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Abstract

Exemplar theory assumes that people categorize a novel object by comparing its similarity to the 

memory representations of all previous exemplars from each relevant category. Exemplar theory 

has been the most prominent cognitive theory of categorization for more than 30 years. Despite its 

considerable success in providing good quantitative fits to a wide variety of accuracy data, it has 

never had a detailed neurobiological interpretation. This article proposes a neural interpretation of 

exemplar theory in which category learning is mediated by synaptic plasticity at cortical-striatal 

synapses. In this model, categorization training does not create new memory representations, 

rather it alters connectivity between striatal neurons and neurons in sensory association cortex. 

The new model makes identical quantitative predictions as exemplar theory, yet it can account for 

many empirical phenomena that are either incompatible with or outside the scope of the cognitive 

version of exemplar theory.
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Introduction

Exemplar theory assumes that categorization is a process of learning about the exemplars 

that belong to the category. When an unfamiliar stimulus is encountered, its similarity is 

computed to the memory representation of every previously seen exemplar from each 

potentially relevant category. The probability that the stimulus is assigned to each category 

increases with the sum of these similarities (Brooks, 1978; Estes, 1986, 1994; Kruschke, 

1992; Lamberts, 2000; Medin & Schaffer, 1978; Nosofsky, 1986).

Exemplar theory has been the most prominent cognitive theory of categorization for more 

than 30 years. Despite its considerable success in providing good quantitative fits to 

accuracy data from a wide variety of experiments, it has never had a detailed neurobiological 

interpretation. This article corrects that shortcoming of the literature. We propose a neural 

version of exemplar theory in which category learning is mediated by synaptic plasticity at 

cortical-striatal synapses. The neural version makes identical quantitative predictions to the 

exemplar model, yet it can account for many empirical phenomena that are either 

incompatible with or outside the scope of the cognitive version of exemplar theory.
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One challenge to interpreting exemplar theory at the neural level is to separate the 

quantitative predictions of the theory from the cognitive interpretations that are used to 

justify those predictions. At the cognitive level, exemplar theory assumes that people access 

the memory representations of all previously seen exemplars. The standard interpretation is 

that these are detailed replicas of each exemplar (filtered by attentional processes) that do 

not typically include contextual information (e.g., details about the experimental room). The 

closest match in the memory literature to such representations is probably provided by 

semantic memory.

This cognitive version of exemplar theory has been a challenge to interpret at the neural 

level. First, the memory processes postulated by exemplar theory appear qualitatively 

different from all of the memory systems that have been identified by memory researchers. 

For example, within the memory systems literature, semantic memory is assumed to be 

declarative. In contrast, exemplar theorists are careful to assume that people do not have 

conscious awareness that they are accessing exemplar memories when making 

categorization decisions. Thus, the cognitive version of exemplar theory appears to postulate 

a unique memory system that has not yet been discovered by memory researchers.

It is important to note, however, that other instance-based theories postulate more traditional 

memory systems. For example, RULEX (Nosofsky, Palmeri, & McKinley, 1994) assumes 

people use explicit rules during categorization but they memorize exceptions. Presumably, 

people are aware of these exceptions, so this form of memory seems identical to semantic 

memory.

Previous attempts at providing a neural interpretation of the cognitive processes postulated 

by exemplar theory have assigned key roles to the hippocampus and surrounding medial 

temporal lobe structures (e.g., Pickering, 1997; Sakamoto & Love, 2004). The problem with 

these attempts is that the evidence supporting a major role for medial temporal lobe 

structures in category learning is weak.

First, medial temporal lobe interpretations of exemplar theory predict that patients with 

damage to medial temporal lobe structures should be impaired in category learning. We 

know of three studies that reported category-learning deficits in amnesiacs (Hopkins, Myers, 

Shohamy, Grossman, & Gluck, 2004; Kolodny, 1994; Zaki, Nosofsky, Jessup, & Unversagt, 

2003), one that reported normal performance on the first 50 trials but impaired performance 

later on (Knowlton, Squire, & Gluck, 1994), and one that reported normal categorization by 

amnesiacs when the stimuli were faces, but impaired performance when the stimuli were 

virtual reality scenes (Graham et al., 2006). On the other hand, many more studies have 

reported intact category-learning performance in patients with amnesia (e.g. Bayley, 

Frascino, & Squire, 2005; Filoteo, Maddox, & Davis, 2001b; Janowsky, Shimamura, 

Kritchevsky, & Squire, 1989; Knowlton & Squire, 1993; Kolodny, 1994; Leng & Parkin, 

1988; Squire & Knowlton, 1995; Zaki et al., 2003). For example, Filoteo et al. (2001b) 

reported normal performance by amnesiacs in a difficult information-integration 

categorization task with nonlinearly separable categories that required hundreds of training 

trials. In fact, in the Filoteo et al. (2001b) study, one (medial temporal lobe) amnesiac and 

one control participant completed a second day of testing. Despite lacking an explicit 
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memory of the previous session, the patient with amnesia performed slightly better than the 

control on the first block of day 2. This result suggests that amnesiacs do not necessarily rely 

on working memory to perform normally in category-learning tasks (because working 

memory cannot be used to retain category knowledge across days).

A second set of problematic results come from neuroimaging studies of unstructured 

category-learning tasks. Unstructured categories are those in which the stimuli are assigned 

to each contrasting category randomly, and thus there is no rule- or similarity-based strategy 

for determining category membership. Introspection seems to suggest that the only way 

arbitrary categories of this type could be learned is via explicit memorization, so if medial 

temporal lobe structures play a critical role in any categorization task, then unstructured 

categorization tasks seem like a good candidate. Even so, fMRI studies of unstructured-

category learning have found task-related activity in the striatum, but typically not in the 

hippocampus or other medial temporal lobe structures (Lopez-Paniagua & Seger, 2011; 

Seger & Cincotta, 2005; Seger, Peterson, Cincotta, Lopez-Paniagua, & Anderson, 2010). In 

addition, unstructured category learning includes a motor component that is more typical of 

striatal-mediated procedural learning than hippocampal-mediated declarative learning 

(Crossley, Madsen, & Ashby, 2012).

Third, a number of behavioral dissociations have been reported that seem more consistent 

with a striatal locus for the learning of similarity-based categories than a medial temporal 

lobe locus (for a review, see Ashby & Valentin, 2016). This work has contrasted rule-based 

(RB) and information-integration (II) category-learning tasks. In RB tasks, the categories 

can be learned via some explicit reasoning process (Ashby, Alfonso-Reese, Turken, & 

Waldron, 1998). In the most common applications, only one stimulus dimension is relevant, 

and the participant’s task is to discover this relevant dimension and then to map the different 

dimensional values to the relevant categories. A variety of evidence suggests that success in 

RB tasks depends on declarative memory and especially on working memory and executive 

attention (Ashby et al., 1998; Maddox, Ashby, Ing, & Pickering, 2004; Waldron & Ashby, 

2001; Zeithamova & Maddox, 2006). In II category-learning tasks, accuracy is maximized 

with a similarity-based strategy in which information from two or more incommensurable 

stimulus components is integrated at some predecisional stage (Ashby & Gott, 1988; Ashby 

et al., 1998). Evidence suggests that success in II tasks depends on procedural memory 

(Ashby, Ell, & Waldron, 2003; Ashby & Ennis, 2006; Filoteo, Maddox, Salmon, & Song, 

2005; Knowlton, Mangels, & Squire, 1996; Maddox, Bohil, & Ing, 2004). Exemplar theory 

assumes a similarity-based categorization strategy so it seems especially tenable for II tasks. 

Furthermore, many researchers have argued that learning in RB tasks is mediated by an 

explicit, rule-learning process that is incompatible with exemplar theory (e.g., Ashby et al., 

1998; Erickson & Kruschke, 1998; McDaniel, Cahill, Robbins, & Wiener, 2014; Nosofsky et 

al., 1994; Rouder & Ratcliff, 2006).

Currently, at least 25 separate empirical dissociations between RB and II category learning 

have been reported (Ashby & Valentin, 2016). Two of these are especially important for the 

present purposes. First, II but not RB tasks are extremely sensitive to feedback timing 

(Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005; Worthy, Markman, & Maddox, 

2013). In particular, II learning is better when the feedback is delivered 500 ms after the 
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response than when the feedback is immediate or delivered after a 1 sec delay (Worthy et al., 

2013), whereas feedback delays of 2.5 sec or longer completely abolish almost all II 

learning (Maddox et al., 2003; Maddox & Ing, 2005). In contrast, delays of up to 10 sec 

have no effect on RB learning. The II results are consistent with the effects on cortical-

striatal synaptic plasticity of delays between dopamine (DA) release and Ca2+ influx into the 

spines of medium spiny neurons (Yagishita et al., 2014), and inconsistent with the 

hypothesis that II learning is mediated by medial temporal lobe structures. Another 

important dissociation is that switching the locations of the response keys interferes with 

performance of II tasks but not with performance of one-dimensional RB tasks (Ashby, Ell, 

& Waldron, 2003; Maddox, Bohil, & Ing, 2004; Maddox, Glass, O’Brien, Filoteo, & Ashby, 

2010; Spiering & Ashby, 2008). This is relevant because a similar result has been reported 

for the most widely studied procedural-learning task – namely the serial reaction time task 

(Willingham, Wells, Farrell, & Stemwedel, 2000), and procedural learning is thought to 

depend on the striatum – not on the hippocampus.

This article describes a neural interpretation of exemplar theory that easily accounts for all 

of these problematic results. First though, we define the exemplar model more explicitly.

The Exemplar Model

Many researchers have tested exemplar models of categorization (e.g., Estes, 1986, 1994; 

Medin & Schaffer, 1978; Nosofsky, 1986, 2011). These various versions are all highly 

similar, but to establish mathematical equivalence it is necessary to focus on one specific 

version of exemplar theory. The model has evolved somewhat from its initial description, so 

our focus will be on the exemplar model known as the generalized context model (GCM; 

Nosofsky, 1986, 2011).

The equivalence result established below holds for any number of categories, but to keep the 

notation simpler we will assume a standard categorization experiment with two categories A 

and B. Under these conditions, the exemplar model assumes that the probability that a 

participant assigns stimulus k to category A equals

(1)

where CA and CB are sets containing the stimuli in categories A and B, respectively, ηik is 

the similarity between stimuli i and k, βA and βB are constants reflecting the participant’s 

bias toward responding A and B, respectively, and ViJ represents the memory strength of 

stimulus i with respect to category J. The memory strengths ViJ are not free parameters, but 

instead are usually “set equal to the relative frequency with which each exemplar i is 

provided with Category J feedback during the classification training phase” (Nosofsky, 

2011). Most categorization experiments present all stimuli equally often, and in this case 

note that all ViJ are equal and therefore can be canceled from Eq. (1).
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Similarity is assumed to be inversely related to the distance between the perceptual 

representations of the stimuli. More specifically, the distance between the perceptual 

representations of stimuli i and k, denoted δik, is computed from the weighted Minkowski 

metric:

(2)

where m is the number of perceptual dimensions, wj is the proportion of attention allocated 

to dimension j, xij is the coordinate value of stimulus i on the jth perceptual dimension, and r 
determines the nature of the distance metric. In particular, r = 1 produces city-block distance 

and r = 2 produces Euclidean distance. Similarity is inversely related to distance via:

(3)

where c and ω are constants. The parameter c is a measure of stimulus sensitivity, which 

increases with the overall discriminability of the stimuli. The constant ω defines the nature 

of the similarity function. In virtually all applications ω = 1 or 2. A value of ω = 1, which 

produces the exponential similarity function (Shepard, 1987), is typically combined with a 

city-block distance metric, whereas a value of ω = 2, which produces the Gaussian similarity 

function, is typically combined with a Euclidean distance metric.

The Neural Model

Although the evidence does not favor medial temporal lobe structures as the most important 

regions for category learning, it does favor a critical role for the basal ganglia, and especially 

the striatum – a major input region within the basal ganglia that includes the caudate nucleus 

and the putamen (for reviews, see e.g., Ashby & Ennis, 2006; Seger, 2008; Seger & Miller, 

2010). A complete review is beyond the scope of this article, but briefly, in addition to the 

dissociations between RB and II categorization mentioned above, patients with striatal 

dysfunction are highly impaired in category learning (e.g., Ashby, Noble, Filoteo, Waldron, 

& Ell, 2003; Filoteo, Maddox, & Davis, 2001a; Filoteo et al., 2005; Knowlton et al., 1996; 

Sage et al., 2003; Shohamy, Myers, Onlaor, & Gluck, 2004; Witt, Nuhsman, & Deuschl, 

2002), and almost all fMRI studies of category learning have reported significant task-

related activity in the striatum (e.g., Nomura et al., 2007; Poldrack et al., 2001; Seger & 

Cincotta, 2002, 2005; Waldschmidt & Ashby, 2011).

So the evidence is good that the striatum plays a key role in category learning – at least in 

the learning of II and unstructured categories (i.e., rather than RB categories). The problem 

for exemplar theory is that basal ganglia neuroanatomy does not favor traditional 

interpretations of exemplar representations. Virtually all of cortex (except V1) sends 

excitatory (glutamatergic) projections to the striatum (Reiner, 2010). These cortical inputs, 

which synapse on medium spiny neurons (MSNs), are massively convergent, with estimates 

that somewhere between 50,000 and 350,000 cortical neurons converge onto a single striatal 
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MSN (Bolam et al., 2006; Kincaid, Zheng, & Wilson, 1998; C. J. Wilson, 1995). In contrast, 

each of these cortical neurons might synapse onto as few as 10–100 MSNs (Wickens & 

Arbuthnott, 2010). Thus, it appears that the resolution of the striatal MSNs is not dense 

enough to allocate one MSN for every exemplar in any arbitrary category, especially when 

exemplar similarity is high.

As a result, we propose a reconceptualization of ‘exemplar representation’. To our 

knowledge, there are three existing process-level interpretations of exemplar theory –

ALCOVE (Kruschke, 1992), the EBRW (Nosofsky & Palmeri, 1997), and the information-

accumulation model (Lamberts, 2000). In each of these, the presentation of a new stimulus 

adds a new node to the network, and this node serves as the exemplar representation of that 

stimulus on all future trials. We propose instead that the presentation of a stimulus either 

changes the synaptic strength at an existing cortical-striatal synapse or creates a new 

synapse. As a result, categorization training does not recruit any new nodes, rather it alters 

connectivity between MSNs and units in sensory association cortex.

In the remainder of this section, we show that under appropriate conditions, such a model is 

mathematically equivalent to the exemplar model described by Eqs. (1), (2), and (3).

Model Architecture

The architecture of the proposed model is shown in Figure 1. Essentially this just reproduces 

the well-known direct pathway through the basal ganglia, and is identical to the simplest 

version of the procedural-learning system of the COVIS model of category learning (Ashby 

et al., 1998; Ashby & Waldron, 1999; Ashby, Paul, & Maddox, 2011; Ashby & Crossley, 

2011).

Sensory association cortex is modeled in the same way as in Ashby, Ennis, and Spiering 

(2007). Briefly, this means we assume an ordered array of many units in sensory cortex, 

each tuned to a different stimulus. Neurons in sensory cortex respond not only to a preferred 

stimulus, but also more weakly to similar stimuli. In perceptual neuroscience this 

phenomenon is described by the neuron’s tuning curve. We model the tuning curve of each 

sensory cortical unit in the Figure 1 model via radial basis functions – that is, we assume 

that each unit responds maximally when its preferred stimulus is presented and that its 

response decreases with the distance in perceptual space between the stimulus preferred by 

that unit and the presented stimulus. The equivalence to exemplar theory holds for any 

number of these units, so long as every perceptually distinct stimulus maximally excites a 

different unit. Given the known cortical-striatal convergence, with the two MSNs shown in 

Figure 1 we would expect the relevant regions of sensory cortex to include somewhere 

between 10,000 and 60,000 neurons.

The equivalence result established below assumes a standard categorization experiment in 

which the stimulus is presented at constant intensity and without a mask until the participant 

responds. Under these conditions, activation in each sensory unit is 0 during periods when 

no stimulus is displayed and is either 0 or equal to some positive constant value during the 

duration of stimulus presentation. More specifically, consider a trial when stimulus k is 
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presented. Then the response of sensory unit i during the time when the stimulus is present 

will equal:

(4)

where δik is the distance in perceptual space between the representations of stimuli i and k as 

defined by Eq. 2. When ω = 2, Eq. 4 describes a Gaussian radial basis function and when ω 
= 1, Eq. 4 describes a Laplacian radial basis function. Either way, Eq. 4 is a popular method 

for modeling the receptive fields of sensory units, both in models of categorization (e.g., 

Ashby & Crossley, 2011; Kruschke, 1992) and in other tasks (e.g., Er, Wu, Lu, & Toh, 2002; 

Oglesby & Mason, 1991; Riesenhuber & Poggio, 1999; Rosenblum, Yacoob, & Davis, 

1996).

The key insight that links exemplar theory to cortical-striatal synaptic plasticity comes from 

Ashby and Alfonso-Reese (1995), who showed that exemplar models are equivalent to a 

classifier that estimates each category distribution via a Parzen (1962) kernel density 

estimator. Parzen kernels are known today as radial basis functions, so the key to the Ashby 

and Alfonso-Reese (1995) result was to recognize that the similarity function proposed by 

exemplar theory (i.e., Eq. 3) could be interpreted as a radial basis function. This 

reinterpretation of exemplar similarity provides a natural link between exemplar theory and 

models such as COVIS that use radial basis functions to model the response properties of 

sensory cortical units.

The second key feature of exemplar theory is that similarities are summed to determine 

category membership (i.e., see Eq. 1). Radial basis functions are summed in two different 

ways in neural models such as COVIS. First, each MSN responds to a weighted sum of the 

radial basis functions that model activation in sensory cortex1, and second, the rules that 

govern synaptic plasticity (i.e., learning) dictate that the current synaptic strength is a 

weighted sum of previous activations. This latter sum is especially important when 

establishing equivalence to exemplar theory because it depends on all previously seen 

exemplars, whereas the former sum does not. So both exemplar theory and COVIS assign a 

key role to weighted sums of radial basis functions of all previously seen exemplars, and we 

believe it is this common feature of both theories that cause such similar behavior in the two 

conceptually different accounts of categorization. The mathematical equivalence established 

below only requires the latter of these two neural summing operations. Later however, we 

show that if both neural summing operations are allowed and if many of the ancillary 

assumptions required for exact mathematical equivalence are relaxed, numerical equivalence 

is barely affected. We believe this is because in both theories, behavior depends 

fundamentally on sums of radial basis functions that are activated by stimulus presentation.

At the outset of a new experimental session, we assume that the sensory cortical units are 

fully interconnected with the two striatal MSNs. Specifically, every unit in sensory cortex 

1Nonlinearities are introduced downstream of this summing process.
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synapses with a dedicated spine on each of the two MSNs. Thus, if there are 40,000 units in 

sensory cortex there are 40,000 spines on each MSN.

Activation in each MSN is modeled using a firing-rate model (Dayan & Abbott, 2001; 

Ermentrout & Terman, 2010; H. R. Wilson & Cowan, 1972, 1973). Thus, the two MSNs 

shown in Figure 1 could be viewed as two identical populations of MSNs, or the activations 

produced could be viewed as average firing rates over many repetitions of the stimulus 

conditions. Firing-rate models are described by two equations. The first, typically written as 

a differential equation, describes how presynaptic input generates postsynaptic activation. 

This equation typically describes within-trial temporal dynamics and it integrates all sensory 

input2, but in the present application, only a very simple model is needed. In particular, there 

is no need to model the temporal dynamics of within-trial activation or the summing of 

sensory inputs. Specifically, it suffices to simply assume that the postsynaptic activation in 

each MSN equals the presynaptic activation at the most active spine weighted by the relevant 

synaptic strength. The most active spine will be the one synapsing with the cortical unit that 

responds most strongly to the stimulus. Let AJ(n) denote the activation in striatal unit J 
(where J = A or B) on trial n. Then if stimulus k is presented on trial n

(5)

where wJk(n) is the strength of the synapse between sensory unit k and MSN J on trial n. 

The latter equality holds because no matter how distance is defined, the distance from a 

point to itself must be zero. As a result δkk = 0, and so Ik|k = 1 (i.e., for an ω and any γ).

The second firing-rate equation converts the postsynaptic activation into postsynaptic firing 

rate. This equation models nonlinearities in the neural response (e.g., response 

compression). Following the standard approach, we assume that the postsynaptic firing rate 

in unit J, denoted by RJ(n) equals

(6)

where F is a monotonically increasing function known as the activation function.

Equivalence to exemplar theory requires that F behaves as a natural log. Thus3,

2This integration leads to the weighted sum of all sensory cortical radial basis functions activated by stimulus presentation.
3The natural log has two problematic properties that make it an unusual choice for an activation function. First, firing rates are 
commonly restricted to the range [0,1] and of course, the natural log is unbounded. Second, the natural log can be negative, whereas 
activations and firing rates are usually restricted to nonnegative values. Mathematical equivalence to the exemplar model holds 
whether RJ(n) is positive or negative, but of course the model is more biologically realistic if RJ(n) ≥ 0. In practice, this can almost 

always be arranged by replacing Eq. (4) with , for some sufficiently large value of θ (when the stimulus is 
present).
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(7)

Figure 1 shows the major neuroanatomical projections from the MSNs to regions in 

premotor cortex that control the motor response. However, the equivalence result established 

here treats these as simple relays that convey the signals generated within the striatum to 

motor output units. Therefore, there is no need to model activity in each of these regions 

separately. Instead, we simply assume that the MSN firing rates are unaltered as they pass 

through these relays. However, mathematical equivalence requires that two important 

processes must occur within premotor cortex. First, independent noise is added to each 

output unit. We assume that the most active output unit controls the response on each trial, 

so noise is needed to account for probabilistic responding. Second, a response bias term is 

added to each MSN output. For equivalence to the exemplar model the additive bias must 

equal B = ln βJ (see Figure 1). So if we denote the activation in output unit J on trial n as 

YJ(n) then

(8)

We assume that response A is made on trial n if YA(n) > YB(n) and that response B is made 

if the opposite ordering occurs.

Learning

DA is known to have pronounced effects on cortical-striatal synaptic plasticity (e.g., 

Centonze, Picconi, Gubellini, Bernardi, & Calabresi, 2001; Shen, Flajolet, Greengard, & 

Surmeier, 2008). Much evidence suggests that strengthening of cortical-striatal synapses 

(and long-term potentiation) requires strong pre- and postsynaptic activation and DA levels 

above baseline. More specifically, the postsynaptic activation must be strong enough to 

activate NMDA receptors (a high-threshold glutamate receptor). In contrast, cortical-striatal 

synapses are weakened (and long-term depression occurs) if pre- and postsynaptic activation 

are strong and DA is below baseline (e.g., Arbuthnott, Ingham, & Wickens, 2000; Ronesi & 

Lovinger, 2005). DA levels rise above baseline following unexpected rewards and fall below 

baseline following the failure to receive an expected reward (Hollerman & Schultz, 1998; 

Mirenowicz & Schultz, 1994; Schultz, 1998). As a result, a number of researchers have 

proposed that synaptic plasticity at cortical-striatal synapses follows reinforcement-learning 

rules (Doya, 2000; Houk, Adams, & Barto, 1995).

Suppose every sensory-cortical neuron has one synapse onto each striatal MSN. A 

biologically motivated form of reinforcement learning assumes that if stimulus Sk is 

presented on trial n, then the strength of the synapse between striatal unit J (for J = A or B) 

and sensory-cortical unit k on trial n + 1 equals (e.g., Ashby & Crossley, 2011):
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(9)

where αw and βw are the constant learning and unlearning rates, respectively, [f(n)]+ = f(n) if 

f(n) > 0 and 0 if f(n) ≤ 0, θNMDA is a constant specifying the threshold for NMDA receptor 

activation, D(n) is the amount of DA released on trial n, and Dbase is the baseline DA level. 

Note that this model assumes that the amount of synaptic strengthening (i.e., the plus term) 

is proportional to the product of 1) presynaptic activation, 2) the amount that the 

postsynaptic activation is above the NMDA threshold, and 3) the amount that DA is above 

baseline. In contrast, the amount of synaptic weakening (i.e., the minus term) is proportional 

to the product of 1) presynaptic activation, 2) the amount that the postsynaptic activation is 

above the NMDA threshold, and 3) the amount that DA is below baseline.

Solving Eq. (9) iteratively produces

(10)

Note that this solution includes a sum of radial basis functions activated by all previously 

seen exemplars. Since the exemplar model includes a similar such sum, this is the key 

feature of the neural model that allows it to mimic the exemplar model.

Assumptions

Proving that this model is equivalent to the exemplar model requires the following extra 

assumptions.

A1. Error trials do not change synaptic strengths—This assumption implies that βw 

= 0 in Eq. (9). Although this assumption is biologically implausible (e.g., Calabresi, Maj, 

Pisani, Mercuri, & Bernardi, 1992), it is not necessarily imcompatible with exemplar theory. 

As noted above, exemplar theory assumes that the memory strength of exemplar i in 

category J is strengthened when a categorization response to exemplar i is provided with 

category J feedback during classification training (Nosofsky, 2011). On trials when the 

response is correct this is clear. Positive feedback unambiguously signals that the stimulus 

belongs to the category associated with the participant’s response. However, on error trials 

this is not so clear. Negative feedback typically only signals that the stimulus does not 

belong to the responded category. In the two-category case an inference can be made about 

the correct category membership of the stimulus, but when there are more than two 

categories, then no such inference is possible. As a result, exemplar theory also seems to 

predict no learning on error trials – at least in experiments with more than two categories.
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A2. Only the spines on the striatal unit associated with the most active motor 
unit are eligible for synaptic plasticity—Assumptions A1 and A2 are clearly over-

simplifications. However, note that they tend to offset each other – at least to a certain 

extent. Together they tend to ensure that active synapses on the MSN associated with the 

incorrect response (call this the incorrect MSN) never change strength. In the absence of 

these two assumptions, those synapses would get strengthened on trials when the correct 

MSN controls the response and weakened on trials when the incorrect MSN controls the 

response. Another interpretation of Assumptions A1 and A2, therefore, is that this 

strengthening and weakening cancel each other out.

A3. All initial synaptic strengths are negligible – just large enough to allow 
postsynaptic activation to the first stimulus presentation, but small enough so 
that mathematically we can assume that wAi(0) = wBi(0) = 0, for all i—A 

justification for this assumption is that the presentation of a novel stimulus that has no 

previous reward association causes DA release (e.g., Horvitz, Stewart, & Jacobs, 1997; 

Wickelgren, 1997), and increased DA levels potentiate the postsynaptic effects of glutamate 

(Ashby & Casale, 2003). Thus, available evidence suggests that the first presentation of a 

stimulus during an experimental session is likely to cause an uncharacteristically large 

striatal response.

It is also important to note that even without this assumption the contribution of wAi(0) and 

wBi(0) to wAi(n) and wBi(n) decreases as n increases. In other words, the effects of the initial 

weights on the asymptotic performance of the model are negligible. This is important 

because the exemplar model is a model of asymptotic performance – it was never proposed 

as a model of initial learning. So although Assumption A3 is necessary for strict 

mathematical equivalence, at the practical level this assumption is not critical.

A4. In whichever unit controls the response, [RJ(n) − θNMDA]+[D(n) − Dbase]+ = 
K for all n, where K is a constant—In general, we expect [RJ(n) − θNMDA]+ to increase 

with n because the synaptic strength associated with its sensory input should increase as a 

result of training. In contrast, virtually all current models predict that [D(n) − Dbase]+ will 

decrease with n because the rewards become more predictable as training progresses. The 

evidence is good that DA neurons respond to the reward prediction error (Schultz, 2002; 

Schultz, Dayan, & Montague, 1997) – defined as the value of the obtained reward minus the 

value of the predicted reward. Thus, as learning progresses, accuracy rises and so does the 

ability to predict the feedback valence. As a result, the amount by which DA levels rise 

following positive feedback should decrease. Thus, an alternative interpretation of 

assumption A4 is that [RJ(n) − θNMDA]+ increases with n at the same rate that [D(n) − 

Dbase]+ decreases with n.

A5. The noise terms εJ in Eq. (8) are independent random samples from 
identical double exponential distributions—A double exponential distribution is 

required for equivalence because probabilities associated with the maximum of double 

exponentially distributed random variables satisfy the relative goodness rule of Eq. (1) 

(Yellott, 1977). In particular, suppose ε1, ε2, …, εn are a set of independent random 

variables with identical double exponential distributions. Then (Yellott, 1977)
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(11)

Equivalence to the Exemplar Model

In this section, we show that the model sketched in Figure 1 makes identical quantitative 

predictions as the exemplar model described by Eqs. (1), (2), and (3), given the 

reinforcement-learning model described earlier and under the assumptions outlined in the 

previous section. To keep the notation simple, we will demonstrate the equivalence for a 

two-category task, but the equivalence holds for any number of categories.

Consider a two-category task in which category A contains the MA exemplars CA = {a1, a2, 

…, aMA} and category B contains the MB exemplars CB = {b1, b2,…, bMB}. Note that 

there are four kinds of trials: correct A response trials, correct B response trials, incorrect A 

response trials, and incorrect B response trials. By assumption 1, neither type of incorrect 

response trial will change any synaptic weights. So first consider correct A response trials – 

that is, trials when the stimulus belongs to the set CA and motor unit A is more active than 

motor unit B. By assumption 2, no synaptic strengths on unit B will change. So correct A 

response trials will only cause changes in the strength of synapses on unit A. Similarly, 

correct B response trials will only cause changes in the strength of cortical-striatal synapses 

on unit B.

By assumptions A1 – A4, the reinforcement-learning model described by Eq. (10) predicts 

that the strength of the synapse between sensory unit k and striatal unit A reduces to

(12)

where i = 1, …, nA denotes the first nA correct A response trials. Suppose that of these nA 

trials, stimulus ai was presented naj times (so , where MA is the number of 

exemplars in category A). Note that Ik|Si equals the response of sensory unit k on a trial 

when stimulus Si is presented. By Eq. (4) this equation becomes

(13)

Ashby and Rosedahl Page 12

Psychol Rev. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Of course, by identical reasoning, a similar equation will hold for the synapses on striatal 

unit B.

Now consider the very next trial after all this training. Suppose some stimulus k is presented. 

Then by Eq. (7) the firing rate in striatal unit A will equal

(14)

Similarly,

(15)

By Eq. (8), activation in the output units will equal

(16)

and

(17)

Finally, by assumption A5
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(18)

which is clearly equivalent to the the exemplar model described by Eqs. (1), (2), and (3), 

with naj = VjA, nbj = VjB, and γ = 1/c.

Effects of Relaxing Assumptions

As is generally always the case, proving exact mathematical equivalence requires strong 

assumptions. In particular, assumptions A1, A2, and A4 seem biologically unreasonable, and 

assumption A5 seems arbitrary. A natural question to ask therefore is to what extent 

equivalence depends on these assumptions. As mentioned earlier, we believe that the most 

important condition for equivalence is that both models assume that categorization responses 

are largely determined by weighted sums of radial basis functions of all previously seen 

exemplars. According to this view, relaxing the ancillary assumptions needed for 

equivalence might affect the initial learning trajectory of the neural model, but is unlikely to 

profoundly affect the model’s predictions about asymptotic performance. This section tests 

that prediction.

To examine the importance of assumptions A1, A2, A4, and A5 we conducted a number of 

simulations of the neural model in the absence of those assumptions. We call the model that 

satisfies all assumptions and is mathematically equivalent to exemplar theory the exemplar-

equivalent model, and the more biologically realistic version that satisfies all assumptions of 

the exemplar-equivalent model except assumptions A1, A2, A4, and A5 the biologically-

plausible model. Specifically, the biologically-plausible model was essentially identical to 

the procedural-learning component of the COVIS model described by Ashby et al. (2011). It 

differs from the exemplar-equivalent model in the following ways:

1. The biologically-plausible model changed synaptic strengths on all trials. So this 

version of the model was not constrained by assumption A1. The amount of 

synaptic weakening on error trials was set equal to the amount of synaptic 

strengthening on correct trials (i.e., β was set equal to α in Eq. 9).

2. All cortical-striatal spines were eligible for synaptic plasticity on every trial. In 

particular, synaptic strengths on both MSNs were modified on every trial. So this 

version was not constrained by assumption A2.

3. No assumptions were made about the relationship between the striatal and DA 

responses. So this version was not constrained by assumption A4. In particular, 
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DA release was set to the same piecewise linear function of reward prediction 

error as in Eqs. 11 – 13 of Ashby et al. (2011).

4. In the exemplar-equivalent model, double-exponentially distributed noise was 

added to the activations of the premotor units. In the biologicaly-plausible model, 

no noise was added to the premotor units and normally distributed noise was 

added to the MSN activations.

Our general goal was to compare asymptotic performance of the exemplar-equivalent and 

biologically-plausible models, and if these differed, to ask whether the altered structure of 

the biologically-plausible model was consistent or inconsistent with the predictions of 

exemplar theory. To begin, it was important to set parameter values in the exemplar-

equivalent model to values that are typical of previous applications of exemplar theory. To 

satisfy this constraint, we did a crude search to find parameter values that allowed the 

exemplar-equivalent model to reproduce the 16 × 2 confusion matrices predicted by the 

GCM in the Dimensional, Criss-Cross, Interior-Exterior, and Diagonal transfer conditions 

reported by Nosofsky (1986)4.

The critical question now is how much these predictions will change when we switch to the 

biologically more plausible version of the model. It turns out that the predictions change 

only a small amount. The r2 between the predictions of the exemplar-equivalent and 

biologically-plausible models was .999, .998, .981, and .955, for the Dimensional, Criss-

Cross, Interior-Exterior, and Diagonal conditions respectively. Thus, the only condition 

where the predictions changed by a non-negligible amount was the Diagonal condition. 

There are two possibilities here. Either the biologically-plausible model fundamentally 

changed the structure of the data in a way this is incompatible with the exemplar model, or it 

changed the predictions in a way that is consistent with exemplar theory but best accounted 

for by some slight change in one or more parameter values. To answer this question, we fit 

the GCM to the confusion matrices predicted by the biologically-plausible model. If the 

biologically-plausible model changed the structure of the data in a way that is incompatible 

with exemplar theory, then the GCM will fit poorly. In fact, the GCM provided excellent fits 

in all four conditions. The r2 between the predictions of the biologically-plausible model and 

the GCM was .999, .999, .981, and .990, for the Dimensional, Criss-Cross, Interior-Exterior, 

and Diagonal conditions, respectively.

In summary, although exact mathematical equivalence requires all assumptions described 

above, assumptions A1, A2, A4, and A5 have little numerical effect on the asymptotic 

predictions of the model.

4The model was run through the same sequence of trials as the Nosofsky (1986) participants – that is, 1200 training and 3500 transfer 
trials for each category structure. We fit the model to the average of the Subject 1 and Subject 2 GCM predicted confusion matrices, 
and we used the coordinates of each stimulus in physical, rather than perceptual space. This is because our goal was not to reproduce 
exactly what Nosofsky (1986) did, but rather to produce predictions of the exemplar-equivalent model that were representative of a 
typical exemplar model application. In this sense we were successful because when we fit the exemplar model (i.e., the GCM) to the 
confusion matrices that resulted from this process, r2 was .996, .996, .994, and .993 for the Dimensional, Criss-Cross, Interior-
Exterior, and Diagonal conditions, respectively.
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Discussion

The neural model described in this article makes very different psychological assumptions 

than are usually associated with exemplar theory, yet it is mathematically equivalent to the 

exemplar model. The cognitive version of exemplar theory assumes people retrieve memory 

representations of previously seen exemplars and that they compare the presented stimulus 

to these stored memories. Every new stimulus creates a new memory representation. In 

contrast, the neural version assumes that no memory representations are retrieved. For 

example, the neural model assumes that stimulus presentation always activates two striatal 

MSNs (in two-category tasks), regardless of the number of exemplars in each category and 

regardless of the number of training trials. Instead of adding a new exemplar memory 

representation, the neural version of exemplar theory assumes that presentation of a new 

stimulus either modifies the strength of an existing cortical-striatal synapse or creates a new 

synapse (e.g., by adding a new spine to an existing MSN). Thus, the exemplar representation 

in the neural version of exemplar theory is either the strength of a cortical-striatal synapse or 

perhaps it could be interpreted as a dedicated spine on an MSN. The more important point 

however, is that stimulation of that MSN (or that dendritic spine) would not retrieve an 

exemplar memory, but rather create an urge to respond either A or B, and in this sense the 

neural version makes different psychological assumptions than classical accounts of 

exemplar theory5.

Mathematical equivalence to the (GCM) exemplar model requires a number of strong 

assumptions that in some cases are biologically implausible. Even so, we showed via 

simulation that these assumptions have little effect on the asymptotic predictions of the 

model. Thus, the neural model described here mimics the numerical predictions of exemplar 

theory when the biologically implausible assumptions are replaced by assumptions that are 

more biologically realistic. We believe that the predictions of the neural model are robust 

with respect to violations of these ancillary assumptions because in both models the 

probability that a stimulus is assigned to a particular category increases with the weighted 

sum of radial basis functions activated by all previously seen exemplars from that category. 

The ancillary assumptions do not change this fundamental property of the neural model, and 

since this same property is shared by exemplar theory, the two psychologically different 

models make similar (or even identical) quantitative predictions.

Because the two models make identical or nearly identical quantitative predictions, any 

previous evidence in favor of the exemplar model that is based on its success in providing 

good quantitative fits to categorization data is also evidence in favor of the neural model. But 

in addition, the neural model is able to account for many empirical phenomena that are 

either incompatible with or outside the scope of the cognitive version of exemplar theory. 

This includes all the problematic data reviewed earlier in this article.

First, because the neural model assumes that the critical site of category learning is at 

cortical-striatal synapses, it easily accounts for the many reports that patients with striatal 

5Note however, that many parameters have the same meaning in both accounts, including the response biases βJ, the attention weights 
wj, and overall discriminability c.
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dysfunction are impaired in category learning. Second, for the same reason, it accounts for 

the common fMRI finding of categorization-related activation in the striatum (Lopez-

Paniagua & Seger, 2011; Nomura et al., 2007; Poldrack et al., 2001; Seger & Cincotta, 2002, 

2005; Seger et al., 2010; Waldschmidt & Ashby, 2011). Third, it accounts for the many 

empirical dissociations that have been reported between RB and II categorization tasks. For 

example, it accounts for the sensitivity of II category learning to feedback delays because of 

the known sensitivity of cortical-striatal plasticity to delays between DA release and activity 

at cortical-striatal synapses (Valentin, Maddox, & Ashby, 2014; Yagishita et al., 2014). It 

also accounts for the interference that occurs in II and unstructured categorization 

performance when the location of the response buttons is switched – because the terminal 

nodes in the Figure 1 model are in premotor cortex, rather than prefrontal cortex. Fourth, it 

accounts for deficits by patients with Parkinson’s disease in II and unstructured category 

learning (Hélie, Paul, & Ashby, 2012).

If more anatomical details are added into the model of the striatum (as in Ashby & Crossley, 

2011; Cantwell, Crossley, & Ashby, 2015; Crossley, Ashby, & Maddox, 2013), then the 

neural version of exemplar theory can also account for a wide variety of other phenomena 

including i) single-unit recordings from MSNs and TANs during instrumental conditioning 

(Ashby & Crossley, 2011); ii) many behavioral phenomena from instrumental conditioning 

experiments, including fast reacquisition after extinction, the partial reinforcement extinction 

effect, spontaneous recovery, and renewal (Crossley, Horvitz, Balsam, & Ashby, 2016); iii) 

the result that recovery from a full reversal is quicker than learning new categories 

constructed from the same stimuli (Cantwell et al., 2015); and iv) unlearning and failures of 

unlearning (e.g., renewal) during II categorization (Crossley et al., 2013; Crossley, Ashby, & 

Maddox, 2014).

David Marr (1982) famously described three levels of mathematical modeling, which he 

referred to as computational, algorithmic, and implementational. Computational models 

(often called descriptive models in psychology) make quantitative predictions, but do not 

describe the algorithms that produce those predictions. Algorithmic models (often called 

process models in psychology) describe the algorithms, but not the architecture that 

implements those algorithms. At the lowest level, implementational models describe the 

architecture that implements the algorithms that produce the quantitative predictions. The 

original versions of exemplar theory – for example, the version described by Eqs. (1), (2), 

and (3) – were computational-level descriptions of asymptotic categorization behavior (i.e., 

the theory made no attempt to account for learning). Cognitive process was used to motivate 

the quantitative predictions, but no attempt was made to model those processes. To see this, 

note for example, that Eq. (1) makes no predictions about what response a participant will 

make on any single trial of a categorization experiment. Rather it simply describes the 

relative proportion of times the participant will give every possible response under the ideal 

conditions in which the same categorization trial is repeated an infinite number of times.

As one moves down Marr’s hierarchy, it is generally true that more than one interpretation is 

possible. For example, we know of three different algorithmic-level versions of exemplar 

theory (Kruschke, 1992; Lamberts, 2000; Nosofsky & Palmeri, 1997), which all make 

slightly different assumptions. The neural model proposed here is the first known 
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implementational-level version, and it shows that some qualitatively different psychological 

assumptions are compatible with the quantitative predictions of computational-level versions 

of exemplar theory. One of the main reasons for developing lower-level versions of any 

theory is to account for more data. The algorithmic-level versions of exemplar theory can 

account for response time and learning data that are outside the scope of the computational-

level version. And the neural version proposed here can account for many phenomena that 

are outside the scope of the algorithmic-level versions. Although many other neural versions 

may be theoretically possible, the many extra constraints provided by all these neuroscience-

related phenomena would seem to narrow the set of candidate neural interpretations to a 

model that assigns a major role to the striatum. If so, then any alternative neural 

interpretation that is also consistent with the available neuroscience-related data should look 

qualitatively similar to the version proposed here (e.g., since both models would be 

constrained by the same basal ganglia neuroanatomy).

The neural version of exemplar theory is essentially a simplified version of the procedural-

learning component of the COVIS model of category learning6 (Ashby & Crossley, 2011; 

Ashby et al., 2007; Cantwell et al., 2015). The COVIS model includes much more biological 

detail (e.g., spiking MSNs, striatal cholinergic interneurons), other brain areas (e.g., 

interlaminar thalamic nuclei), a more sophisticated reinforcement-learning model (e.g., with 

rate-limiting terms that constrain synaptic strengths to a fixed interval [0, wmax]), and it does 

not make any of assumptions A1 – A5. Even so, it is important to note that the equivalence 

established here greatly benefits both theories. Of course it provides exemplar theory access 

to a huge range of neuroscience-related phenomena that generally are outside the scope of 

any purely cognitive theory. But it also greatly benefits COVIS. First, it means that successes 

of the exemplar model in providing good quantitative fits to categorization data imply that 

COVIS should be equally successful at accounting for those data. Second, it provides a 

method to quickly fit COVIS to asymptotic response proportions collected in the course of a 

categorization experiment. Fitting the COVIS model currently requires time-consuming 

Monte Carlo simulations and therefore, exploring its predictions is a challenging 

computational process. In contrast, the exemplar model is simple enough that it can quickly 

be fit to data in a straightforward manner using standard optimization algorithms. Therefore, 

because of the equivalence established here, asymptotic behavioral predictions of COVIS 

can be quickly tested by fitting the exemplar model to the empirical confusion matrices.

Finally, this article makes one more equally important contribution. The equivalence of 

exemplar theory and the procedural-learning component of COVIS means that it is probably 

fruitless to attempt to test between these two models by comparing goodness-of-fits in any 

categorization experiment. Instead, the two historically disparate approaches to 

categorization modeling should be used together to create a more powerful armamentarium 

that can be used to improve our overall understanding of categorization behavior.

6COVIS assumes this procedural-learning component dominates in unstructured and II category-learning tasks, but that an explicit-
learning system controls behavior in RB tasks. Exemplar theory was proposed before there was any evidence or inclination that 
humans might have multiple category-learning systems. In the interim, some exemplar theorists have proposed a second rule-learning 
system (e.g., Erickson & Kruschke, 1998; Nosofsky et al., 1994). Of these, perhaps most similar to COVIS is ATRIUM (Erickson & 
Kruschke, 1998), which includes two sub-models – an explicit rule-learning model that would dominate in RB tasks and an exemplar 
model that would dominate in unstructured and II tasks.
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Figure 1. 
Architecture of the model that is computationally equivalent to exemplar theory.

Ashby and Rosedahl Page 24

Psychol Rev. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	The Exemplar Model
	The Neural Model
	Model Architecture
	Learning
	Assumptions
	A1. Error trials do not change synaptic strengths
	A2. Only the spines on the striatal unit associated with the most active motor unit are eligible for synaptic plasticity
	A3. All initial synaptic strengths are negligible – just large enough to allow postsynaptic activation to the first stimulus presentation, but small enough so that mathematically we can assume that wAi(0) = wBi(0) = 0, for all i
	A4. In whichever unit controls the response, [RJ(n) − θNMDA]+[D(n) − Dbase]+ = K for all n, where K is a constant
	A5. The noise terms εJ in Eq. (8) are independent random samples from identical double exponential distributions


	Equivalence to the Exemplar Model
	Effects of Relaxing Assumptions
	Discussion
	References
	Figure 1

