Table 4.
Investigated parameter | Step 1: Resolution of DWI | Step 2: Noise in DWI | Step 3: Calculate ADC | Step 4: Select GLCM size | Step 5: Quantize image |
---|---|---|---|---|---|
Resolution | 1.2 mm2 (1.0×) | σ = 17 | 200–1000 s/mm2 | 32 | AutoROI |
1.8 mm2 (1.5×) | |||||
3.6 mm2 (3.0×) | |||||
Noise | 1.2 mm2 | σ = 17 (1.0×) | 200–1000 s/mm2 | 32 | AutoROI |
σ = 34 (2.0×) | |||||
σ = 68 (4.0×) | |||||
Diffusion b-values | 1.2 mm2 | σ = 17 | 200–1000 s/mm2 | 32 | AutoROI |
0–1000 s/mm2 | |||||
200,1000 s/mm2 | |||||
200,1000 s/mm2 | |||||
Gray levels | 1.2 mm2 | σ = 17 | 200–1000 s/mm2 | 8 | AutoROI |
16 | |||||
32 | |||||
64 | |||||
128 | |||||
Quantization method | 1.2 mm2 | σ = 17 | 200–1000 s/mm2 | 32 | AutoROI |
AutoSlice | |||||
Manual |
Each row represents the work flow of one investigated parameter. The prostate cancer data set used a similar work flow, where the native resolution was 1.625 mm2, the native noise standard deviation was σ = 2.5, and the ADC was calculated using 0, 800 s/mm2 only.