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a b s t r a c t

Skeletal muscle is adapting to the needs of the body by changes of various gene expression

that control mitochondrial biogenesis, angiogenesis, and the composition of muscle fiber

types. Recently, it was revealed that PGC-1�, which is an auxiliary transcription factor,

plays a key role in the aforementioned adaptation phenomena. It means that various

signal transduction systems within muscle directly affect the expression and activation of

PGC-1� and also PGC-1s activates various programs for muscle adaptation. Therefore, this

review assessed PGC-1� to understand the reaction and adaptation phenomena of muscle

against the biological stimulus such as exercise and came to the conclusion that PGC-1�

and PGC-1� significantly affect skeletal muscle in various ways, and also have an affect on
itochondrial biogenesis

GC-1�

keletal muscle

the increase of exercise capacity, inducing of angiogenesis and the prevention of muscle

atrophy and degeneration.

© 2014 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access
. Introduction

eroxisome proliferator-activated receptor-� coactivator 1�

PGC-1�) is an auxiliary transcription activating factor (trans-
riptional coactivator), and it controls the genes related to
nergy metabolism. PGC-1� also controls mitochondrial bio-
enesis and its functions1 and it has complicated interaction
ith transcription factors, using the interaction with nuclear
ormone receptor peroxisome proliferator-activated receptor-
(PPAR-r)-�, and it controls interactions or activity level of

yclic adenosine monophosphate (cAMP) response element-

inding protein (CREB) and nuclear respiratory factors (NRFs).
lso, PGC-1� directly connects exogenous physiological stim-
lus and mitochondrial biogenesis and controls them, and it

s a main factor of deciding the type of muscle fiber.

∗ Corresponding author. Department of Physical Education, Keimyung U
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PGC-1� is structurally composed of the N-terminal
region (aa1-200), the middle region (aa200-400), and C-
terminal region (aa400-797).2 The N-terminal region includes
transactivation domain (TAD) and two auxiliary activation
factors—steroid receptor coactivator-1 (SRC-1) and CREB-
binding protein (CBP)/p300 are combined.1 The lower area
of TAD, where leucine is abundant, not only controls inter-
action with nuclear receptors activated by the ligand but
also controls interaction with various transcription factors
such as Nuclear respiratory factor 1(NRF1), myocyte enhancer
factor-2C (MEF2C), and forkhead box protein O1 (FOXO1).3–5

Its middle region of TAD is where p160 myb binding pro-
tein (p160MBP) is combined and it plays the role of limiting
PGC-1�.6 PGC-1�’s C-terminal region contains RNA recognition
motifs7 and it controls protein stability.8 The role of PGC-1� in
muscle plasticity is illustrated in Fig. 1.
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Fig. 1 – Schematic of the role of PGC-1� in muscle plasticity.
cer

PPAR

ERR�, Estrogen related receptor alpha; MEF2, myocyte enhan
peroxisome proliferator-activated receptor-� coactivator 1�;

2. Function of mitochondria and PGC-1�

Skeletal muscle comprises the biggest portion of total body
mass and is the most active part, especially when there
is an increase in physical activity; it increases mitochon-
dria’s oxidative function and thus maintains and controls
the body’s overall energy balance. To activate mitochon-
dria’s function in skeletal muscle, it is important to
activate several signal transduction mechanisms includ-
ing Ca2+-regulated CaMKIV-calcineurin/NFAT and MEF2 axis,
adrenergic/cholinergic signaling and AMP-activated protein
kinase (AMPK). Such signal/transcription mechanisms are
activating PGC-1� and it was reported that the mouse, which
had an overexpression of PGC-1� in the skeletal muscle with
gene manipulation, had an increased amount of mitochondria
and increased transition of muscle fiber into slow muscle fiber,
which has a higher oxidizing power.9

On the contrary, different mouse from previous para-
graph, which had removed PGC-1� in skeletal muscle, had
a lack of mitochondrial protein expression and amyotrophy
and with such results, we think PGC-1� not only controls
mitochondrial biogenesis but also controls gene expression.10

Studies using animals and cells reported evidence of the role
of PGC-1� on mitochondrial protein expression,11,12 Glucose
transporter 4 (GLUT4),13 Pyruvate dehydrogenase kinase 4
(PDK4),14 and angiogenesis within skeletal muscle.15 Never-
theless, there is not enough validation on whether PGC-1� is
actually playing the role of inducing exercise-induced adapta-
tion phenomenon or which area of skeletal muscle adaptation
phenomenon will be affected by the absence of functional
PGC-1�. Leick et al16 reported that although the level of expres-
sion of metabolic enzymes was reduced during a rest period
for the PGC-1�-knock out (KO) mouse, hexokinase II, aminole-
vulinate synthase 1, and cytochrome oxidase (COX) I protein
expressions were increased after endurance exercise. From

such results, Leick et al16 came to the conclusion that PGC-
1� is not an essential factor for exercise or training-induced
adaptive gene response. Also, Adhihetty et al17 reported that
factor-2; NRF, nuclear respiratory factor; PGC-1�,
�/�, Peroxisome proliferator-activated receptor.

there was no reduction of endurance exercise capacity when
a PGC-1�-KO mouse was taking a rest, even though mito-
chondrial respiratory function was decreased. However, it was
reported that the PGC-1�-KO mouse showed overactivity as
a result of the damage of the central nervous system with
abnormal circadian rhythm and AMPK activation within skele-
tal muscle was shown even during a rest.18,19 Therefore, it is
necessary to reduce potential polluting factors as much as pos-
sible, caused by PGC-1�-KO of the entire body because of the
specific destruction of genes within skeletal muscle.

Recently, the mouse was identified (PGC-1�-MKO), which
had specific PGC-1�-KO within skeletal muscle.11 The PGC-
1�-MKO mouse showed the decrease of activity and maximal
exercise capacity, the damage of muscle function and the
reduction of oxidative metabolism capacity. Although IIb-
to-IIa fiber type transition within skeletal muscle during
the voluntary activity and exercise was normal for the
PGC-1�-MKO mouse, there was weakening of the expres-
sion of endurance exercise-induced mitochondria enzymes
(cytochrome c, COX IV) and the proliferation of platelet
endothelial cell adhesion molecule-1-positive endothelial
cells.20 With such results, we think it was confirmed that PGC-
1� plays an important role in mitochondrial biogenesis and
angiogenesis caused by endurance exercise.

3. Types of PGC-1�

PGC-1� has various biological functions within diverse tis-
sues including muscle, and most of their activities are related
to oxidative metabolism. PGC-1� and PGC-1� are highly
expressed in oxidative tissues such as heart, kidney, and
muscle.21 If PGC-1� and PGC-1� are expressed, mitochondrial
biogenesis is induced and cellular respiration is increased.
For PGC-1�−/− and PGC-1�−/− animals, energy metabolism of

skeletal and heart muscle was abnormal22,23 and the PGC-
1�−/− mouse had a higher risk of heart attack because of
stress.24 If the expression within skeletal muscle was done
by gene manipulation, both PGC-1� and PGC-1� experience

dx.doi.org/10.1016/j.imr.2014.09.004
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significant increase in mitochondrial biogenesis.15,24 Gene-
anipulated muscle showed an increase of oxidizing power,

atigue-resisting ability, and endurance exercise capacity.25

PGC-1�’s methods of increasing mitochondrial biogene-
is are being revealed with various studies and it activates
uclear-encoded genes related to mitochondrial biogenesis
hrough auxiliary activation of transcription factors such as
RF-1, NRF-2, and ERR�. Such factors activate or interact with

egulatory regions of various mitochondria genes encoded
ithin nucleus. Fatty acid oxidation genes are controlled

y coactivation of nuclear receptor PPAR-�. Also, PGC-1�

ncreases the expression of Tfam, factors B1 and B2. Such fac-
ors are the proliferation and transcription control factors of
he mitochondrial genome. From a study on the gene manipu-
ation of mice, defective mitochondria was clearly shown after
liminating PGC-1� or PGC-1� in various tissues.26,27 However,
itochondria’s functions were maintained in such mice.28,29

. Type of muscle fiber and PGC-1�

ype I, which is skeletal muscle’s slow muscle fiber, and type
Ia, which is fast muscle fiber, have many mitochondria and
elatively high oxidizing power. Type IIb fiber has low density
f mitochondria and high relevant capacity. It is well know
hat PGC-1� reconfigures the fiber formation of skeletal mus-
le and in general, glycolytic type IIb fiber is reduced compared
o oxidative type I and type IIa fibers. PGC-1� within skele-
al muscle is easily expressed from both short-term exercise
nd endurance training.30–32 Until recently, PGC-1�’s biologi-
al functions on the structure and functions of skeletal muscle

as largely revealed thanks to the use of gene-manipulated
ouse model. The mouse with over-expression of skeletal
uscle-specific PGC-1� had a transition rate of 20% and 10%

n plantaris muscle, respectively, for type IIa and type I fibers

ig. 2 – Signaling pathways involved in exercise-induced PGC-1�

DP, adenosine diphosphate; ATF2, activating transcription facto
alcium/calmodulin-dependent protein kinase; ERR�, Estrogen re
inase; MEF2, myocyte enhancer factor-2C; NRF, nuclear respirato
eceptor-� coactivator 1�; PPAR�/�, Peroxisome proliferator-activa
157

of fast-twitch type IIb muscle fibers; in addition, genes related
to mitochondria oxidative metabolism were activated. Also,
resistance to fatigue was increased after providing electrical
stimulus on the separated muscle from MCKPGC-1transgenic
mouse.10

Recently, Mortensen et al33 reported that after overex-
pressing PGC-1� in skeletal muscle fiber of mice, messenger
RNA (mRNA) increase of myosin heavy chain (MHC) isoform
(MHCIb) related to the oxidation of slow muscle and mRNA
decrease of MHC isoforms (MHCIIx and MHCIIb) related to
fast muscle fibers were observed.33 Mice lacking PGC-1� had a
decreased number of mitochondria; thus, respiratory capac-
ity within slow muscle fiber was reduced and therefore a
decrease of endurance exercise capacity and resistance to
fatigue occurred.22

5. PGC-1�’s activation mechanism during
exercise

Signaling pathways are illustrated in Fig. 2. Higher signal,
which activates PGC-1�, is not clearly revealed yet but sev-
eral mechanisms were suggested—calcineurin A, CaMK, p38
MAPK, and AMPK pathways.34,35 Although the importance of
such kinases’ controlling ability of PGC-1� is not yet clearly
known, many studies reported that calcineurin and CaMK
pathways play an important role in the expression of PGC-
1�. Increased neuromuscular input and muscle contraction
from exercise express various transcription factors such as
MEF2 and CREB36 and it was reported that such phenomenon
was induced by calcineurin and CaMK.35 An increase of MEF2

expression increases the bonding of MEF2 onto the promoter
region of PGC-1� genes, and that will increase the expression
of PGC-1�. PGC-1� is directly combined to MEF2 and works as
an assistant factor in the transcription activity of genes either

regulation in skeletal muscle.
r; ATP, adenosine triphosphate; CAMKII,
lated receptor alpha; MAPK, mitogen activated protein
ry factor; PGC-1�, peroxisome proliferator-activated
ted receptor.



158

included in the characteristics of slow muscle fiber or related
to mitochondrial oxidative metabolism.36 Also, according to
the recent study of Garcia-Roves et al,37 calcineurin is not
required for the increase of exercise-induced PGC-1� and the
protein expression within mitochondria. Further studies are
necessary to clearly define the control mechanism of PGC-1�

in calcineurin and calcium signaling pathways.
Endurance exercise activates PGC-1� genes in skeletal

muscle of humans and activated PGC-1� is stimulating mito-
chondrial biogenesis with two methods.38 First, PGC-1�’s
activation becomes rapid in the early stage and after that,
a long term increase follows based on the increased expres-
sion of PGC-1�. The phenomenon of an early activity increase
was proven with various evidences and gene transcription and
expression of first mitochondrial protein is increasing in a
similar speed or faster than PGC-1� expression caused by exer-
cise stimuli. Second NRF-1 and NRF-2 will combine with their
response promoters prior to PGC-1� expression. Third, most
of PGC-1� will be found in the cytoplasm of skeletal muscle
during a rest period but it will move into the nucleus dur-

ing exercise. To summarize, exercise rapidly activates PGC-1�

prior to the increase of PGC-1� expression and thus increases
mitochondrial biogenesis.39

Table 1 – Exercise-induced PGC-1� regulation in skeletal muscl

Exercise type Exercise program Subjects

Running exercise 4 wk C57BL/6 mice

Wheel running 1, 2, 4, 6, 8 wk Female ICR m

Ladder climbing High intensity
3 d/wk
8 wk

Middle-aged
male rat

Treadmill running 0.8 or 1.2 km/h
50 min/d
5 d/wk
8 wk

Middle-aged
male rats

Aerobic exercise High intensity Trained versu
untrained ma

Cycle ergometer 85% HRmax
30 min/d
5 d/wk
6 wk

Healthy hum

Swimming exercise Low-intensity
6 h/d
1 d

4–5-week-old
male
Sprague-Daw
rats

Treadmill running
versus swimming

Run (13 m/min, 3
h × 2 sessions,
45 min rest)
Swim (3 h × 2
sessions, 45 min
rest)
1 day

5–6-week-old
male rats

AMPK, AMP-activated protein kinase; PGC-1�, peroxisome proliferator-a
transporter 4; SIRT-1, Silent Information Regulator 1; TFAM, Mitochondrial
Integr Med Res ( 2 0 1 4 ) 155–160

Recently, two types of protease [p38 mitogen acti-
vated protein kinase (p38 MAPK), AMPK] were found
that activate PGC-1� during exercise.40,41 Sarcolemma T-
tubule’s nerve is stimulated during muscle contraction, and
calcium/calmodulin-dependent protein kinase (CAMKII) is
activated when calcium ion concentration in cytoplasm is
increased by the secretion of calcium from the sarcoplas-
mic reticulum caused by muscle fiber contraction; CAMKII
is p38 MAPK’s higher signaling molecule and plays the role
of connecting between muscle activity and phosphorylation
of PGC-1�.39 Another important signaling molecule is AMP,
which is generated by the hydration of adenosine triphos-
phate (ATP) and adenosine diphosphate (ADP) because of
muscle contraction. On the one hand, when AMP levels are
increased in cells, AMPK is activated and thus mitochondrial
biogenesis42 and phosphorylation of PGC-1� are increased.41

On the other hand, p38 MAPK is a signaling molecule that plays
the role of maintaining and increasing mitochondrial biogen-
esis after the initial stage of endurance exercise. We can see
that p38 MAPK not only activates PGC-1� with exercise stimuli

but also increases the expression of PGC-1� because there is
an increase of PGC-1� promoter activity if p38 MAPK mecha-
nism was stimulated, and also, there is no change in activity

e of rodents and humans.

Effects (in skeletal muscle) References

↑PGC-1�

↓miR-696
Aoi et al45

ice ↑PGC-1�, ↑GLUT4,
↑mitochondrial
proteins: soleus, plantaris
muscle
↔PGC-1�, ↑GLUT4,
↑mitochondrial proteins:
tibialis anterior

Ikeda et al46

↑PGC-1�

↑AMPK
↑Mitochondria biogenesis

Kim et al47

↑SIRT-1
↑AMPK
↑PGC-1�

↑Metabolic enzymes

Oliveira et al48

s
n

PGC-1�: trained = untrained
TFAM: trained > untrained
TFB2M: trained > untrained

Popov et al49

an ↑PGC-1�

↑Lipogenesis
Summermatter
et al50

ley

↑PGC-1�

↑PGC-1 mRNA expression
↑AMPK

Terada et al51

↑PGC-1�

- Running: only in soleus
muscle
- Swimming: only in
epitrochlearis

Terada et al52

ctivated receptor-� coactivator 1�; miR, microRNA; GLUT4, glucose
transcription factor A; TFB2M, Transcription factor B2 mitochondrial.

dx.doi.org/10.1016/j.imr.2014.09.004
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hen p38 MAPK inhibitor was used.34 Activating transcrip-
ion factor 2 (ATF2) and myocyte enhancer factor 2 (MEF2) are
GC-1�’s higher transcription factors and they are activated
y phosphorylation of p38 MAPK.43

Summarizing all the previous studies, mitochondrial bio-
enesis is increased by PGC-1� activation prior to the
xpression of PGC-1� in the early stage of endurance exercise,
nd long-term endurance exercise activates PGC-1� tran-
cription factor by stimulating p38 MAPK and thus increases
GC-1� expression and therefore increases mitochondrial bio-
enesis. Although various evidence data were reported, a clear
onclusion remains elusive and thus we believe continuous
tudies will be necessary.

Table 1 details exercise-induced PGC-1� regulation in skele-
al muscle.

. Conclusion

GC-1�’s expression and activation mechanism are variously
eported but the control mechanism of a response process in
keletal muscle caused by outside stimuli is still unclear. It is
lso unclear how PGC-1� is induced when oxygen and nutrient
re lacking and what mechanism is inducing PGC-1� during
xercise, and those are still problems that need to be solved.
dditional studies are necessary on what method PGC-1� is
sing to combine such complicated signals.

We think the control after the transcription of PGC-1s
lso plays an important role. PGC-1�’s role in endurance
raining-induced angiogenesis and mitochondrial biogenesis
nd muscle fiber type transition needs to be clearly defined.
hanges in skeletal muscle caused by PGC-1� affect other tis-
ues, and studies are actively ongoing on the question of the
ffects and what organs are involved in this mutual commu-
ication, and some of anti-inflammatory functions of PGC-1�

re also being revealed. However, the most significant finding
s that PGC-1� and PGC-1� affect skeletal muscle in various
spects; the effect on the increase of exercise capacity, induc-
ng angiogenesis, and the prevention of muscle atrophy and
egeneration is obvious.

As a result, understanding biological roles of PGC-1s on
keletal muscle adaptation will help in the future treatment
f disease in skeletal muscle by PGC-1s induction using med-

cations; efforts from various angles will be necessary.
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