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Abstract

The literate brain must contend with countless font variants for any given letter. How does the 

visual system handle such variability? One proposed solution posits stored structural descriptions 

of basic letter shapes that are abstract enough to deal with the many possible font variations of 

each letter. These font-invariant representations, referred to as allographs in this paper, while 

frequently posited, have seldom been empirically evaluated. The research reported here helps to 

address this gap with two experiments that examine the possible influence of allograph 

representations on visual letter processing. In these experiments, participants respond to pairs of 

letters presented in an atypical font in two tasks—visual similarity judgments (Experiment 1) and 

same/different decisions (Experiment 2). By using Representational Similarity Analysis in 

conjunction with Linear Mixed Effect Models (RSA-LMEM) we show that the similarity structure 

of the responses to the atypical font is influenced by the predicted similarity structure of allograph 

representations even after accounting for font-specific visual shape similarity. Similarity due to 

symbolic (abstract) identity, name, and motor representations of letters are also taken into account 

providing compelling evidence for the unique influence of allograph representations in these tasks. 

These results provide support for the role of allograph representations in achieving font-invariant 

letter identification.

TRANSLATIONAL ABSTRACT

In everyday reading, we often encounter unfamiliar letter shapes such as when we read 

handwritten notes or read in a font we have not seen before. Although our brains may have never 

before processed these shapes we are, nonetheless, usually able to effortlessly recognize them. The 

research reported here is directed at furthering our understanding of how this happens. In two 

experiments, research participants made decisions regarding the visual characteristics of letters 

presented in a highly unusual font. We found evidence that one important part of the letter 

recognition process involves automatically generating mental information about the standard, 
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canonical geometric shapes of letters. These results have implications for reading teachers and 

clinicians working with acquired or developmental reading impairments as understanding the 

types of mental representations that skilled readers use for efficient and effective letter recognition 

can be used to structure teaching and remediation to optimize learning.
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Letter representation; Allographs; Symbolic Letter Identities (SLIs); Abstract Letter Identities 
(ALIs); Representational Similarity Analysis (RSA); Linear Mixed Effects Modeling (LMEM)

Introduction

Like many other visual objects, letters are often easily identified despite large differences in 

size, position, and shape. While certain large differences in the visual shapes of letters can 

be irrelevant (ear or ear or EAR), small visual differences can be highly significant (lend me 

your ear vs. lend me your car). To identify relevant visual specificity in the face of immense 

stimulus variability, many theories of reading assume that letter recognition is accomplished 

through the computation of increasingly abstract representations. In letter recognition, one 

type of representation that is often posited involves the spatial-geometric representation of 

each letter’s canonical (font-invariant) shape(s). These representational types are sometimes 

referred to as “allograph” representations, corresponding to what, in the object recognition 

literature, have been referred to as structural or canonical “descriptions” (Marr & Nishihara, 

1978). Given that many, if not most, theories of letter recognition and reading posit a key 

role for letter representations of this type (Brunsdon, Coltheart, & Nickels, 2006; Chauncey, 

Holcomb, & Grainger, 2008; Cox, Coueignoux, Blesser, & Eden, 1982; Dehaene, Cohen, 

Sigman, & Vinckier, 2005; Grainger, Rey, & Dufau, 2008; Herrick, 1975; Hofstadter & 

McGraw, 1995; Walker & Hinkley, 2003; Wong & Gauthier, 2007), it is surprising that, 

outside of cognitive neuropsychological literature, there has been relatively little research 

examining their existence. In this paper we report on two behavioral experiments carried out 

with neurotypical participants that provide evidence that allograph representations play a 

role in letter recognition.

Levels of representation in letter identification

Figure 1 schematizes key representational types that are assumed in many theories of letter 

recognition and reading. Of these, we will focus specifically on: computed letter shapes, 

allograph representations and abstract (symbolic) letter identities. (Note that this focus does 

not imply that there are not additional important representations involved in letter 

recognition).

At the earliest stages of visual processing, internal representations are largely isomorphic 

with the pattern of light energy transduced by the visual sensory processes. These 

representations encode image properties such as intensity values at specific retinotopic 

positions that can be approximated by differences in pixel configurations. According to 

many prominent views of visual-spatial processing (see Riesenhuber & Poggio, 1999 for 

review), these low-level retinotopic representations undergo a series of transformations in 
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which the stimulus is represented in terms of increasingly more complex visual features. For 

example, at an early stage, the stimulus may be represented as a set of oriented bars, that 

would serve as input to simple visual feature detectors (e.g., right angles, crosses and 

curves). Subsequently, the lines, curves, and angles that compose the low-level visual 

features are integrated into a unitary shape at the level of computed stimulus-shape 
representations. The term “computed” highlights that these are not stored shape 

representations but rather that they are computed for any stimulus shapes, regardless of 

whether the viewer has previously encountered them. In the context of letter processing, 

computed stimulus-shape representations are font specific. In other words, there are different 

computed stimulus-shape representations for a and a.

Further along the visual processing pathway and at a higher level of visuospatial abstraction, 

allographs are font-invariant, spatial/geometric structural descriptions of canonical letter-

forms that have been learned and stored in long-term memory (Schubert & McCloskey, 

2013). Thus, the allograph representation of a would be active in response to a range of 

computed stimulus-shape representations that share its defining spatial/geometric features, 

including computed shape representations for font variants such as a and a. These various 

visual shapes are considered font-specific tokens or exemplars of the same allograph. Thus, 

a key feature of allographs is that they are font-invariant—equally activated by different 

font-specific stimulus-shape representations. In contrast, a, a, A and N correspond to four 

different allographs, each with different spatial/geometric features. The stored information 

about the font-invariant spatial features represented by allographs allows viewers to 

determine the shape category that a given letter stimulus corresponds to. It is typically 

assumed that normalization processes and font-specific translation rules (Gauthier, Wong, 

Hayward, & Cheung, 2006; Hofstadter & McGraw, 1995; Sanocki & Dyson, 2012; Walker, 

2008) are applied to computed stimulus shape representations to allow for the correct 

categorization of stimulus shapes into their corresponding allographs, resulting in font-

invariant recognition of letter shapes.

In addition to font-invariant recognition of familiar letter shapes, we are also able to 

recognize that A, a and a—despite corresponding to different allographs—all correspond to 

the same letter identity [A], while N corresponds to a different letter identity. Font, shape 

and case invariant representations of letter identity are generally proposed in most theories 

of letter recognition and reading (e.g., Besner, Coltheart, & Davelaar, 1984; Brunsdon et al., 

2006; Petit, Midgley, Holcomb, & Grainger, 2006) and are commonly referred to as abstract 

letter identities (ALI). However, given the many ambiguities surrounding the term 

“abstract”, and to emphasize that these representations are not visuo-spatial but rather 

entirely abstract (i.e., lacking in modality-specific content), we will refer to them as 

symbolic letter identities (SLIs). As indicated in Figure 1, SLIs provide the format used in 

word reading and allow for the transcoding between the different modality-specific 

representations of letters, such as allographs, motor plans and phonological letter names. 

While SLIs do not form the focus of the research reported in this paper, the research will 

also provide evidence regarding the role of SLIs in letter identification.
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Evidence of allograph representations

To date, evidence for allograph representations has come primarily from neuropsychological 

case studies (Brunsdon et al., 2006; Caplan & Hedley-Whyte, 1974; Chanoine, Ferreira, 

Demonet, Nespoulous, & Poncet, 1998; Dalmás & Dansilio, 2000; Miozzo & Caramazza, 

1998; Rapp & Caramazza, 1989; Schubert & McCloskey, 2013). For example, case GV 

(Miozzo & Caramazza, 1998), following a stroke, performed perfectly on a letter decision 

task which involved deciding for each letter and pseudoletter stimulus whether the shape 

corresponded to a real letter or not. This type of task requires accessing stored 

representations that differentiate real from pseudoletters and, within the model depicted in 

Figure 1, this decision could be made based on either allograph or SLI representations. To 

identify which of these representations were available to GV, Miozzo and Caramazza (1998) 

had her perform tasks that required access to SLIs such as cross-case matching (e.g., 

indicating whether letter pairs such as a and A correspond to the same letter). Miozzo and 

Caramazza (1998) found that, despite her flawless performance in letter decision tasks, GV 

was highly impaired in cross-case matching (accuracy 63%). On this basis, the authors ruled 

out the that GV’s good performance in the letter decision task could be based on SLIs and 

concluded that, instead, it relied on intact allograph representations (for a similar set of 

findings, see also, Rapp & Caramazza, 1989). In other work, Schubert & McCloskey (2013) 

specifically examined whether or not allograph representations are font invariant. They 

reported on case LHD whose performance on letter decision and cross-case matching, was 

generally similar to GV’s, and, therefore, indicated disruption in access to SLI’s. They also 

tested her on a cross-font matching task (e.g., do a and a correspond to the same letter?) 

which, according to the account depicted in Figure 1, should be able to be successfully 

carried out by someone who only has access to allograph representations. As predicted, 

LHD was perfect on this task (accuracy 100%) and they concluded that LHD’s pattern of 

performance can be understood by positing allograph representations that are invariant to 

font differences. These allograph representations supported her accurate letter decision and 

cross-font matching in the face of impaired access to SLIs.

There have been few behavioral studies with neurotypical individuals that have investigated 

the distinction between font-invariant allograph representations and SLIs. In fact, in the only 

study we are aware of addressing this issue, Walker and Hinkley (2003) reported evidence 

for a level of letter representation that is consistent with allographs in a study examining the 

memory for color-letter associations. Walker and Hinkley (2003) found that, when 

articulatory suppression techniques were employed to disrupt participants from 

phonologically recoding letter and color names, participants were better at remembering 

color-letter associations when the letter itself was colored on a white background vs. when 

the letter was white on a colored background. Critical to the issue of allograph 

representation, they found that this benefit for color-letter association generalized at test for 

letters that differed in font but that it failed to generalize across differences in case. This 

effect was observed even when certain changes in font were judged to be more visually 

dissimilar than changes in case, demonstrating that the effect was not solely based on the 

degree of visual similarity between letter forms. These results were interpreted as 

demonstrating that the colors were linked to letter representations that were abstract enough 

to survive changes in font but not abstract enough to survive changes in case—in other 
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words, the colors were linked to allograph representations (which Walker & Hinkley referred 

to as structural descriptions). The results are compelling, however due to the strong visual 

memory component, it is not clear to what degree paired-associations tap normal letter 

recognition processes. Therefore, exploring the issue using a different approach could 

provide convergent evidence in support of allograph representations.

Neuroimaging studies investigating the existence of allograph representations are limited as 

well. Studies have found cross-font priming effects (e.g., Gauthier et al., 2000; Qiao et al., 

2010) for single letters or words presented in different fonts in the left fusiform gyrus, an 

area associated with letter and word processing in reading (Cohen et al., 2000) and spelling 

(Rapp & Lipka, 2011). However, the challenge in interpreting these results involves 

identifying the specific type of representation driving the cross-font priming effects. Since 

single letter stimuli were used in the Gauthier et al. (2000) study, priming of SLI 

representations or even low-level visual representations could have provided the basis for the 

observed cross-font priming effects. Word stimuli were used in the Qiao et al. (2010) study 

and, therefore, while the priming effects they report could have originated in allograph 

representations, they also could have originated in SLIs, lexical, semantic, or even 

phonological representations that are shared by words that differ only in font.

Alternative views: Are allograph representations necessary?

Letter and word recognition models that do not include allograph representations have also 

been proposed. For example, exemplar-based models (Tenpenny, 1995) rely on large storage 

capacities that encode memory traces of every letter exemplar that a person has viewed. 

When a letter stimulus is viewed, it is identified by computing the similarity of the stimulus 

to each of the stored exemplars. The identity of the stimulus is determined by assuming that 

it corresponds to the label (e.g., the name) of the nearest stored exemplar (see Goldinger, 

1998 for an exemplar model of spoken word recognition). Note that these models fall within 

the general category of grounded and embodied cognitive theories that rely solely on sensory 

and motor representations (Barsalou, 2008; Tulving, 1983; Wilson, 2002). Empirical 

evidence consistent with exemplar, episodic or instance-based accounts of visual word 

recognition comes largely from priming effects that are specific to the surface features such 

as font (Sanocki, 1992) or episodic context (Carlson, Alejano, & Carr, 1991; Grant & Logan, 

1993) and on long-term priming for pseudowords (Grant & Logan, 1993). Tenpenny (1995) 

presents a review of these findings and arguments (but see Bowers (2000) and Marsolek 

(2004) for critiques of purely episodic models of reading).

Also of relevance is the fact that there are computational models that learn to carry out 

handwritten letter recognition by learning to associate a range of letter shapes with the same 

letter (e.g., Graves et al., 2009). The classification performance of these models can be 

impressive and is achieved without explicit coding of allograph representations. However, 

these networks are sufficiently opaque and complex that the nature of the internal 

representations that actually develop during learning are not understood, leaving open the 

possibility that, in fact, allograph-like representations may develop and play a significant 

computational role. Furthermore, there is no guarantee that the computations that underlie 

these models’ success are the same that enable letter recognition in humans.

Rothlein and Rapp Page 5

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Representational similarity analysis (RSA) and the challenges of isolating allograph 
representations

The goal of this study is to determine if allograph representations are automatically deployed 

in letter identification. Representational similarity analysis is one approach to identifying the 

representational types that contribute to some dependent measure. While the approach has 

been widely applied to neuroimaging studies (Kriegeskorte, Mur, & Bandettini, 2008), the 

same principles have also been applied to behavioral data (e.g., Shepard & Chipman, 1970; 

Watson, Akins, & Enns, 2012). The basic assumption of the approach is that if a particular 

representational type (e.g., allograph) is involved in a task (e.g., letter identification) then 

processing items that are similar with regard to that representational type should produce 

similar behaviors (or neural responses). For example, letter pairs that correspond to similar 

allographs should be expected to be rated as similar in a similarity judgment task, take 

longer to discriminate in a same/different task, etc. In other words, RSA allows one to 

determine the involvement of one or more representational types in task performance by 

testing whether the similarity structure predicted by a representational type is present in 

some dependent measure (see Figure 2). In this way, RSA is based on the evaluation of 

second order isomorphisms, asking: Is the similarity structure of the data space correlated 

with the similarity structure of the representational space of interest? In this particular 

context, we would want to determine if the structure of the allograph similarity space is 

reflected in behavioral responses to letter stimuli. With regard to allograph representations, 

one could develop a similarity matrix for a set of letter pairs based on their allographic 

similarity and then statistically evaluate the extent to which this predicted representational 

similarity matrix (pRSM) explains the variance of behavioral responses to those letters pairs 

in the observed representational similarity matrix (oRSM). This approach allows us to 

evaluate the hypothesis of interest: If allograph representations are involved in letter 

recognition then we expect a significant and unique contribution of the allograph pRSM in 

explaining the variance in the oRSM. On the other hand, if allograph representations are not 

involved in letter recognition, then the allograph pRSM will not explain significant variance 

in the oRSM.

However, there are important challenges in determining whether or not allograph 

representations are involved in letter identification. The key challenge is to distinguish 

between the predicted contributions of computed stimulus-shape representations and 

allograph representations (see Figure 1). This is challenging because the similarity space for 

computed stimulus-shape representations would usually be highly similar to the similarity 

space for allographs. For example, if viewers judge d and D to be more visually similar than 

f and H, is this because the computed stimulus shapes for d and D are more similar than the 

stimulus shapes for f and H or, alternatively, because their allograph representations are 

more similar? In other words, if most letter pairs that are considered to be similar in terms 

computed stimulus-shape representations also have similar allograph representations, then it 

will be difficult to distinguish one representational type from the other. As we have noted 

above, the failure to distinguish between these two representational types has been a 

shortcoming of some of the previous work on this topic and, for this reason, the current 

study is specifically designed to address this challenge.
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Second, there are the challenges of developing computed stimulus-shape and allograph 

pRSMs. Key to the RSA analysis approach is developing distinct representational similarity 

matrices that represent stimulus-shape similarity and allograph similarity. These are both 

difficult given the lack of clear understanding of these representational levels. For example, 

for the allograph pRSM, although we assume that allographs are font-invariant, spatial/

geometric descriptions of letter-forms, their specific representational content and format has 

not been determined. (Note that this is also the case for the analogous structural descriptions 

posited to play a similar role in object recognition, where this topic is an active area of 

research (e.g. Davitt, Cristino, Wong, & Leek, 2014)).

Meeting the challenges: The current study

The key innovation of this study that allows us to address the challenge of distinguishing 

between the similarity spaces of computed stimulus-shape and allograph representations is 

the use of a stimulus font that is highly atypical. The fact that these atypical letter stimuli 

(although recognizable as letters) are markedly different in shape from letters in a more 

standard font, allows for the possibility that computed letter-shape and allograph 

representations may be distinguishable. Following Hofstadter and McGraw (1995) we call 

the novel font a gridfont and examples of letters in the font that are used in this study are 

shown in Figure 3. As can be seen, some letters in the gridfont that are highly similar would 

not be highly similar in a standard font and, by assumption, would not be highly similar in 

terms of their allograph representations. This should allow for dissociations between the 

similarity structure at the level of computed letter-shapes and the level of allographs that 

may be sufficient to isolate the influence of each these representational types via an RSA 

approach.

With regard to the challenge of developing a suitable stimulus-shape similarity matrix 

(pRSM) for the atypical gridfont letters, while there are many approaches to estimating 

pairwise stimulus-shape similarity, all are limited by the fact that we lack adequate theories 

of the content of these representations. Common approaches to estimate visual similarity in 

the absence of such a theory include computing pixelwise similarity, empirically derived 

similarity measures based on visual confusions (for review see Mueller & Weidemann, 

2012), or visual similarity judgments (Boles & Clifford, 1989; Rothlein & Rapp, 2014; 

Simpson, Mousikou, Montoya, & Defior, 2012). We sought an approach, such as visual 

similarity judgments, that captures visual similarity above the level of the pixel-like 

representation but which would not be influenced by letter recognition and higher level letter 

representations. To do so, we extended an approach used by Lupyan et al. (2010). As a 

control for the visual similarity between B-b, these researchers used the pair B-p reasoning 

that b and p differ only by a horizontal reflection. On this basis (see also, Egeth & Blecker, 

1971), we developed a computed letter-shape pRSM for all of the gridfont letter pairs based 

on visual similarity judgments obtained from participants presented with pairs of rotated 
gridfont letters (see Figure 3) which they were not able to recognize as letters. In this way, 

the rotated gridfont letters provided a match to the upright gridfont letters in terms of 

computed stimulus shapes as they are visually identical except for the rotation which 

prevents viewers from identifying the stimuli as letter and, therefore, prevents the influence 

Rothlein and Rapp Page 7

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of high level representations associated with letter recognition1. This approach yields a 

pRSM that encodes estimated pairwise computed stimulus-shape similarity.

Finally, with regard to developing an allograph similarity matrix, given our limited 

understanding of the representational content of structural descriptions, we made the 

assumption that allograph representations resemble typical (canonical) font letter shapes 

(such as A and B). Thus, we assumed that the visual similarity of letters viewed in a typical 

font constitutes a good proxy for the similarity structure of allograph representations (see 

Figure 3). We consider this to be a reasonable assumption because: a) allograph 

representations are learned from experience and therefore, because typical fonts are those 

that we have experienced the most, typical fonts should have the greatest influence on the 

content of allograph representations and b) it is computationally sensible that allograph 

tuning to typical and frequent letter forms would maximize efficiency during letter 

recognition at many visual levels, including font-to-allograph translation (Walker, 2008). On 

this basis, the similarity space of allographs (the allograph pRSM) can be derived 

empirically from any of a number of tasks that allow one to compute similarity values for 

pairs of letters viewed in a typical font. Specifically, in this study the allograph pRSM was 

developed from the pairwise similarity judgments produced by participants viewing pairs of 

letters in a fairly standard font (Consolas).

In sum, the use of an atypical gridfont allows for the possibility of dissociable stimulus-

shape and allograph representations. Based on the assumptions and innovations described 

just above, the experimental approach we adopted was as follows. We used two tasks that 

involved the visual presentation of letter pairs in an atypical gridfont—visual similarity 

judgments (Experiment 1) and same/different judgments (Experiment 2). These tasks 

provided the dependent measures (ratings, RTs and accuracies) used for constructing three 

observed representational similarity matrices (oRSMs), one for each dependent measure. We 

then used the Linear Mixed Effects Modeling (LMEM) regression approach (Bates, 

Mächler, Bolker, & Walker, 2014) to determine the unique contribution of various 

representational types to the similarity structure of the oRSMs. To do so, we used as 

regressors the predicted representational similarity matrices (pRSMs) for the following 

representational types: computed stimulus-shape similarity, allograph similarity, symbolic 

letter identity, motor stroke similarity, and phonetic similarity of letter names. In the 

methods section, we describe in detail how these different pRSMs were developed. The 

application an RSA approach to data obtained from viewing letters in a novel font allowed 

us to address the following question: When individuals view and recognize letters in an 

1One possible objection to the use of rotated stimuli as a visual control for the of upright letters is that computed shape similarity may 
interact with object orientation. For example, it is possible that the computed shape similarity for p q is different from that of the 
structurally-matched pair b d (e.g., shared inward facing top-sided loop features may appear more visually similar than shared inward-
facing bottom-sided loop features). However, if a shape-by-orientation interaction effect exists it is likely to be small. This is supported 
by findings from Konkle et al., (2010) in which distinctiveness judgments for sets of object images were shown to predict localization 
times. Importantly, shape distinctiveness judgments were elicited using both upright and inverted sets of the same objects. While the 
shape-by-orientation interaction account would predict that the upright distinctiveness judgments would be better predictors of search 
times since the objects in both tasks shared the same orientation, the distinctiveness judgments to the inverted objects actually had a 
slight numerical advantage in predicting the search times for the upright objects. Whether or not interactions between orientation and 
visual similarity exist is an interesting avenue for further research that could have consequences for a number of studies that have used 
rotated letters or objects as visual controls to distinguish the influence of perceptual and conceptual features (e.g., letters: Egeth & 
Blecker, 1971 and Lupyan et al., 2010; objects: Konkle et al., 2010 or scenes: Naber & Nakayama, 2013).
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atypical font, does the letter recognition process recruit allograph representations that were 

learned based on past experiences with more typical fonts?

Experiment 1 – Pairwise visual similarity judgments of letters

Visual similarity judgments to pairs of letters were collected for three stimulus sets from 

three groups of participants in order to address the following question: Do allograph 

representations explain any unique variance in visual similarity judgments to letters 

presented in an atypical gridfont even after taking into account stimulus-shape similarity and 

several other possible dimensions of letter similarity?

The first group was presented letters in an atypical upright gridfont. The responses from this 

group served as the dependent measure (the oRSM) in the regression (LMEM) analysis 

developed to test for the role of allograph (and other) representations in visual similarity 

judgments. The results from groups 2 and 3 were used to generate pRSMs for the regression 

analysis of the data from the first group. The second group was presented with rotated 

versions of letters in the atypical gridfont. Because these letters were difficult to recognize as 

letters, the responses to these letters provided an estimate of the visual letter-shape similarity 

structure (pRSM) of the atypical upright gridfont, estimating computed letter-shape 

similarity. Finally, a third group was presented with letters in a typical font. Responses to 

these letters served as an estimate for the similarity structure (pRSM) of allograph 

representations.

Methods

Each experiment was run on Amazon’s Mechanical Turk (AMT) and coded using HTML 

and JavaScript. JavaScript code made use of jquery1.8.3 (https://ajax.googleapis.com/ajax/

libs/jquery/1.8.3/jquery.min.js) and TimTurkTools (Tim Brady - https://timbrady.org/turk/

TimTurkTools.js) packages.

Participants—153 participants were recruited from Amazon’s Mechanical Turk (AMT). 

Participants were instructed not to participate in any experiment if they had a history of 

reading or spelling disabilities. Furthermore, they were instructed not to participate if they 

were literate in any other written script besides the Roman alphabet although there was no 

way to independently verify this. Participants were only recruited from the US and were 

paid $1.00 for their participation. The 153 participants were divided into 3 groups based on 

the stimuli used: the Upright Gridfont, the Rotated Gridfont, and the Typical Font. For the 

Upright Gridfont Group, 54 participants were recruited. Participants had to have participated 

in at least 100 HITs (tasks on AMT) with an approval rating of at least 95%. For the Rotated 

Gridfont Group, 50 participants were recruited. Participants had to have participated in at 

least 1000 HITs with an approval rating of at least 90%. For the Typical Font Group, 49 

participants were recruited. Participants had to have participated in at least 1000 HITs with 

an approval rating of at least 90%.
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Stimuli and procedures

Group 1: Upright Gridfont: Figure 4 (a) depicts the letter-stimuli (7 different letter 

identities) presented to the Upright Gridfont Group. In order to control for visual cues like 

size and curvature, all stimuli were constructed from a limited feature-set of straight lines 

and were matched to be the same size (see Figure 4 (d) for more details). The limited feature 

set was used to ensure that features like stimulus orientation (e.g. r, r) and line thickness 

would not serve as cues indicating different shapes. Furthermore, since stimuli were 

matched in height and width, stimulus size could not serve as a cue to letter case or identity. 

Finally, the Upright Gridfont was designed to have low-level visual characteristics that 

substantially differ from more typical and frequent fonts.

Each experimental stimulus was centered within a 100px by 100px stimulus space which 

was vertically centered within a 500px (width) by 600px (height) frame with a black border. 

During the stimulus familiarization portion of the experiment, one stimulus was presented 

centered within the display frame. The written feedback displaying the correct response was 

centered as well. During the similarity judgment portion of the experiment, 2 letter stimuli 

were displayed side by side (centered within their own stimulus space). The center of each 

stimulus space was 150px away from a fixation dot that was centered both vertically and 

horizontally within the display frame.

Participants first completed a familiarization task for which they were instructed to indicate 

the identity of each letter stimulus by pressing the appropriate key on their keyboard. They 

were also told responses were not case-sensitive. A stimulus character would appear within 

the display frame. Once a response was given (correct or incorrect), the correct answer 

appeared on the screen in Arial font (e.g., “lower-case g”). Participants began the next 

trial by pressing spacebar. Each stimulus appeared twice. The stimulus familiarization 

portion consisted of 66 trials, displaying each of the Upright Gridfont stimuli twice.

In the experimental task, participants were instructed to rate the visual similarity of each 

stimulus pair on a scale of 1 through 5 by pressing 1, 2, 3, 4, or 5 on their keyboards, with 1 

indicating low similarity and increasing numbers indicating increasing similarity up to 5. A 

reminder of this scale remained visible throughout the task as well as a countdown of the 

number of remaining trials. Once the task began, a stimulus pair was shown. A keyboard 

response immediately triggered the appearance of the next stimulus pair. Similarity 

judgments and reaction times were recorded. The similarity judgment portion consisted of 

22 practice trials and 528 experimental trials. The 528 experimental trials consisted of 1 trial 

for each possible different-stimulus pairs for the set of 33 stimuli—including five digit 

stimuli not analyzed further in this paper. The 22 practice trials were randomly selected from 

the set of possible different-stimulus pairs. Each letter in a pair was randomly assigned a left 

or right position on each trial and trial order was randomized for each worker.

Group 2: Rotated Gridfont: Experimental stimuli and design were identical to those used 

with Group 1 except for three differences. First and most importantly, the stimuli consisted 

of the gridfont presented to Group 1 except each stimulus was flipped around its vertical 

axis and rotated 90°ccw2 (Figure 4, b). Next, there was no familiarization portion of the 

experiment and the stimuli were referred to as shapes instead of letters. Finally, at the end of 
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the experiment, a survey was presented to each participant asking if any of the shapes were 

recognized and if so to provide a few examples. Like the Upright Gridfont Group, the 

similarity judgment portion consisted of 22 practice trials and 528 experimental trials. The 

528 experimental trials consisted of every possible different-stimulus pair from the set of 33 

rotated stimuli. The 22 practice trials were randomly selected from the set of possible 

different-stimulus pairs. Stimulus position (left or right) was randomized for each trial and 

trial order was randomized for each participant.

Group 3: Typical Font: The experimental design was identical to that used with Group 2 

except for the stimulus set (Figure 4 c). The characters were presented upright in the font 

Consolas. The similarity judgment portion consisted of 22 practice trials and 255 

experimental trials. The 255 experimental trials consisted of every possible different-

stimulus pair within the set of 23 stimuli. The 22 practice trials were randomly selected from 

the set of possible different-stimulus pairs. Stimulus position (left or right) was randomized 

for each trial and trial order was randomized for each worker.

Data analysis

Removing outliers: Given that data were collected via Mechanical Turk, it was especially 

important to identify outlier participants. This is because it became apparent that some 

participants, being unmonitored, randomly pressed buttons to complete the task as quickly as 

possible. To identify and remove such participants in a principled way, the following 

procedure was employed. First, for each participant, a similarity-to-sample value was 

computed by correlating (Pearson) a given participant’s set of similarity judgments to each 

letter pair with each of the other participants’ set of similarity judgments, resulting in 53 r 

values. The similarity-to-sample value consisted of the mean of these r values. This was 

computed for each participant resulting in 54 similarity-to-sample values. Finally, outliers 

were defined as participants whose similarity-to-sample values fell 1.5 standard deviations 

below the mean similarity-to-sample value (0.3032). For Group 1, eight participants were 

found to be outliers in this manner and removed from further analysis. The mean similarity 

to sample was increased to 0.3926 after it was recomputed with the remaining 46 

participants. For Group 2, seven outlier participants were identified and removed (n = 43) 

following the same procedure described above, increasing the mean similarity to sample 

value from 0.32 to 0.42 and for Group 3, four outlier participants were identified and 

removed (n = 45) increasing the mean similarity to sample value from 0.23 to 0.27. Finally, 

for Group 1, trials where the response times were faster than 200ms or slower than a minute 

were removed. A total of 1.1% of trials were removed in this step.

Measuring representational influence: A Linear Mixed Effects Modeling approach: We 

combined Representational Similarity Analysis (RSA) and linear mixed effects modeling 

(LMEM) (“lme4” library, version 1.1–12 (Bates, Maechler, Bolker, & Walker, 2015) in R (R 

Core Team, 2015)) to quantify the influence of allograph representations on each 

participant’s visual similarity judgments of the Upright Gridfont letters while accounting for 

a number of visual and non-visual controls. The dependent variable consisted of the 

2For simplicity, these stimuli will be referred to as rotated characters.
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similarity judgments for each pair of Upright Gridfont letters from each participant in Group 

1. Seven fixed-effect predictors were included in this model, five of which consisted of 

pRSMs which are described below. The two additional fixed effect predictors were response 

RTs for each similarity judgment (log-transformed to address positive skew) and trial order. 

In terms of random effects, we included random intercepts by item and by participant and 5 

random slopes by participant—one for each of the pRSM-based fixed effects. Slopes were 

not computed for trial order or response RTs as we were not interested in drawing 

conclusions from the fit of these variables.

The Five pRSMs: (1) Rotated Gridfont pRSM: the results from Group 2 were compiled 

into a single group pRSM. This was done by normalizing each participant’s responses to a 

mean of 0 and a standard deviation of 1. Then, the participants’ responses were averaged 

together so each rotated pair had a single mean similarity value. This group pRSM provided 

an empirical estimate of the stimulus shape similarity of the Upright Gridfont. (2) Typical 
Font pRSM: the results from Group 3 were combined into a single group pRSM using the 

same procedure as the Rotated Gridfont pRSM. This pRSM approximated similarity at the 

level of allograph representations. (3) Letter Identity pRSM: all letter pairs with the same 

identity (e.g., a, A) were assigned 1 and all others a 0. (4) Phonetic Feature pRSM: using 

the set of phonetic features corresponding to each letter name (features taken from an 

interactive IPA phonetic feature chart http://www.linguistics.ucsb.edu/projects/

featuresoftware/index.php), phonetic feature overlap was computed for each letter pair by 

summing the features from each letter name that overlap with the features from the other 

letter name and dividing that sum by the total number of features across the pair of letter 

names. (5) Motoric pRSM: this was adapted from a bi-stroke feature similarity metric 

(Wiley et. al., 2015) that was based on a feature set validated against written letter 

confusions produced by individuals with acquired dysgraphia (Rapp & Caramazza, 1997).

Results

Upright gridfont letter familiarization task (Group 1)—While overall accuracy on 

the familiarization task administered to Group 1was quite high (mean = 92%), four stimuli 

had accuracies below 70% and were removed from subsequent analysis. For the remaining 

25 stimuli (shown in Figure 4 a), the distribution of accuracies revealed that they were 

highly recognizable with accuracies greater than 90%.

Survey results for Group 2—Participants in Group 2 were asked if the rotated gridfont 

stimuli looked familiar and if so, to give examples of what they were. Of the 44 participants, 

only 7 identified multiple rotated stimuli as alphabetic letters. These 7 participants were 

removed from all subsequent analyses3. We did not remove 3 participants who either 

reported a single letter (e.g. “t shape”) or only reported letters that were not actually 

included (e.g., “the letter M”). A majority of responses were statements indicating that the 

rotated stimuli were not familiar (23 participants) and the remaining 11 participants provided 

3The analyses were additionally performed including these 7 participants and the results were substantively the same (i.e., no 
insignificant results became significant or vice versa).
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non-alphanumeric examples (e.g., pencil, house, fish). These results indicated that rotating 

the gridfont rendered the stimuli unrecognizable for the vast majority of participants.

Similarity matrices—Figure 5 depicts the group averages of the pairwise similarity values 

obtained from the three groups, corresponding to the group Upright Gridfront oRSM, the 

group Rotated Gridfont pRSM (estimating computed stimulus-shape similarity) and the 

group Typical Font pRSM (estimating allograph similarity). The group RSMs were formed 

by normalizing each participant’s responses to a mean of 0 and a standard deviation of 1 and 

then averaging the normalized responses to each letter-pair across participants. The figure 

highlights that there was a similar, but not identical pattern of responses to the Upright and 

Rotated Gridfonts indicating that while much of the variance in the similarity judgments to 

the Upright Gridfont letters can be explained by computed stimulus-shape similarity, at least 

some of the unexplained variance might be accounted for by assuming the influence stored 

letter-representations (e.g., allograph representations) on the visual similarity judgments. In 

addition, Table 1 reports the pairwise correlations between each RSM. As expected the 

Upright Gridfont correlates most highly with the Rotated Gridfont (r = 0.78). This indicates 

that the Rotated Gridfont provides a good measure of visual similarity for the Upright 

Gridfont. Importantly, the Rotated and Upright Gridfonts differ in their correlations with the 

Typical Font with the correlation of the Upright Gridfont (r = 0.69) being greater than the 

Rotated Gridfont (r = 0.40), suggesting the possible additional influence of allograph 

representations in the processing of Upright Gridfont letters. A similar pattern is found when 

comparing the Upright and Rotated Gridfont correlations to the Letter Identity pRSM (r = 

0.47 and r = 0.20 respectively). Finally, no such differences between the Upright and 

Rotated Gridfont RSMs were observed when correlating them to the phonetic or motor 

pRSMs.

Linear Mixed Effects RSA—Using a measure of R2 proposed by Nakagawa and 

Schielzeth (2013), we can report the conditional R2 (R2
c) that provides a measure of the 

variance explained by both the fixed and random effects combined. Additionally, the R2
m 

value provides a measure of the variance explained by the fixed effects. The R2
c and R2

m 

values were computed in R using the ‘MuMIn’ package version 1.15.6 (Barton, 2016). The 

R2
c = 0.58, suggesting that a considerable amount of the trial-to-trial variance in the visual 

similarity judgments for the pairs of Upright Gridfont letters can be explained by the effects 

included in the model and the R2
m = 0.22 suggested that nearly a quarter of the variance can 

be explained by the fixed-effects. We interpret the beta coefficients (β) and t values 

associated with the beta coefficients as indicating the degree of influence of each of the fixed 

effects. To evaluate the statistical significance of the t values, the number of degrees of 

freedom along with the p value associated with each beta weight t were estimated in R using 

the ‘lmerTest’ package version 2.0–32 (Kuznetsova et al., 2016). As indicated in Table 2, 

four of the five pRSMs were found to make significant contributions to the visual similarity 

judgement values obtained from Group 1: Upright Gridfont. Indexing the role of allograph 

processing, the Typical Font pRSM was found to exert a unique and positive influence on 

similarity judgments (β = 0.21, p<0.001). Also exerting an influence on the pattern of 

response times were the Rotated Gridfont pRSM (β = 0.34, p<0.001), the Letter Identity 
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pRSM (β = 0.08, p<0.05) and the Phonetic Feature pRSM (β = −0.09, p<0.001). Only the 

Motoric pRSM did not exert a significant influence with (β = −0.03, p=0.17).

Discussion of experiment 1

The results of Experiment 1 demonstrate that similarity judgments to the atypical gridfont 

letters are influenced by the visual similarity of the letter-pairs presented in a more typical 

font. In other words, letter pairs that are relatively visually similar in a typical font will be 

judged as more similar when viewed in the gridfont. Critically, this effect cannot be reduced 

to the influences of computed stimulus-shape similarity (estimated from the similarity 

judgments from the Group 2 judgments of the Rotated Gridfont), symbolic letter identity, 

phonetic letter name similarity, or motoric similarity. We interpret the influence of the 

typical font similarity on judgments involving Upright Gridfont letters as resulting from the 

activation of stored allograph representations when the Upright Gridfont letters are 

processed. It is also noteworthy that the Letter Identity pRSM also positively and uniquely 

influenced the Upright Gridfont similarity judgments indicating that symbolic letter 

identities are also accessed and influence visual similarity judgments in this task.

The negative direction of the influence of the Phonetic Feature pRSM on the Upright 

Gridfont similarity judgments indicates that letter-pairs that have a greater degree of 

phonetic feature overlap are judged to be less visually similar than letters that have fewer 

shared phonetic features. The interpretation is not obvious. One possibility is that it could be 

due the over-application of an explicit strategy to reduce the influence non-visual letter 

representations from the visual similarity judgments by judging letters that are similar on a 

non-visual dimension (e.g. letter name) as being less similar than one would judge them 

otherwise. However, the fact that this negative affect is observed for phonetic letter name 

similarity while other non-visual representations like symbolic letter identity exert a positive 

influence suggests this is may not be an inadequate explanation.

Experiment 2 – Physical same-different decision task

That stored allographs influenced visual similarity judgments (above and beyond the effects 

of computed stimulus shape similarity) was quite apparent from the results in Experiment 1, 

although the precise nature of this influence was not entirely clear. For example, instead of 

an unconscious influence on the visual judgments, it could be that participants 

misinterpreted the instructions that the similarity judgments were to be based strictly on 

visual criterion and, instead, judged letter similarity more generally, considering other 

dimensions of similarity. In that case, it would be less surprising that stored letter knowledge 

would make a contribution to decision times. Furthermore, since visual similarity was never 

explained to the participants, different participants could have used different criteria when 

mentally computing visual similarity. Finally, visual similarity judgments occur on a 

relatively slow timescale that may allow the influence of stored letter representations to 

influence responses. Therefore, a task where decisions are quicker and less explicitly based 

on similarity may be a better measure of automatic letter processing. We address these issues 

in Experiment 2, collecting reaction times and accuracies for same-different judgments to 

gridfont letter pairs. Additionally, since the primary finding in Experiment 1—that allograph 
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representations significantly influenced visual similarity judgments—is a novel finding, 

convergence across multiple tasks would serve to strengthen confidence in this conclusion.

In this experiment, two letter images were shown and each participant simply decided 

whether the two stimulus images were visually identical or not. Two LMEMs were 

developed to predict RT (model 1) and the accuracy (model 2) for the responses to pairs of 

different letters. Since the same-different decisions were to be based on visual identity/non-

identity decisions, a participant who misunderstood the directions would be easy to spot 

since they would systematically respond incorrectly when the letter pair consisted of font or 

case variants of the same letter identity.

Methods

Participants—100 participants were recruited from Amazon’s Mechanical Turk (AMT). 

Participants were instructed not to participate if they had a history of reading or spelling 

disabilities or if they were literate in any other written script besides the Roman alphabet. 

Neither of these conditions was verified. Participants were only recruited from the US and 

had to have participated in at least 1000 HITs (tasks on AMT) with an approval rating of at 

least 95%. They were split into two groups based on the type of stimuli shown. 50 

participants were shown the upright gridfont and were paid $1.00 for their participation. The 

other 50 participants were shown the rotated gridfont and paid $0.80 for their participation

Stimuli and procedure—Experimental stimuli consisted of a subset4 of the Gridfont 

stimuli used in Experiment 1, presented in the upright orientation to one group (Group 1: 
Upright Gridfont) and the rotated orientation to the other group (Group 2: Rotated Gridfont). 
For the Upright Gridfont Group, the stimulus familiarization portion consisted of 38 trials, 

displaying each stimulus twice. For both groups, the visual same-different decision portion 

consisted of 15 practice trials and 285 experimental trials. The 285 experimental trials 

consisted of every possible different-stimulus pair within the set of 19 stimuli (171 trials or 

60% of total) and 6 repetitions of each of the 19 possible same pairs (114 trials or 40% of 

total). The 15 practice trials were randomly selected from the set of possible experimental 

trials. Stimulus position (left or right) was randomized for each trial and trial order was 

randomized for each participant. The familiarization task was carried out only with Group 1 

and in the same way as described in Experiment 1.

The experimental task collected visual same or different judgments for simultaneously 

presented stimuli for both Groups 1 and 2 (Figure 6). Participants were informed through 

written instruction that they would see two shapes and a dot on the center of the screen and 

that they were to decide whether the two shapes are visually identical or not. Pressing s on 

the keyboard indicated a “same” response and d indicated a “different” response. They were 

instructed to respond with their first impression as quickly as possible. A countdown of the 

number of remaining trials remained visible throughout the task. Once a trial began, a 

fixation dot appeared in isolation for either 400ms or 800ms (143 and 142 trials respectively, 

randomly assigned) followed by a pair of stimuli. The keyboard response triggered the 

4Six letter stimuli, corresponding to the [D] or [H] letter identities, were removed from the stimulus set for Experiment 2 in order to 
keep the experimental duration shorter than 20 minutes.
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appearance of a hyperlink which participants clicked to begin the next trial, allowing for 

self-pacing. Accuracy and reaction times (from stimulus onset to keyboard response) were 

recorded. For the Rotated Gridfont Group there was no familiarization portion of the 

experiment and the experiment was followed by the same survey presented to Experiment 1, 

Group 2.

Data analysis

Removing outliers—Only RTs and errors from trials in which different letters were 

presented are analyzed below. For each participant, a different trial’s RT was considered to 

be an outlier and removed if it fell outside 2.5 standard deviations (above or below) that 

participant’s mean different trial RT. Response times from incorrect responses were also 

removed.

Outlier participants were removed using the same similarity-to-sample procedure described 

in Experiment 1. The 50 similarity to sample values were considerably lower than in the 

similarity judgment experiments suggesting greater cross-participant variability in this task. 

Outliers were defined as participants whose similarity to sample value fell more than 1.5 

standard deviations below the mean similarity to sample value. In Group 1: Upright 

Gridfont, 4 participants were identified as outliers and removed from further analysis, 

increasing the mean similarity-to-sample from 0.066 to 0.08. In Group 2: Rotated Gridfont, 

3 participants were identified as outliers and removed, increasing the mean similarity-to-

sample from 0.065 to 0.073.

LMEM-RSA—Following a similar method as in Experiment 1, LMEM-RSA was used to 

examine the trial-to-trial performance of the different responses and test for the influence of 

allograph representations. Unlike Experiment 1, two models (RT and accuracy) were 

examined.

In Model 1, RTs (log-normalized) from Group 1: Upright Gridfont served as the dependent 

variable with 7 fixed effect predictors—5 pRSMs, trial order and the RT from the previous 

trial5 (on the first trial, the average RT was used) (Baayen & Milin, 2010). The 5 pRSMs 

were the same as Experiment 1 with one important exception, the Rotated Gridfont pRSM 
was composed of the RTs to the different responses from Experiment 2’s Group 2 (instead 

of the Experiment 1’s Group 2 that had carried out the visual similarity judgment task). 

Specifically, each participant’s RTs to correct different responses were normalized to a mean 

of 0 and a standard deviation of 1. Then, the RTs for each different letter pair were averaged 

across participants to form a group Rotated Gridfont pRSM. Note that the Typical Font 

pRSM was the same as the one used in Experiment 1 (based on Experiment 1’s Group 3 

performance) as we assumed that those data would serve to index allograph similarity 

regardless of task. We included 3 random effects: random intercepts by items and by 

participants and random slopes by participants for the Typical Font pRSM. Slopes of the 

other pRSMs were not modeled because the model failed to converge when they were 

included.

5RTs have a high degree of temporal autocorrelation that is not stimulus item driven. Including RTs from the previous trial controls for 
this source of RT variation (Baayen & Milin, 2010).
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Model 2 used response accuracy as the dependent variable and the analysis was performed 

using generalized linear mixed models for binomial data. The six fixed effect predictors in 

this model were trial order and the 5 pRSMs. For the Rotated Gridfont pRSM the total 

number of errors produced by Group 2 participants for each different letter pair was used 

(instead of the average z-scored RT used in Experiment 1). With regard to random effects, 

because errors were so rare, only intercepts were modeled by participants and item.

Results

Letter familiarization task—Overall accuracy on the familiarization task was very high 

(mean = 98%). All of the letter stimuli used in this experiment were highly recognizable 

with accuracies greater than 90% (Range: 91%–100%).

Similarity matrices—Figure 7 depicts the group RSMs for RTs to different trials for the 

Upright (a) and Rotated (b) Gridfont groups. The group RSMs were generated by 

normalizing each participant’s RTs to a mean of 0 and a standard deviation of 1 and then 

averaging the normalized responses to each letter-pair across participants. The figure 

highlights that there is a similar, but not identical pattern of responses to the Upright and 

Rotated Gridfonts suggesting that while some of the variance in the RTs to the Upright 

Gridfont letters can be explained by computed stimulus-shape similarity (indexed by the 

Rotated Gridfont RSM), there is unexplained variance. The focus of this experiment is in 

determining whether a significant amount of this variance can be accounted for by assuming 

the influence of allograph representations, whose similarity structure is approximated by 

similarity judgments to letters pairs presented in the Typical Font (see Figure 5 c). Figure 8 

makes a similar point depicting error totals (trials on which participants gave “same” 

responses to” trials with different letter pairs) for the Upright (a) and Rotated Gridfont (b) 

groups. In addition, Table 3 reports the pairwise correlations between each pRSM and the 

group RT RSMs. Both the Rotated Gridfont and the Typical Font pRSMs correlate most 

strongly with the Upright Gridfont (r = 0.56 for both). This indicates that both the Rotated 

Gridfont and the Typical Font provide a good measure of visual similarity for the Upright 

Gridfont. Importantly, the Typical Font correlates less with the Rotated Gridfont (r = 0.42) 

than with the Upright Gridfont (r=0.56) suggesting that allograph representations influence 

visual same-different decision RTs for letter pairs presented in Upright Gridfont. A similar 

pattern can be found when comparing the Upright and Rotated Gridfont correlations to the 

Letter Identity pRSM (r = 0.46 and r = 0.21 respectively). Finally, no such differences 

between the Upright and Rotated Gridfont RSMs were observed when correlating them to 

the phonetic or motor pRSMs.

Table 4 reports the same pair-wise correlations for the error counts instead of the RTs. The 

most notable difference with the RT RSMs is the weaker correlation between the Upright 

and Rotated Gridfont RSMs (r = 0.12 compared to 0.56) suggesting that, compared to RT, 

accuracy is less influenced by low-level stimulus-shape similarity than it is by higher level 

letter identity representations (e.g., allographs and symbolic letter identity). There were 

substantial differences in the correlations between both the Typical Font and Letter Identity 

RSMs and the Upright and Rotated Gridfonts revealing an influence of allograph and SLI 

representations in error likelihood (Typical Font pRSM: Upright Gridfont r = 0.47, Rotated 
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Gridfont r = 0.16; Letter Identity pRSM: Upright Gridfont r = 0.42, Rotated Gridfont r = 

0.18).

Survey results—Participants were asked if the rotated character stimuli looked familiar 

and if so, to give examples. Of the 47 participants, only 13 identified them as including 

multiple alphabetic letters. These participants were removed from further analyses. Three 

additional participants recognized the letter T and failed to correctly identify anything else 

and were not removed. As for Experiment 1, the majority of responses were statements 

indicating that the rotated stimuli were not familiar (20 participants) and the remaining 11 

participants provided non-alphanumeric examples (e.g. cross, angles, house). These results 

demonstrate again that rotating the gridfont rendered the stimuli unrecognizable to a 

majority of participants.

LMEM-RSA – Model 1: Response times—For Model 1, an R2
c = 0.49 indicated that 

about half of the trial-to-trial variance of the RTs for the different pairs of Upright Gridfont 

letters could be explained by the variables included in the model. A considerably smaller 

proportion of the variance than in Experiment 1 could be explained by the fixed effects (R2
m 

= 0.05). As in Experiment 1, we interpreted the beta coefficients (β) and t values associated 

with the beta coefficients as indicating the degree of influence of each of the fixed effects on 

the response to make same/different judgments for different pairs (see Table 5 for details). 

Indexing the influence of allograph representations, the Typical Font pRSM exerted a unique 

and positive influence on RTs with β = 0.011 and p<0.05, indicating that gridfont letter pairs 

that are visually similar in a typical font have slower RTs for than letter pairs that are not. 

With regard to computed stimulus-shape similarity, there was a significant and positive 

effect of Rotated Gridfont RT pRSM with β = 0.025, p<0.001), as well as of symbolic letter 

identity with Letter Identity pRSM with β = 0.012, p<0.01. Neither the Phonetic Feature 

pRSM (β = −0.004, p=0.37) nor the Motoric pRSM (β = −0.004, p=0.29) exerted a 

significant influence on same/different response times.

LMEM-RSA – Accuracy—For Model 2, R2
c = 0.05 indicating a relatively small6 

proportion of the error variance could be explained by this model. This is perhaps due to the 

fact that the model was trying to predict a relatively few number of errors (232 errors total, 

comprising 3% of the different trials included in the model). Despite this, Typical Font 

pRSM still exerted a unique and positive influence on errors (β = 0.29, p<0.005) indicating 

that gridfont letter pairs that are similar in a typical font are more likely to produce errors 

than letter pairs that are not. While the model accounted for the potential influence of the 

following pRSMs: stimulus-shape similarity, symbolic letter identity, phonetic letter-name 

similarity and motoric production codes—none of these reached significance (see Table 5 

for details).

6While the magnitude of these R2 measures may be small, it is worth noting that the LMEM has the ambitious goal of predicting trial-
to-trial RTs (Model 1) or accuracies (Model 2). When a regression analysis is performed where the 5 pRSMs are used to predict the 
group Upright Gridfont RSM instead of individual trial-to-trial responses, the R2 values increase substantially (Model 1 adjusted R2 = 
0.55, Model 2 adjusted R2 = 0.24). This increase in model fit is likely due to the fact that trial and participant specific noise that is 
averaged out when combined into a group RSM.
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Summary

Experiment 2 was designed to determine if findings from a different paradigm would 

converge with the findings from Experiment 1, while addressing some concerns about the 

open-endedness of the visual similarity judgment task used in Experiment 1. In fact, results 

obtained with the same/different task were remarkably similar to those observed in 

Experiment 1, with the pRSMS for Typical Font, Letter Identity, and Rotated Gridfont 

significantly predicting RTs, and the Typical Font pRSM predicting errors. The finding of 

the significant influence of the Typical Font pRSM provides further support for the role of 

allograph representations in letter recognition.

General discussion

An important question in research on letter processing and reading is whether or not stored 

structural descriptions of the spatial/geometrical features of canonical letter shapes—

referred to here as allographs—play a role in the identification of letters presented in 

familiar and unfamiliar fonts. The analogous question for object recognition research 

concerns the human ability to recognize object despite vast amounts of surface variation and, 

therefore, the findings of the research reported here regarding letter recognition have 

implications for theories of object recognition more generally.

As we have indicated earlier, while theories of letter processing and reading typically posit 

allograph representations, the empirical evidence specifically supporting their role has been 

extremely limited. In two experiments using two different tasks—letter similarity judgments 

and same/different judgments—we combined Representational Similarity Analysis (RSA) 

with Linear Mixed Effects Modeling (LMEM) to identify the influence of different 

representational types on letter processing in these tasks. We used a novel empirical 

approach to address the challenge of distinguishing the contribution of computed stimulus-

shape representations from allograph representations. We did so by using a gridfont that 

created differences between the similarity structures for these two representational types. We 

then indexed computed stimulus-shape similarity based on participant responses to rotated 

(unrecognizable) gridfont letters, while allograph similarity was indexed based on 

participant responses to upright letters presented in a typical font. Finally, in the data 

analysis, we examined the extent to which the similarity structure of three dependent 

variables (similarity judgments, same/different RTs and accuracy) could be explained by 

stimulus-shape, allograph, symbolic identity, phonetic and motor representations. We found 

that the only variable that consistently explained unique and significant variance for all three 

dependent variables, was allograph similarity.

Thus, the findings of the two experiments support the conclusion that when individuals 

process and recognize letters in a novel and unusual font, their responses are skewed/biased 

towards the visual similarity structure of more typical letter forms, supporting the hypothesis 

that we access stored allograph representations of the typical forms of letters during letter 

perception. These results provide evidence for cognitive models of reading that posit font-

invariant allograph representation and provide constraints on models of reading without 

allograph representations in which, instead, the computed stimulus-shapes directly access 

either symbolic letter identities or lexical entries.
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SLIs (symbolic letter identities)

The Letter Identity variable representing case-invariant letter identity (A=a) was shown to 

uniquely influence responses in both Experiments 1 and 2. By including visual (computed 

and stored), phonetic, and motoric similarity within the regression analyses, we were able to 

demonstrate—as would be predicted for purely symbolic representations—that this letter 

identity effect cannot be reduced to modality-specific visual, phonological or motor effects. 

This finding is also consistent with previous behavioral experimental evidence that cross-

case letter forms share a common representation that is not modality-specific (e.g., Kinoshita 

& Kaplan, 2008; Wiley, Wilson, & Rapp, 2016). Consistent with the behavioral evidence of 

SLIs, Rothlein and Rapp (2014) provided neural data from an RSA analysis of fMRI data 

obtained from a letter decision task. They identified a region of left fusiform gyrus (in the 

vicinity of the VWFA, Cohen et al., 2000) that exhibited similar multi-voxel activation 

patterns in response to letters that had the same identity but different case. Importantly, this 

result could not be accounted for by visual, motor or phonetic similarity. The findings from 

the research reported here contribute convergent evidence from a novel paradigm that 

support the role of abstract symbolic letter representations, providing further constraints on 

theories of letter recognition and reading.

The finding of evidence for SLIs in this study is also relevant in addressing a potential 

concern that visual similarity judgments and same-different tasks might be based on task-

specific representations and processes that do not inform our understanding of letter 

identification itself. However, it is worth noting that accessing stored letter representations 

such as SLIs in these tasks is not only extraneous, but in fact detrimental to the accuracy and 

response times in these tasks that only strictly require processing of visual features. 

Therefore, one is forced to ask—why are stored letter representations (e.g., allographs and 

SLIs) accessed in a task that does not require them? A likely explanation is that viewing 

letters (even in these tasks) automatically activates the representations involved in normal 

letter identification.

The representation of case (and font)

The results presented in this paper provide evidence for models of letter identification and 

reading in which allograph representations mediate between the computed stimulus shape 

representations and case-invariant SLIs. An important issue that these results do not address 

is how letter-case is represented. For example, in English orthography, letter-case 

representation is critical for differentiating nouns from proper nouns (bill and Bill), words 

from acronyms (pet and PET) and parsing sentences. Clearly, a complete theory of reading 

must include the representation of letter case (Grainger et al., 2016, Schubert & McCloskey, 

2013). One possibility is that case information used in reading is available only (implicitly) 

either at the level of font-specific, computed letter shapes or at the level of allographs 

(Grainger et al., 2016; Brunsdon et al., 2006). In other words, case is represented by virtue 

of the fact that computed letter shapes and allographs a, a, and A are distinct from one 

another. Another possibility is that case is represented in terms of case-specific SLIs, such 

that a and a correspond to the same symbolic case-specific representation [a] while A 
corresponds to the different symbolic case-specific representation [A]. A third possibility is 

that case is represented as an independent abstract feature at the level of SLIs, such that the 
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SLI [A] could be associated either with an upper or lower case feature (Schubert & 

McCloskey, 2013). Note that these possibilities are not mutually exclusive.

In favor of the position that case is represented as a feature distinct and dissociable from 

letter identity, Schubert and McCloskey (2013) presented evidence from an individual 

(LHD) who acquired dyslexia subsequent to a stroke. The individual was administered a 

delayed-copy task in which a word was presented visually, covered from view and then she 

was asked to write it. In this and other visual letter processing tasks, the participant 

frequently perseverated letter identities from earlier responses to later ones. Importantly, in 

the delayed-copy task when words were presented in mixed case, the perseverated letter 

identities would assume the case of the letters they were substituting. For example, if the R 
in c-A-R perseverated into the word M-a-t it might be written as M-a-r but if it perseverated 

into the word M-a-T it would be produced as M-a-R. That the identity of the [R] in c-A-R 

could perseverate while assuming the case of the of the t in M-a-t is striking evidence that 

case is represented independently of letter identity.

Finally, although the focus in this study has been on font-independent representations, it is 

worth noting that font information, while not affecting the lexical identity of a word, can 

affect how a word is interpreted. Much in the same way that prosody can alter how a spoken 

word is interpreted, font (and case) can provide important emotional inflection to the 

meaning of a written word. For example, a word in italics can indicate sarcasm and a word 

in all uppercase letters can indicate excitement or shouting. Clearly, the representation of 

case and font in reading remain interesting and important research topics.

Levels of abstraction

In this research we have focused on three types/levels of representation that are claimed to 

play key roles in letter perception and reading: computed stimulus-shapes, allographs, and 

symbolic letter identities. Consistent with various specific proposals of letter perception and 

reading (e.g., Brunsdon et al., 2006; Dehaene et al., 2005; Grainger et al., 2008), these 

correspond to increasingly abstract levels of representations. Specifically, we have argued 

that computed stimulus-shape representations are font and case-specific, allographs are font 

invariant but case specific, while symbolic letter identities are both font and case-invariant 

(see Figure 1). The experimental paradigm and the RSA-LMEM analysis were designed to 

determine if there are unique contributions made to letter recognition by each of these 

hypothesized representational types. This is challenging because letter representations that 

are similar at one level, tend to be similar at other levels. However, the experimental 

paradigm and analysis approach were successful in allowing for this “cognitive dissection”, 

revealing the independent influence of these representational types on letter perception.

As we have indicated, various theories of reading and letter recognition have posited a 

processing stream involving increasingly complex and abstract representations. While we 

agree with this general characterization, we would argue that this is not a “smooth” 

progression through representational abstraction. Instead, we see two distinct types of 

abstraction: within-modality abstraction and amodal or symbolic abstraction. The 

progression from increasingly more complex visual representations up through font-

invariant allographs (structural descriptions) involves within-modality abstractions. 
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Representations and processes “morph” gradually from low-level visual representations to 

high-level spatial/geometric ones that can be considered to occur within the visuo-spatial 

modality. For letters, this maps onto the progression from computed-stimulus shapes to 

allographs. However, SLIs—because they are font and case-invariant—are not sensitive to 

visuo-spatial similarity. In fact, they represent visuo-spatially similar cross-case letter pairs 

(e.g., O/o, T/t, etc.) in the same way as dissimilar ones (e.g., A/a, G/g). Given their symbolic 

nature, the claim (see Figure 1) is that SLIs serve to translate between modalities. In fact, it 

is possible that it is in this respect that letters may be different from other objects as it is not 

clear that visual objects are represented in a comparable amodal, symbolic manner. This is 

an interesting question that is, however, outside the scope of the current paper.

Given the debate between abstractionist and exemplar/instance/grounded approaches to 

letter perception in reading (and a range of cognitive processes) it is worth considering 

whether or not the results reported here can be explained by exemplar/instance based 

accounts. As we indicated in the Introduction, recent computer programs of handwritten 

letter identification/classification have been highly successful using deep learning 

approaches that do not explicitly encode allographs or SLIs and can be considered to be 

exemplar or instance based. However, these models do involve multiple processing stages 

and—due to the nature of the learning and processing algorithms—the representational 

content of these stages is opaque. As a result, we simply do not know the types of 

representations that are involved and whether and to what extent they resemble the types of 

representations we have posited here.

Conclusions

In this work we deployed a novel paradigm and analysis approach to examine the cognitive 

representations involved in letter identification. This work provides evidence in favor of the 

hypothesis that allographs (structural descriptions) play a role in letter perception. In 

addition to adding to our understanding of letter perception and reading, the findings provide 

constraints on neuroimaging and computational work on these topics.
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Figure 1. 
Proposed representational levels in the processing of different fonts of upper and lower-case 

E and one pseudoletter. In the initial processing stages, stimuli are represented in terms of 

domain-general visual features (e.g. simple and complex cells representing oriented bars). 

Many models also posit a font-specific computed stimulus shape representations of the 

shape of the stimulus independent of its identity. This level of representation would allow us 

to describe the shape of the letter E as well as the shape of any given pseudoletter. Computed 

stimulus shape representations do not encode letter identity information or even whether the 

shape is a letter or not. These computed stimulus shape representations go on to access 

stored font-invariant allograph representations that presumably encode letter shapes in a 

manner that abstracts away from certain differences in stimulus font. The allographs in turn 

activate abstract or symbolic letter identity (SLI) representations that are both font and case 
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independent—abstracting away from visual information altogether. SLI representations 

serve as input to the lexical and sublexical reading processes that mediate orthographic word 

recognition. They also serve as a conduit to cross-modal letter representations like 

phonological letter names and motoric production codes for written letter production.
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Figure 2. 
Using Representational Similarity Analysis to identify the influence of specific 

representational types on the recognition of letters viewed in the Upright Gridfont. (A) The 

first column depicts the types of letter representations potentially active in response to 

viewing a and G in the Upright Gridfont. (B) The second column depicts an approximation 

of the representational content of Upright Gridfont a and G for each representational type. 

Computed Stimulus-Shape similarity is estimated with rotated Gridfont letters. Rotation 

maintains pairwise visual-spatial similarity while minimizing the identifiability of the 

rotated letters, thereby, limiting the influence of the other representational types on letter 

recognition. Allograph similarity is estimated from the similarity structure of a more typical 

font. Symbolic Letter identities encode font and case-invariant letter identity. Letter-name 
similarity is estimated from the phonetic features that compose the phonemes of the letter-

names. Motoric similarity is estimated from hypothesized motor plans. (C) The third 

column depicts matrices of pairwise similarity estimates for each type of representation 

(pRSMs), characterizing the predicted similarity structures at each level of representation in 

response to pairs of the Upright Gridfont letters. (D) Column 4 depicts a set of similarity 

responses (e.g., derived from judgments or same/different RTs or accuracy) elicited in 

response to letter pairs (the oRSM). These similarity responses are tested for the unique 
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influence of each of the 5 types of letter representations by running a linear mixed-effects 

model (LMEM) in which the 5 pRSMs simultaneously predict the responses to the Upright 

Gridfont letter-pairs.
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Figure 3. 
Dissociating the influence of Computed Stimulus-Shape Representations from Allograph 

Representations. Participants made visual similarity judgments to letters presented in an 

atypical Upright Gridfont (left column), a Rotated Gridfont (middle column), and a Typical 

Font (right column). The average similarity judgment (computed from Experiment 1) is 

shown below each example letter-pair. A response of 1 indicates little or no visual similarity 

for the pair and 5 indicates the highest level of visual similarity. If computed stimulus-shape 

representations are the only type of letter representation that contributed to visual similarity 

judgments, we would predict similarity judgments for the Upright Gridfont (left column) 

and the Rotated Gridfont (middle column) to be identical. Instead, we see that the similarity 

judgments to the Upright Gridfont are different from similarity judgments to the Rotated 

Gridfont. The top row depicts an example where there is a bias to judge the Upright Gridfont 

letter-pair as being more similar than would be predicted by the computed stimulus-shape 

similarity alone while the bottom row shows the opposite effect. The fact that the Upright 

Gridfont similarity judgments are “pulled” in the direction of the Typical Font similarity 

judgments suggests an influence of allograph representations on these similarity judgments
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Figure 4. 
Experimental stimuli. a) The novel, atypical and Upright Gridfont alphanumeric characters 

used as stimuli in Experiments 1. Experiment 2 used the same stimuli except the 6 stimuli 

corresponding to the identities [D] or [H]. b) The Rotated Gridfont stimuli used in 

Experiments 1 and 2. These stimuli were created by flipping the upright characters about 

their vertical axis and then rotating them 90°ccw. The rotation intended to render them 

difficult to identify. Experiment 2 did not include the 6 stimuli corresponding to rotated 

versions of [D] or [H]. c) Font used in the Typical Font Group. The font is Consalas which is 

a variant of Calibri where the width of each character is matched. d) A depiction of the 

square, 100 X 100 pixel grid with all of the possible features in black. Each stimulus was 

required to touch all 4 sides, ensuring the height and width of each stimulus were matched.
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Figure 5. 
The group representational similarity matrices (RSMs) obtained from Experiment 1. Red 

cells indicate larger average similarity judgments and blue cells indicate smaller average 

similarity judgments. a) The group RSM for the similarity judgments to letter-pairs 

presented in the atypical Upright Gridfont. The Gridfont letters are depicted on the margin. 

The group RSM was formed by normalizing each participant’s responses to have a mean of 

0 and a standard deviation of 1 and then averaging the normalized responses to each letter-

pair across participants. b) The group RSM for the similarity judgments to letter-pairs 

presented in the atypical Rotated Gridfont. c) The group RSM for the similarity judgments 

to letter-pairs presented in the Typical font.
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Figure 6. 
Example trial in the same-different decision paradigm.
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Figure 7. 
The group representational similarity matrices (RSMs) computed from the RTs to different 

trials in Experiment 2. Red cells indicate slower average RTs (more similarity) and blue cells 

indicate faster RTs (less similarity). a) The group RSM for the RTs to letter-pairs presented 

in the Upright Gridfont. The Gridfont letters are depicted on the margin. The group RSM 

was formed by normalizing each participant’s responses to have a mean of 0 and a standard 

deviation of 1 and then averaging the normalized responses to each letter-pair across 
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participants. b) The group RSM for the average normalized RTs to letter-pairs presented in 

the Rotated Gridfont.
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Figure 8. 
The group representational similarity matrices (RSMs) depicting the error counts to different 

trials across participants in Experiment 2. Errors were defined as “same” responses to 
“different” trials. Darker cells indicate a greater error count. a) The group RSM for the RTs 

to letter-pairs presented in the Upright Gridfont. The Gridfont letters are depicted on the 

margin. The group RSM was formed by normalizing each participant’s responses to have a 

mean of 0 and a standard deviation of 1 and then averaging the normalized responses to each 
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letter-pair across participants. b) The group RSM for the average normalized RTs to letter-

pairs presented in the Rotated Gridfont.
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