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Lack of liver glycogen causes hepatic insulin resistance

and steatosis in mice
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Disruption of the Gys2 gene encoding the liver isoform of gly-
cogen synthase generates a mouse strain (LGSKO) that almost
completely lacks hepatic glycogen, has impaired glucose dis-
posal, and is pre-disposed to entering the fasted state. This study
investigated how the lack of liver glycogen increases fat accumu-
lation and the development of liver insulin resistance. Insulin
signaling in LGSKO mice was reduced in liver, but not muscle,
suggesting an organ-specific defect. Phosphorylation of compo-
nents of the hepatic insulin-signaling pathway, namely IRS1,
Akt, and GSK3, was decreased in LGSKO mice. Moreover, insu-
lin stimulation of their phosphorylation was significantly sup-
pressed, both temporally and in an insulin dose response. Phos-
phorylation of the insulin-regulated transcription factor FoxO1
was somewhat reduced and insulin treatment did not elicit nor-
mal translocation of FoxO1 out of the nucleus. Fat overaccumu-
lated in LGSKO livers, showing an aberrant distribution in the
acinus, an increase not explained by a reduction in hepatic trig-
lyceride export. Rather, when administered orally to fasted
mice, glucose was directed toward hepatic lipogenesis as judged
by the activity, protein levels, and expression of several fatty acid
synthesis genes, namely, acetyl-CoA carboxylase, fatty acid syn-
thase, SREBP1c, chREBP, glucokinase, and pyruvate kinase.
Furthermore, using cultured primary hepatocytes, we found
that lipogenesis was increased by 40% in LGSKO cells compared
with controls. Of note, the hepatic insulin resistance was not
associated with increased levels of pro-inflammatory markers.
Our results suggest that loss of liver glycogen synthesis diverts
glucose toward fat synthesis, correlating with impaired hepatic
insulin signaling and glucose disposal.

After ingestion of a meal, glucose is cleared from the blood-
stream primarily by conversion to glycogen in skeletal muscle
and liver, the liver disposing as much as one-third of the glucose
load (1). Defects in insulin-mediated regulation of glycogen
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synthase (GS)” a key biosynthetic enzyme (2) are present in the
muscle of most type 2 diabetes mellitus (T2DM) patients, who
display post-prandial hyperglycemia and compromised glucose
disposal (3, 4). Two GS genes exist in mammals, GYSI, encod-
ing the isoform expressed in muscle and many other tissues,
and GYS2, encoding an apparently liver-specific isoform (LGS).
Mice lacking GYS2 (LGSKO) have a severe decrease in their
ability to store glycogen in hepatocytes (5), and display most of
the symptoms of glycogen storage disease in patients who have
loss-of-function mutations in the GYS2 gene (6). LGSKO mice
are glucose intolerant and exhibit impaired suppression of glu-
coneogenesis upon insulin stimulation (5). Mice with a disrup-
tion of the GYS1 gene are unable to synthesize glycogen in sev-
eral tissues, but surprisingly glucose tolerance was actually
improved (7, 8). One conclusion from these studies, and studies
using other genetically engineered murine models (9, 10), was
that, in rodents, muscle glycogen represents a much smaller
fraction of the total body glycogen stores than in humans, liver
therefore having a greater role in overall glucose disposal and
insulin sensitivity (11, 12).

Insulin resistance is often accompanied by increased hepatic
steatosis (13, 14). However, it is still unclear whether insulin
resistance is responsible for excessive fat deposition in the liver
or whether increased fat content is a prerequisite for the devel-
opment of insulin resistance (15). Compromised glucose dis-
posal as glycogen may further contribute to hepatic steatosis by
diverting excess carbohydrates into fatty acids by the de novo
lipogenesis pathway (DNL) (16, 17). In patients with non-alco-
holic fatty liver disease (NAFLD), it has been estimated that as
much as 26% of the liver triglyceride derives from DNL (18).
The first committed step in lipid synthesis is the conversion of
acetyl-CoA to malonyl-CoA, catalyzed by acetyl-CoA carbox-
ylase (ACC). Malonyl-CoA participates in two opposing path-
ways, as a precursor for fatty acid synthesis and as a negative
regulator of fatty acid oxidation. There are two isoforms of
ACC: ACC1, associated with fatty acid synthesis (19), and
ACC2, linked to the regulation of fatty acid oxidation (20). For
fatty acid biosynthesis, fatty acid synthase (FAS) uses malonyl-
CoA as a two-carbon donor for chain elongation. The DNL
pathway is activated at the transcriptional level by the synergis-

® The abbreviations used are: GS, glycogen synthase; DNL, de novo lipogene-
sis; NAFLD, non-alcoholic fatty liver disease; SREBP, sterol regulatory ele-
ment-binding protein; chREBP, carbohydrate response element-binding
protein; GSK3, glycogen synthase kinase 3; ACC, acetyl-CoA carboxylase.
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tic action of the transcription factors SREBP1c (sterol regula-
tory element binding protein-1c) and chREBP (carbohydrate
response element-binding protein) acting on lipogenic and gly-
colytic genes (13, 21). Insulin is the most potent regulator of the
SREBP1c gene, which encodes a precursor that is embedded in
the endoplasmic reticulum. Under the appropriate signals,
SREBP1c is cleaved in the Golgi into the mature transcription-
ally active form, which translocates into the nucleus (13). Glu-
cose regulates chREBP increasing its gene expression (21) and
inducing its dephosphorylation, favoring its nuclear transloca-
tion and DNA binding capacity (22).

Itis well established that insulin resistance and hepatosteato-
sis lead to compromised glycogen synthesis (17, 23) and that
increased liver glycogen synthesis improves glucose tolerance
(24) independently of insulin signaling (25). What is not well
understood is the significance of impaired liver glycogen syn-
thesis in inducing insulin resistance and liver fat overaccumu-
lation (5). Therefore, we analyzed insulin signaling and lipid
metabolism in LGSKO mice. We report that the inability to
synthesize liver glycogen causes enhanced lipid synthesis and
ectopic liver fat deposition, accompanied by impairment in
insulin signaling restricted to liver.

Results
Insulin signaling in the liver and muscle of LGSKO mice

LGSKO mice are insulin intolerant based on impaired glu-
cose tolerance tests and insulin-dependent suppression of glu-
coneogenesis (5), although interpretation of the insulin toler-
ance tests was complicated by a lower starting blood glucose in
LGSKO mice. However, the percentage reduction in blood glu-
cose was comparable between the two genotypes. Here, we ana-
lyzed insulin signaling in the two main repositories of glycogen,
liver and muscle. Thus, CN and LGSKO mice were injected IP
with 5 units/kg of insulin, the consequent percentage lowering
of blood glucose was similar in CN and LGSKO mice (Fig. 1A4),
consistent with previous results (5). The basal levels of phos-
phorylation of downstream insulin signaling components (Akt-
(Thr-308), GSK3a/B (Ser-21/9), and FoxO1 (Thr-24)) were sig-
nificantly lower in the livers of LGSKO mice (Fig. 1, Band D-F),
consistent with lower basal circulating insulin in fed LGSKO
mice (5). After 5 units/kg of insulin administration, phosphor-
ylation of these proteins reached a maximum after 5 min and
was maintained up to 15 min in the livers of control mice (Fig. 1,
C-G). However, in LGSKO mouse liver, there was a clear delay
in the phosphorylation of Akt, and downstream targets GSK3«
and -B and FoxOl, reaching the same maximum value as the
controls after only 10 min. In addition, the response was less
sustained, with some signals already decreasing by 15 min.
Moreover, we observed that the ability of insulin to exclude
FoxO1 from the nuclear fraction (26) was impaired in the
LGSKO mice (Fig. LH), correlating with a less sustained insulin-
dependent FoxO1 phosphorylation. Upstream of Akt, we
observed that both basal- and insulin-stimulated tyrosine phos-
phorylation of IRS1 was decreased in LGSKO livers (Fig. 11). In
an insulin dose response, at 15 min, the depression in blood
glucose, as percentage of the starting value, was similar in con-
trol and LGSKO mice (Fig. 24). The amplitude of the insulin-
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dependent increase in the phosphorylation of Akt and Gsk3«
and - was significantly suppressed in the livers from LGSKO
mice (Fig. 2, B-D and F). FoxO1 phosphorylation likewise
tended to be less in the LGSKO mice (Fig. 2E). We conclude
that the absence of liver glycogen correlates with disturbances
in the insulin signaling pathway.

We performed a similar analysis of skeletal muscle from
LGSKO mice treated with insulin. There was a trend toward
lower basal phosphorylation, significant only in the case of
GSK3a (Figs. 3, A-C, and 4, A-C), possibly explained by lower
basal insulin levels (5). We observed no difference in the time
courses of insulin-induced phosphorylation of Akt and GSK3
(Fig. 3, A-D). The insulin dose response of Akt phosphorylation
was indistinguishable between control and LGSKO mice (Fig. 4,
A-D). Phosphorylation of GSK3, especially GSK3«, appeared
slightly less sensitive to insulin in the LGSKO animals but the
amplitude of the response was unchanged (Fig. 4, C and D).
Overall, we conclude that insulin signaling in skeletal muscle is
only minimally affected by the lack of liver glycogen.

Fat metabolism in LGSKO mice

From DEXA analysis of body composition, we observed an
increase in whole body fat in young (4 months old) and old (14
months old) LGSKO mice (Fig. 54). In young animals, this cor-
related with an elevation in epididymal fat mass that was lost in
the old mice (Fig. 5B). We previously showed (5) that liver trig-
lyceride content trended to be higher in 4-month-old LGSKO
mice with statistically significant elevations at 7 and 15 months
of age. Indeed, staining of liver sections with Oil Red O indi-
cated an age-dependent increase in fat in both CN and LGSKO
mice (Fig. 5F). Fat accumulation was more intense in the peri-
central area of the liver from CN mice and this zonation was
maintained up to 14 months, although not as clearly as at 4 or 7
months. In the LGSKO livers, we observed defective zonation
in the acinus, with more lipid deposits in the periportal area.
This ectopic fat accumulation was intensified at 7 months and
by 14 months the gradation in fat deposits between periportal
and pericentral hepatocytes was completely absent, which also
correlated with a more pronounced impairment of insulin sig-
naling at 14 months of age in LGSKO liver than in younger
animals (Fig. 5E), leading us to consider that the glucose
intolerance of LGSKO mice is linked to increased hepatic fat
accumulation. Triglyceride export from the liver, which con-
tributes to hepatic fat levels, was also measured (Fig. 5C). In
both young and old mice, there were no differences in
hepatic triglyceride export by CN or LGSKO mice, which
correlated with no changes in the mRNA levels of lipoprotein
assembly markers apolipoprotein B (Apob) and microsomal
triglyceride transport protein (Mttp) under any feeding condi-
tion (Fig. 5D).

We observed an enhanced capacity for hepatic lipogenesis
and glycolysis in LGSKO mice as judged by increased ACC1,
SREBP1c, and chREBP protein levels (Fig. 6, A and B) as well as
increased glucokinase activity (Fig. 6C). Moreover, chREBP was
more dephosphorylated, and thus activated, in the LGSKO
liver, as judged by the disappearance of the chREBP upper band
in Western blots (Fig. 6D). To test whether the electrophoretic
band shift corresponded to dephosphorylation of chREBP,
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Figure 1. In vivo insulin response during a time course is reduced in liver of LGSKO mice. 5 units/kg (body weight) of insulin was injected i.p. and the liver
was harvested after 5, 10, or 15 min. As control, saline was injected for 15 min (n = 6-7). A, % of blood glucose difference before and after injection of
insulin/vehicle in CN (black bars) and LGSKO mice (white bars). B-F, fold-change compared with CN saline of the phosphorylated form, normalized by total
corresponding protein content, of Akt (Thr-308) (Band C), GSK3« (Ser-21) (D), GSK3 (Ser-9) (E), and FoxO1 (Thr-24) (F). Panel G shows representative blots. The
marks on the right represent the molecular weight markers in kDa. Samples in B are the saline-injected group to highlight the difference between genotypes
under the basal state for Akt (Thr-308) phosphorylation, using long exposure blots for quantification. In panel C these samples are shown with the remaining
insulin stimulation time course, using the short exposure blot for quantification purposes. H, FoxO1 was found in the cytoplasm (crude extract) and the nuclear
extract of CN and LGSKO mice liver stimulated with insulin or saline for 15 min (n = 4-5). |, immunoprecipitated IRS1 from liver was immunoblotted for total
IRS1 and phosphotyrosine (n = 3). Groups with the same letter are not significantly different from each other (p < 0.05). In panel C, *, p < 0.05 versus CN by

Student’s t test.

lysates were treated with calf intestine phosphatase, which
resulted in loss of the upper band and an increase in the lower
band of CN samples (Fig. 6D). We confirmed the efficacy of the
phosphatase treatment by the reduction of the signal from
phospho-GSK3p (Fig. 6D). In other experiments, we investi-
gated whether exposure of fasted mice to glucose pushes the
liver of LGSKO mice into a more lipogenic state. Monitoring
liver glycogen stores gave the expected results (Fig. 6E). Follow-
ing glucose gavage, expression of several genes relevant to fatty
acid synthesis, ACC, fatty acid synthase, SREBPlc, and
chREBP, was significantly increased in the liver of LGSKO mice
but not in CN mice (Fig. 6F). The expression of pyruvate kinase
was similarly increased, consistent with a need for increased
glycolytic capacity to fuel enhanced lipogenesis. SREBP1c and
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chREBP protein levels were also increased (Fig. 6, G and H).
To test whether increased lipogenic factors contributed to
enhanced de novo lipogenesis, we cultured primary hepatocytes
from 3-month-old mice and monitored lipid formation from
[U-"CJacetate (Fig. 7A). Only hepatocytes from CN mice accu-
mulated glycogen, as expected (Fig. 7B). Insulin signaling, as
judged by monitoring phospho-Akt, was intact in the isolated
hepatocytes (Fig. 7, D and E), but in cells derived from LGSKO
mice the response was more transient under these conditions,
similar to insulin stimulation of the animals (Fig. 1C). More-
over, we observed a 40% increase in de novo lipogenesis in
LGSKO hepatocytes (Fig. 7C). SREBP1c protein was elevated in
LGSKO hepatocytes (Fig. 7, D and F), but not chREBP (Fig. 7, D
and G).

J. Biol. Chem. (2017) 292(25) 10455-10464 10457
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No liver inflammation in LGSKO mice

There is growing evidence connecting obesity, NAFLD, and
insulin resistance to a chronic low-grade inflammatory state in
adipose tissue and liver (27). In liver, lipid accumulation pro-
motes inflammation by activation of a pro-inflammatory
program from the Kupffer cells that in turn increases the pro-
duction of TNFa and other cytokines, enhancing hepatic
macrophage infiltration, and the activation of c-Jun N-terminal
kinase (JNK) in hepatocytes, all contributing to insulin resis-
tance. To monitor chronic inflammation in livers of LGSKO
mice, we examined several common markers. We did not
observe any increase in JNK phosphorylation, but rather a
decrease (Fig. 8, A and B). In parallel, the expression of other
inflammation markers, tumor necrosis factor a (TNFa) and the
integrin a-M/CD11b, characteristic of pro-inflammatory
macrophages, was not increased in LGSKO livers (Fig. 8C), sug-
gesting that inflammation was not inducing insulin resistance.

10458 J Biol. Chem. (2017) 292(25) 10455-10464

Discussion

In the present study, we report that the inability to synthesize
glycogen in liver impairs local insulin action by causing an early
decrease in the response of several components of the trans-
duction cascade, namely IRS, Akt, GSK3, and FoxO1l. From
the dose responses and in agreement with previous reports (28),
downstream targets such as GSK3 and FoxO1 were more sen-
sitive to insulin than Akt itself, consistent with the amplifica-
tion inherent in the protein kinase cascade. In LGSKO mice, the
basal activation states of all the signaling components were sig-
nificantly diminished and, although insulin still elicited activa-
tion, in general the degree and extent of stimulation was
decreased. Temporally, the onset of activation by insulin was
delayed and the duration reduced.

In contrast to liver, the impact of glycogen on insulin signal-
ing has been thoroughly studied in skeletal muscle (see Ref. 29
for a review). In healthy skeletal muscle, there is an inverse

SASBMB



.

~ OO

o

Hepatic glycogen, fat accumulation, and insulin resistance

s 0

m— CN b o c cf

s — b b b ] a
gZO LGSK: b (%1‘5 be |, g20
g 7]
<15 % ab  B° 15
8 310 )
210 3 a go
X X
is 305 8os

a a e =

0 A " " - 0.0 " " " n E " " "

Saline  5min 10 min 15 min Saline 5min 10 min 15 min Saline 5min 10 min 15 min

D CN Skeletal le LGSKO skeletal I
5 U/Kg Insulin 5 U/Kg Insulin

pGSK3a(S21

PGSK3B(S9
a

GSK3a/B

5 min

10 min

15 min

_Saline  _5min _ _10min _ _15min _

5 min

Figure 3. In vivo response during insulin time course is unchanged in skeletal muscle of LGSKO mice. 5 units/kg (body weight) of insulin was injected i.p.
and then skeletal muscle was collected after 5, 10, or 15 min. As control, saline was injected for 15 min (n = 6-7). Fold-change compared with CN saline of the
phosphorylated form, normalized by the corresponding total protein, of Akt (Thr-308) (A), GSK3« (Ser-21) (B), and GSK3 3 (Ser-9) (C) in CN (black bars) and LGSKO
mice (white bars). Panel D shows representative blots. The marks on the right represent the molecular weight markers in kDa. Groups with the same letter are not

significantly different from each other

(p < 0.05).

N @]

25 20
m CN ’ cd
£20]{ = Lesko dd 3 od d g @ " c
4 X15 QZ‘O bc C b
x 8 bc 3
<15 = b =15 ab
] 1.0 ab o a
210 T 21.0 a
¥ e g 2 ¢
<s be 903 Bos
a b ab 0] Q0.
a 5 abal -3
0 0
Saline 0.05 05 5Ukg Saline 005 05 5Ukg Saline 005 05 5Ukg
CN Skeletal muscle LGSKO skeletal muscle

O

Insulin (U/Kg)

Insulin (U/Kg)

Saline 0.05 0.5 5 _Saline 005 05 5

PAK(TI0B) e emw
Aktpan | - ———— - ——— -
paskaas21) MR
PGSKIB(SY) W0 - - S s e - - -
Wl ciioborcind ooy
GSK3alB | 5

50

Figure 4. In vivo response at different insulin amounts is unchanged in skeletal muscle of LGSKO mice. 0.05, 0.5, and 5 units/kg (body weight) of insulin
was injected i.p. and then the skeletal muscle was harvested after 15 min. As control, saline was injected for 15 min (n = 6-7). Fold-change compared with CN
saline of the phosphorylated form, normalized by the corresponding total protein, of Akt (Thr-308) (A), GSK3« (Ser-21) (B), and GSK33 (Ser-9) (C) in CN (black
bars) and LGSKO mice (white bars). Panel D show representative blots. The marks on the right represent the molecular weight markers in kDa. Groups with the

same letter are not significantly different from each other (p < 0.05).

relationship between glycogen content and insulin response,
where decreased glycogen enhances Akt phosphorylation and
glucose uptake (30, 31). Furthermore, lack of glycogen stores
improves whole body glucose tolerance (8). However, the mus-
cle of T2DM patients has defects in muscle GS regulation and
non-oxidative glucose disposal by insulin, but has normal insu-
lin-stimulated Akt and GSK3a phosphorylation responses (3).
These results suggest that the mechanisms by which glycogen
content influences insulin signaling are different in liver as
compared with skeletal muscle.

Compromised glucose disposal as glycogen in muscle (3, 4,
17), excess dietary carbohydrate (16), or defects in glucose pro-
duction by the liver (32) have all been associated with increased

SASBMB

hepatic lipid deposition via DNL. LGSKO mice have impaired
glucose disposal, but at 4 months of age we did not observe
increased lipid deposition in the liver. Only upon aging was fat
overaccumulated in the LGSKO liver (5). There was an age-de-
pendent progressive disruption of the hepatic zonation as
judged by histological analysis starting at 4 months. Steatosis in
liver could also be caused by impaired B-oxidation (33) or
increased dietary fat consumption (18). However, we do not
favor these explanations because gluconeogenesis, fueled by
oxidation of fat, is indeed enhanced in LGSKO mice (5). Thus,
we focused on studying DNL as a potential cause of lipid accu-
mulation. The liver of LGSKO mice had enhanced lipogenic
capacity upon refeeding, which can be explained by increased

J. Biol. Chem. (2017) 292(25) 10455-10464 10459
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expression and transcription factor levels of SREBP1c and
chREBP, which in turn regulate glucokinase, pyruvate kinase,
ACC1, and FAS gene expression. Therefore, this program
enhances DNL synergistically by increasing lipogenic enzyme
content and substrate availability through glycolysis, as previ-
ously reported (21). The LGSKO mouse parallels some aspects
of NAFLD and T2DM, displaying a mixed pattern of insulin
resistance (defective suppression of glucose production) and
sensitivity (enhanced lipid synthesis) in liver, known as the
“insulin signaling paradox” (reviewed in Refs. 14 and 34).
Although fasting fails to suppress liver lipogenesis in NAFLD
patients (13), it is effective in 4-month-old LGSKO mice. This
consideration is relevant to interpreting the results of the pres-
ent model. Hepatic fat accumulation could also be caused by
decreased lipid secretion as VLDL. Fat export from the liver of
LGSKO mice was no different from CN mice, suggesting that
increased fat deposition is most likely caused by enhanced lipo-
genesis. Also, the results indicate that initially fat from excess
glucose accumulated in white adipose tissue and with age also
in the liver in LGSKO mice. Another aspect of hepatic lipid
accumulation is its distribution along the portocentral axis of
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the liver. In NAFLD patients and/or as a result of high carbo-
hydrate diets, there is a disturbance of the acinus zonation
resulting in progressive steatosis from the pericentral to the
periportal hepatocytes (35). In the absence of glycogen synthe-
sis, the same age-dependent progression occurred along with
total triglyceride accumulation (5) and insulin resistance with-
out macrophage infiltration or inflammation. Therefore, as
suggested by Hijmans et al. (35), we can speculate that ectopic
fat accumulation in the periportal area of LGSKO liver is linked
to the defective insulin response. Furthermore, impairment of
hepatic zonation could explain how gluconeogenesis and lipo-
genesis are both enhanced in liver lacking glycogen, despite the
fact that the two pathways are mutually exclusive (15), possibly
resolving the insulin paradox (34). Ectopic fat accumulation in
periportal hepatocytes causes insulin resistance, leading to
impaired suppression of gluconeogenesis and enhanced glu-
cose production. This would result in the exposure of pericen-
tral hepatocytes to an excess of glucose (from the diet, due to
the lack of glycogen synthesis and increased gluconeogenesis)
converted into fat by enhanced lipogenesis, which requires
intact insulin signaling (36). Another factor contributing to
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*,p < 0.05 versus CN.

hepatosteatosis could be excessive uptake of circulating fatty
acids derived from white adipose tissue lipolysis (18). Short
term fasting (6 h) increases the blood non-esterified fatty acid
levels in LGSKO mice above those of CN mice (5). Moreover,
the newly synthesized pericentral lipids in the LGSKO liver
could also be exported and eventually taken up by periportal
hepatocytes, probably due to the “first-pass” effect (35), alto-
gether explaining the ectopic steatosis. Exploring the insulin
paradox in liver, Titchenell et al. (37) studied a series of genet-
ically modified mice and proposed that gluconeogenesis is
increased because elevated circulating fatty acids become a
dominant inducer of gluconeogenesis under insulin resistant
conditions, a hypothesis consistent with the metabolic condi-
tions of the present model. Alternatively, Accili and colleagues
(38) proposed that in hepatocytes there is a selective response
to insulin, DNL being activated by ~4-fold lower insulin levels
than the suppression of gluconeogenesis. This hypothesis could
also provide a satisfactory mechanism to reconcile the results
reported in this LGSKO mouse.

The exact mechanism linking the absence of liver glycogen
with disruptions of hepatic insulin signaling and enhanced lipo-
genesis remains to be established. The traditional view of the
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glycogen molecule simply as an energy store has perhaps
evolved in recent years with the recognition that a growing
number of proteins, besides the basic metabolic enzymes, are
associated with the glycogen granule (39 —41). Could the glyco-
gen particle additionally function as a regulatory complex?
Could the lack of glycogen particles cause a disturbance in the
localization of some proteins? Mislocalization of proteins that
are important for the signaling or metabolic properties of the
cell can cause disorders, including aberrant cell signaling (42).
Much more work will be needed to explore this hypothesis.

Experimental procedures
Mouse background and husbandry

Generation of Gys2'*'** control (CN) and Gys2'*/'**/Alb-
CRE (LGSKO) mice was described previously (5). We used male
mice for all experiments. All mice were maintained in temper-
ature- and humidity-controlled conditions with a 12-h light,
12-h dark cycle and were allowed food (Harlan Teckland global
diet number 2019S) and water ad libitum. Animals were main-
tained in the Association for Assessment of Accreditation of
Laboratory Animal Care approved animal facility at Indiana
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University. All procedures were approved by the Indiana Uni-
versity Animal Care and Use Committee.

In vivo insulin stimulation, fasting and glucose refeeding, and
liver triglyceride secretion experiments

Randomly fed, 3—4-month-old mice were injected between
10-11 a.m. intraperitoneally (i.p.) with insulin (HumulinR,
Lilly) at the doses and times specified before sacrifice by cervical
dislocation. Tissues were immediately harvested, frozen in liq-
uid nitrogen, and stored at —80 °C until further analyses. For
refeeding studies, 7-9-month-old mice were either fasted for
24 h, or fasted for 24 h and then given an oral bolus of glucose
(3.6 g/kg body weight) for 2 h. To analyze liver triglyceride
secretion, 300 mg/kg of body weight of Tyloxapol (Cole-Par-
mer) was injected via tail vein to 4-h fasted mice to prevent
peripheral lipolysis. Plasma samples from the tail vein were
obtained at 0, 30, 60, and 90 min after Tyloxapol injection for
analysis of triglycerides.

Primary hepatocyte isolation and de novo lipogenesis assay

Primary hepatocytes were isolated from 3-month-old mice
as described previously (43). The day after isolation, the
medium was changed to serum-free DMEM with low glucose
(4.5 mm), 1 nm dexamethasone and insulin, and 100 units/ml of
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penicillin and 0.1 mg/ml of streptomycin for 5 h (Fig. 6A4). Then
the medium was changed to high glucose (25 mm), 10 nm dex-
amethasone, 100 nM insulin, 1 microcurie/ml of [U-'*Clac-
etate, and 10% fetal bovine serum to promote de novo lipogen-
esis. After 0, 15, 60, or 180 min of incubation, cells were rinsed
with ice-cold PBS, lysis buffer was added (50 mm Tris-HCI, pH
7.48, 100 mMm NaCl, 100 mm NaF, 4 mm EDTA, 2 mM EGTA and
protease and phosphatase inhibitors, as described below), and
cells were flash-frozen in liquid N,. Hepatocytes were then
lysed by sonication for 15 s. Lipids were isolated following a
previously described method (44) and lipogenesis was moni-
tored as the incorporation of radiolabeled acetate into the lipid
pool. Glycogen was measured in hepatocytes following a
method described previously (10).

Sample preparation, biochemical and RNA analyses, and
Western blotting

Glycogen content was measured as described by Suzuki et al.
(10). Plasma triglyceride concentration was measured using an
enzymatic method (triglyceride determination kit, Sigma).
Blood glucose was assessed utilizing a Breeze2 glucometer
(Bayer). Mouse body composition was determined by DEXA
scan (45). Ten-micrometer thick frozen liver sections obtained
in embedding media (OCT, Tissue-Tek) were stained for neu-
tral lipids with Oil-Red O and counterstained with hematoxy-
lin. RNA isolation and quantitative real-time PCR was per-
formed as described by Irimia et al. (5). The fold-change in
target mRNA content normalized by 18S rRNA was calculated
as described previously (46). Glucokinase activity was mea-
sured as previously described (47). For Western blotting, tissue
samples were homogenized with a tissue-tearor in 30 volumes
of ice-cold buffer (100 mm HEPES, pH 7.5, 4 mm EDTA, 2 mm
EGTA, 20 mMm KF, 300 mm NaCl, 20% glycerol, 0.1% Igepal,
0.35% B-mercaptoethanol, 20 mm B-glycerophosphate, 2 mm
sodium pyrophosphate, 1 mm Na;VO,, 10 ng/ml of aprotinin,
10 pg/ml of leupeptin, 2 mm benzamidine, 0.5 mm PMSE), then
were sonicated for 10 s onice, rotated for 1 hat4 °C, centrifuged
at 18,000 X g for 20 min at 4 °C, and the supernatant was col-
lected. Laemmli buffer was added and the samples boiled for 10
min and stored at —80 °C. Total liver extracts obtained in NEB3
buffer with protease inhibitors were treated with 10 units/ul of
calf intestine phosphatase (New England Biolabs) at 37 °C for
1 h. To immunoprecipitate IRS1, 750 ug of protein obtained as
described above (without Igepal) were incubated with the anti-
body overnight at 4 °C under rotation and then precipitated
with Dynabeads-Protein A (Invitrogen) following the manufa-
cturer’s instructions. Fractionation of liver tissue samples was
done using the NE-PER nuclear and cytoplasmic extraction kit
(Thermo Scientific). Protein was measured in the lysates using
the Bradford reagent kit (Sigma number 6916). Immunoblots
were performed as described previously (8) using the following
antibodies: Akt pan, pAkt(Thr-308), pGSK3a/B(Ser-21/9),
FoxO1, pFoxO1(Thr-24), SAPK/JNK, pSAPK/pJNK(Thr-183/
Tyr-185), (Cell Signaling numbers 4685, 4056, 9331, 9454,
9464, 9252, and 9251, respectively), IRS-1 (Millipore#06 —248),
p-Tyrosine (PY20 BD number 610000), GSK3a/f3 and GAPDH
(Invitrogen numbers 44-610 and 39-8600, respectively),
SREBPI1c (H-160 Santa Cruz number 8984), and chREBP
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(Novus Biologicals number NB400-135B). All samples were
transferred to the same membrane to ensure similar blotting
conditions. In the figures showing representative blots, a break
between sample lanes corresponds to non-adjacent parts of the
same autoradiography film.

Statistical analyses

The results were analyzed using Statgraphics plus 5.0 (Statis-
tical Graphics Corporation, Herndon, VA). For each parame-
ter, the kurtosis and skewness were calculated to test normal
distribution. When normality was reached, multivariate analy-
sis of variance, followed by LSD post hoc test, was performed to
compare the data. When comparing two samples, Student’s ¢
test was used. All data are presented as mean * S.E.
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