and it is possible that the phenotypic resistance to drugs is due in part to a CbdO-

facilitated transition to persistence.

Neither cytochrome bd oxidase nor the CydDC transporter appears to be essential for the 

survival or normal growth of M. tuberculosis under standard conditions. However, their 

unique roles discussed above and the lack of mammalian homologues warrants their 
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investigation as potential drug targets. When M. tuberculosis is treated with bedaquiline, the 

dormancy regulon and ATP-generating pathways, including cydAB and cydDC genes, are 

activated and induce metabolic remodeling that delays bactericidal activity (127). As noted, 

inactivation of CbdO inhibits this phenotypic resistance and promotes de novo early 

bactericidal activity of BDQ (121). It is possible that similar mechanisms of resistance are 

employed in response to a broad range of chemotherapeutics (128). Furthermore, CbdO is 

likely the predominate terminal oxidase under low oxygen tensions (111, 129, 130) such as 

those found in hypoxic granulomas (131) and may facilitate the survival of latent or 

persistent bacilli (132, 133). Therefore, it is conceivable that inhibitors of CbdO or CydDC 

would enhance the eBA of existing chemotherapeutics and target non-replicating bacilli 

populations, which could effectively reduce the currently lengthy therapy timelines (134).

The only cytochrome bd oxidase-selective inhibitors currently identified are aurachin D and 

its analogues (135). Aurachin D is a quinolone-type drug that prevents menaquinol reduction 

(135) by competitive inhibition at the quinol-binding domain of CbdO (136). Its selective 

inhibition of CbdO has been validated in M. smegmatis by measuring oxygen consumption 

of membrane vesicles (122). Although its efficacy as a chemotherapeutic and toxicity to 

mammals has not been studied. To our knowledge, there have not been any inhibitors of the 

CydDC transporter that have been identified. This general lack of development is likely 

because inhibitors of these enzymes are not a promising source of stand-alone drugs for 

treatment of M. tuberculosis under aerobic conditions. However, the attributes of CbdO and 

CydDC discussed here suggest that they may be valuable drug targets to enhance efficacy 

and reduce treatment timelines of current chemotherapy regimens.

Alternative Reductases: Critical for Redox Homeostasis During Hypoxia

There is strong evidence that M. tuberculosis uses the alternative electron sinks nitrate, 

nitrite, and fumarate to maintain redox balance during hypoxia. M. tuberculosis exploits host 

defences in order to generate the respiratory electron acceptor nitrate. The organism converts 

the nitric oxide (NO) produced by host iNOS in the human macrophage to nitrate by 

secreting the nitric oxide dioxygenase HbN (137, 138). It in turn imports the nitrate produce 

with a specific transporter (NarK2), reduces nitrate to nitrite with a membrane-bound 

respiratory nitrate reductase (NarGHJI), and detoxifies the nitrite to ammonium with a 

cytosolic NADH-dependent nitrite reductase (NirBD) (139, 140). While nitrate reductase 

and nitrite reductase are constitutively expressed, the nitrate transporter is under tight 

transcriptional control by the NO- and hypoxia-induced DosS/DosT-DosR system (119, 141, 

142), and hence the rate of nitrate reduction increases in hypoxic cells concurrent with 

reduction of the respiratory chain (140). While the physiological role of this pathway is 

incompletely understood, it appears to enhance the flexibility of mycobacteria in response to 

reductive stress: nitrate supplementation enhances the survival of M. tuberculosis cultures 

following sudden anaerobiosis or phenothiazine treatment (143, 144). The nitrite produced 

can be exported from the cell or alternatively reduced to ammonium; the nitrite reductase 

that mediates this process is essential for survival of M. tuberculosis both in the Wayne 

model and human macrophages, likely due to its combined roles in nitrite detoxification and 

nitrogen assimilation (139, 145, 146). Given the multifaceted roles of nitrate and nitrite 

reduction in this pathogen, there may be potential in developing small-molecule inhibitors of 
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nitrate reductase and nitrite reductase. Host-directed therapies aimed at reducing NO 

production also show promise (147), though could also be counterproductive given NO also 

has innate cytotoxic effects: administration of the iNOS2 inhibitor N6-(1-iminoethyl)-L-

lysine in fact accelerated progress of M. tuberculosis infection in a murine model (148).

There is also a weight of evidence that M. tuberculosis depends on fumarate reduction to 

adapt to hypoxia. Two groups have independently demonstrated that M. tuberculosis 
operates a reverse tricarboxylic acid cycle during hypoxia resulting in fumarate production 

and succinate excretion (8, 47). Given succinate is a multifunctional molecule, this 

remodelling may serve several purposes: i) respiratory electron transport to fumarate 

generates pmf by a redox-loop mechanism, ii) fermentative succinate excretion to the 

extracellular milieu dissipates excess reductant, and iii) succinate may be used for 

anaplerosis or respiration according to cellular needs (8, 47). In contrast to its saprophytic 

relatives, M. tuberculosis has acquired a canonical fumarate reductase that likely mediates 

the majority of these activities. There is evidence that the two aforementioned annotated 

succinate dehydrogenases in its genome (Sdh1, Sdh2) can operate in reversed direction to 

compensate for loss of this enzyme (8, 9, 46, 47). Consistent with such roles, both the 

canonical fumarate reductase and Sdh2 are strongly upregulated and highly active under 

hypoxia (8, 9, 46, 149). Given this functional redundancy, genes encoding these enzymes 

can be individually but not collectively deleted (8, 9, 47) and hence it may be difficult to 

develop effective inhibitors against the fumarate reduction pathway. However, an exciting 

precedent has been set by the discovery of nanomolar affinity natural products (e.g. nafured, 

verticipyrone) that inhibit eukaryotic parasites by targeting mitochondrial fumarate 

reductases (150). The finding that succinate may be excreted as a fermentative end-product 

in mycobacteria is also worthy of special attention (8). Other recent work has suggested that, 

while mycobacteria strictly requires respiration for growth, they may resort to fermentation 

if all respiratory electron acceptors are exhausted (151). It is important to gain a further 

understanding of the electron sinks that M. tuberculosis use to maintain redox balance in 

order to evaluate current and discover new drug targets in mycobacterial energetics.

ATP SYNTHESIS BY THE F1Fo ATP SYNTHASE: A CLINICALLY-VALIDATED 

TARGET

In M. tuberculosis and other mycobacterial species, ATP is synthesized via substrate level 

phosphorylation and oxidative phosphorylation using the membrane-bound F1F0ATP 

synthases (encoded by the atpBEFHAGDC operon, Rv1304-1311). The F1F0ATP synthase 

catalyzes ATP synthesis by utilizing the electrochemical gradient of protons to generate ATP 

from ADP and inorganic phosphate (Pi) and operates under conditions of a high pmf and low 

intracellular ATP. The enzyme is also capable of working as an ATPase under conditions of 

high intracellular ATP and an overall low pmf (152). As an ATPase, the enzyme hydrolyzes 

ATP, while pumping protons from the cytoplasm to the outside of the cell. The ATP synthase 

of mycobacteria has been studied in detail at a biochemical level in M. phlei and shown to 

exhibit latent ATPase activity (10). ATPase activity could be activated by trypsin treatment 

and magnesium ions, but the mechanism of activation was not elucidated. Recent 

experiments with inverted membrane vesicles of M. bovis BCG and M. smegmatis 
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demonstrate latent ATPase activity that could be activated by methanol and the pmf, 
suggesting regulation by the epsilon subunit and ADP inhibition (6). The reason for the 

extreme latency in ATP hydrolysis of the mycobacterial ATP synthase is unknown, but may 

represent an adaptation to function at low pmf and under hypoxia. Hypoxic non-replicating 

cells of M. tuberculosis generate a pmf in the order of -100 mV and the ATP synthase 

inhibitor TMC207 is bactericidal towards these cells demonstrating that the ATP synthase 

still continues to function at relatively low pmf (3).

The F1F0ATP synthase in M. tuberculosis and M. smegmatis has been shown to be essential 

for optimal growth (25, 153). In other bacteria, the F1F0-ATP synthase is dispensable for 

growth on fermentable carbon sources (154, 155), where increased glycolytic flux can 

compensate for the loss of oxidative phosphorylation. This strategy does not appear to be 

exploited by M. smegmatis: the F1F0-ATP synthase is essential for growth even on 

fermentable substrates, suggesting that ATP production from substrate level phosphorylation 

alone, despite increased glycolytic flux, may be insufficient to sustain growth of these 

bacteria (153). This may be due to an extraordinarily high value for the amount of ATP 

required to synthesize a mycobacterial cell, a possibility that requires further investigation 

(156). Alternatively, in conjunction with a high ATP demand for growth, the ATP synthase 

may be an obligatory requirement for the oxidation of NADH by providing a sink for 

translocated protons during NADH oxidation coupled to oxygen reduction (153). Such strict 

coupling would imply that mycobacteria do not support uncoupled respiration; either they 

lack a conduit for proton re-entry in the absence of the F1F0-ATP synthase or they are unable 

to adjust the proton permeability of the cytoplasmic membrane to allow a futile cycle of 

protons to operate. In this context, the cytoplasmic membrane of M. smegmatis has been 

shown to be extremely impermeable to protons (157). In M. tuberculosis, the atp operon is 

downregulated during growth in macrophages (158), the mouse lung and in cells exposed to 

NO or hypoxia (119). The atp operon of M. bovis BCG and M. smegmatis is downregulated 

in response to slow growth rate (159, 160). When slow growing cells of M. smegmatis (70 h 

doubling time) with low levels of atp operon expression are exposed to hypoxia (0.6% 

oxygen saturation), the atp operon is upregulated 3-fold, suggesting an important role for 

this enzyme during adaptation to hypoxia (159).

Several new anti-tubercular compounds have been reported that target oxidative 

phosphorylation in mycobacteria (11, 20, 88). The most promising compounds clinically, the 

diarylquinolines, have been shown to target the F1F0-ATP synthase and inhibit ATP 

synthesis (11–13). The FDA approved the use of a diarylquinoline (i.e. first-in-class 

compound bedaquiline, BDQ) for treatment of MDR-TB in 2012, which was the first drug 

licensed in forty years for TB disease. BDQ was developed in an attempt to improve 

outcomes in MDR-TB patients due to the sub-optimal effectiveness and toxicity of currently 

available drugs and regimens. BDQ has fast-acting bactericidal in vivo activity in different 

animal models and in TB patients against several mycobacterial species, both susceptible 

and resistant to all first-line and many second-line drugs, (161, 162). However, resistance to 

BDQ has already been reported (127) and Phase 2 clinical trials showed a higher mortality 

rate in subjects assigned to the bedaquiline cohort compared to the placebo group (163). 

Additionally, BDQ accumulates in tissues and has a prolonged half-life, taking 8 weeks to 

reach peak exposure and displaying a terminal half-life of 4 to 5 months.
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Genome sequencing of both M. tuberculosis and M. smegmatis mutants that are resistant to 

diarylquinolines (i.e. TMC207) revealed that the target of these compounds is the oligomeric 

c ring (encoded by atpE) of the enzyme (11, 14, 15). The high resolution X-ray structure of 

the oligomeric c ring of Mycobacterium phlei has been solved complexed with BDQ. The 

structure reveals that BDQ interacts with the oligomeric c ring via numerous interactions 

(hydrophobic, hydrophilic, and electrostatic) completely covering the c-ring’s proton-

binding sites thus explaining the high-affinity (nM) binding of BDQ to the M. phlei c-ring 

and the measured low MIC values of the BDQ towards M. tuberculosis (11). The binding of 

BDQ to the c-ring prevents the rotor ring from acting as a proton shuttle and stalls ATP 

synthase operation (16). The structures explain how diarylquinolines specifically inhibit the 

mycobacterial ATP synthase and thus will enable structure-based drug design for next-

generation ATP synthase inhibitors against M. tuberculosis (16, 164, 165).

When mycobacterial cells (growing or non-growing) are treated with BDQ, time-dependent 

(not dose-dependent) killing is observed (11, 127). The mechanism of killing is not clear, but 

does not involve the dissipation of the membrane potential, which is lethal to all living cells. 

A dose-dependent decrease in intracellular ATP has been observed when M. tuberculosis 
cells are treated with TMC207 (12, 13), but these data do not explain cell death because 

mycobacterial cells can be depleted of ATP and yet remain viable (166). We have shown that 

BDQ kills non-replicating mycobacterial cells by a unique mechanism that involves 

uncoupling of the electron transport chain (through ATP synthase), leading to a futile 

cycling of protons that causes cell death (17). A striking observation during this work was 

the activation of respiration by BDQ suggesting a protonophoric-like activity. As discussed 

above, this was due to binding the c subunit of the F0 subunit.

A NEED TO UNDERSTAND ENERGETIC PLASTICITY AND ANTIMICROBIAL 

RESISTANCE/SUSCEPTIBILITY

The energetic targets discussed in this chapter play essential roles in mycobacterial 

metabolism and respiration under different host conditions. There is a need for continued 

fundamental research to clarify the molecular interactions and compensatory expression 

between various energetic targets in order to develop a rational drug combination targeting 

oxidative phosphorylation. The discovery of bedaquiline demonstrates that energetic targets 

provide a pathway to discover fast acting drugs that eradicate replicating and non-replicating 

cells. The mode of bedaquiline action further highlights the multi-targeting nature of these 

molecules. The promise of respiration and oxidative phosphorylation as a new target space is 

highlighted by the discovery that bacterial respiration is essential for the killing of 

Escherichia coli by ampicillin, gentamicin and norfloxacin (167). In E. coli, cytochrome bo 
and cytochrome bd mutants are resistant to the killing effects of ampicillin, gentamicin and 

norfloxacin (167). In contrast to E. coli, cytochrome bd mutants of M. tuberculosis (121) 

and M. smegmatis (17, 122) become hypersusceptible to bedaquiline, clofazimine, and 

hydrogen peroxide (17, 121, 122). These data suggest the inhibitors of cytochrome bd would 

indeed be synergistic with bedaquiline and clofazimine making this a priority target for 

inhibitor discovery.
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When M. tuberculosis is grown in aerobic batch culture the rate of oxygen consumption is 

precisely regulated as a function of percent air saturation (46). Under these conditions, cells 

are able to direct electron flow to both terminal respiratory oxidases (cytochrome bd and 

aa3-type cytochrome c oxidase) allowing the cell to rapidly adjust to changes in the pmf and 

direct electrons to the appropriate oxidase (proton pumping or non-proton pumping) in 

response to physiological demand (17, 122). The mechanisms that control the rate of oxygen 

consumption by M. tuberculosis are not known. Succinate dehydrogenase and NADH 

dehydrogenase mutants of M. tuberculosis are perturbed in oxygen management leading to 

higher rates of oxygen consumption during normal growth and a survival defect in stationary 

phase (46). These data suggest that the identification of molecules that activate respiration in 

M. tuberculosis may be effective in killing non-replicating cells and synergizing with current 

TB drugs. The scope that exists for modulating TB metabolism sets the scene for several 

exciting innovations and discoveries, a promising contrast to other targets that may soon 

reach the point of saturation.
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Figure 1. 
Generalized schematic overview of relevant electron transfer components of Mycobacterium 
tuberculosis. Complexes indicated in blue oxidize various substrates to reduce quinones. The 

resulting (mena)quinol molecules (orange) can be oxidized to result in reduction of various 

terminal electron acceptors, mediated by the complexes indicated in purple.
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Figure 2. Mechanisms (1–3) by which a protonmotive [(membrane potential (
Δψ) + transmembrane pH gradient (Z∆pH)] force can be generated in mycobacteria. 

(1) Co-transport of protons driven by solute (succinate) symport into the periplasm. (2) 

Redox-loop separation of charge; (mena)quinol oxidation results in proton release into the 

periplasm by virtue of (mena)quinol site proximity to the periplasm, while electrons are 

transferred to reduce a terminal electron acceptor (e.g. nitrate, fumarate) in the cytoplasm 

that results in neutralization of charge. (3) Proton translocation mediated by primary proton-

pumping complexes (bc1−aa3 supercomplex).
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Figure 3. Traditional inhibitors of proton motive force generation
(A). Valinomycin is an ionophore, selective for potassium ions, which equilibrates the 

potassium gradient— dissipating the Δψ (electrogenic). Nigericin is a hydrophobic weak 

carboxylic acid, which can traverse the membrane as its either protonated acid or neutral 

salt. It dissipates chemical gradients (i.e. ΔpH) but maintains the charge (one positive charge 

exchanged for one positive charge—electroneutral). (3) Carbonyl cyanide m-chlorophenyl 

hydrazine (CCCP) is an electrogenic protonophore. CCCP− is driven to the periplasm by the 

Δψ, while CCCPH is driven to the cytoplasm by the ΔpH. It can equilibrate both Δψ and 
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ΔpH. (B) Model for uncoupling by either pyrazinamide (PZA) or bedaquiline (BDQ). Left 
panel. PZA diffuses into the cell and is converted to pyrazinoic acid (POA) by PncA 

(pyrazinamidase). Anionic POA could effectively inhibit growth through anion accumulation 

in the neutral pH of the cytoplasm and/or efflux from the cells to become protonated in the 

acidic extracellular environment (POA−H). POA−H would then diffuse back into the cell 

driven by the ∆pH gradient and dissociate in the cytoplasm (neutral pH) leading to 

intracellular acidification and cell death. Right panel. In a typical mycobacterial cell, the 

majority of ATP synthesis is respiratory, driven by the pmf. The binding of BDQ to the c-

ring most likely perturbs the a-c subunit interface, causing an uncontrolled proton leak 

uncoupled from ATP synthesis and resulting in a futile proton cycle. Compensation by the 

exchange of other cations (i.e. K+) would allow the process to remain electroneutral.
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Figure 4. Inhibitors of the electron transport chain and F1F0-ATP synthase of M. tuberculosis
Selected inhibitors of these complexes are indicated with flathead arrows and do not reflect 

the binding site of the inhibitors. QPs = quinolinyl pyrimidines, TPZ = trifluoperazine, CFZ 

= clofazimine, 3-NP = 3-nitropropionate, SQ109 = N-Adamantan-2-yl-N’-((E)-3,7-

dimethyl-octa-2,6-dienyl)-ethane-1,2-diamine, LPZ = Lansoprazole, Q203 = 

imidazopyridine amide, BDQ = bedaquiline.
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Figure 5. Proposed menaquinone biosynthesis pathway in mycobacteria based on the known 
pathway in Escherichia coli
In this scheme the product of MenA is depicted as the quinone rather than the quinol. This is 

consistent with the majority of the MK literature (168), which indicates that the oxidation 

from quinol to quinone is spontaneous, but differs from UQ synthesis. The arrows indicate 

C2 and C3 of MK-9(II−H2). Abbreviations used: DHNA, 1,4-dihydroxy-2-naphthoate; 

DHNA-CoA, 1,4-dihydroxy-2-naphthoyl-CoA; OSB, o-succinylbenzoate; OSB-CoA, o-

succinylbenzoyl-CoA ; SEPHCHC, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-
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cyclohexadiene-1-carboxylate; SHCHC, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-

carboxylate.
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