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Background: Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among

children. The present study aimed to investigate cell death induced by mangiferin in RD

cells.

Methods: The Inhibitory concentration (IC50) value of mangiferin was determined by an MTT

(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced

by mangiferin against RD cells was determined through lactate dehydrogenase and nitric

oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant

status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore,

acridine orange/ethidium bromide staining was performed to determine early/late apoptotic

event.

Results: Mangiferin induced cell death in RD cells with an IC50 value of 70 �M. The cyto-

toxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage

and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent

increase in reactive oxygen species generation, intracellular calcium levels with subsequent

decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase,

and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data

from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear

condensation along with the occurrence of a late event of apoptosis.
Conclusion: Results of the present study shows that mangiferin can act as a promising chemo-

preventive agent against RD by inducing sustained oxidative stress.
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. Introduction

ancer continues to represent the largest cause of mortality in
he world.1 Rhabdomyosarcoma (RD) is the most common type
f cancer in children under the age of 15 years, and embroy-
nal RD is its most common subtype that develops in the head
nd neck region and the genitourinary tract. Treatment of this
ancer involves a combination of chemotherapy and radia-
ion along with surgery. Chemotherapeutic agents currently
vailable for treating RD have been found to possess several
oxic effects such as hepatotoxicity and cardiotoxicity.2,3 An
xtremely promising strategy employed for cancer prevention
oday involves the use of natural compounds. Several stud-
es showed the protective or curative effect of phytochemicals
gainst various diseases including cancer, and in-depth stud-
es are being carried out to understand their mechanism of
ction. Among them, polyphenols, which are naturally present
n plants, are of great interest as chemopreventive agents.4

Mangiferin (2-�-D-glucopyranosyl 1-1,3,6,7-tetrahydroxy
anthone), a xanthone C-glucoside from Mangifera indica L.

Anacardiaceae), is consumed worldwide as a fruit, and as
culinary and flavoring agent. Fruits, bark, and leaves of M.

ndica have been reported to possess diverse medicinal prop-
rties and are widely used in several medicinal preparations.
angiferin has been reported to contain antioxidant, anti-

umor, antiviral, antibacterial, antihyperglycemic, analgesic,
nti-inflammatory, antidiarrheal, anti-HIV, immunostimu-
ant, and immunomodulatory properties.5–11

The antioxidant activity of mangiferin is attributed to
ts being a polyphenol.12 Anticarcinogenic potential of

angiferin in bowel carcinogenesis9 has been reported ear-
ier. Mangiferin inhibited proliferation and induced apoptosis
n K562 leukemia cells13 and HL-6014 in a dose- and time-
ependent manner. Previous reports show that studies on the
nticancer activities of polyphenols against RD are sparsely
eported. Since mangiferin is a well-established pharma-
ophore, the present study was aimed at investigating the
ossible anticancer activity of mangiferin against RD cells.

. Methods

.1. Chemicals

angiferin, 2,7-dichlorodihydrofluorescein diacetate (DCF-
A), Fura 2-AM, Rhod 2-AM, and propidium iodide were
urchased from Sigma Aldrich Chemicals Private Limited,
angalore, India. Carbonyl cyanide 4-(trifluoromethoxy)
henylhydrazone (CCCP) and 3,3′-dihexyloxacarbocyanine

odide (DiOC6) were procured from Calbiochem, La Jolla,
A, USA. Dulbecco’s modified eagles medium, fetal bovine
erum, trypsin, antibiotics (penicillin, streptomycin, and gen-
amycin), and other fine chemicals were purchased from the
imedia Laboratories Private Limited, Mumbai, India.
.2. Cell culture and solubility

D cells were procured from the National Centre for Cell Sci-
nce, Pune, India. The cells were maintained in DMEM + 10%
67

fetal bovine serum supplemented with antibiotics (100
units/mL penicillin, 30 �g/mL streptomycin, and 20 �g/mL
gentamycin). The cells were grown in a CO2 incubator (5%
CO2, 37 ◦C). Cells at 80% confluency were trypsinized and used
for assays. Mangiferin was dissolved in dimethyl sulfoxide;
the final solvent concentration used in culture did not exceed
0.01%.

2.3. Cell viability

Cell viability was determined by an MTT assay.15 Cells were
seeded at a density of 104 cells/well and allowed to attach for
1 hour in a CO2 incubator. Next, the cells were treated with
mangiferin at various concentrations (10 �M, 30 �M, 50 �M,
70 �M, 90 �M, and 110 �M) for 24 hours. After the treatment
schedule, MTT was added (5 mg/mL) and the cells were incu-
bated for 5 hours. The formed purple formazon crystals were
solubilized using dimethyl sulfoxide, and absorbance was
measured at 570 nm in a spectrophotometer (Bio-Tek Instru-
ments, Winooski, VT).

2.4. Treatment schedule

The treatment groups were as follows: Group I was the control
group; Group II consisted of cells treated with mangiferin at
a concentration of 50 �M, Group III consisted of cells treated
with mangiferin at 70 �M, and Group IV consisted of cells
treated with mangiferin at 90 �M. Cell count in each group
was 5 × 106. After attachment, the cells were treated with dif-
ferent concentrations of mangiferin (as mentioned in different
treatment groups) and incubated for 24 hours.

After treatment, the supernatant was used for estimat-
ing the release of lactate dehydrogenase (LDH) and nitric
oxide (NO). The cells were trypsinized and suspended in
Tris–EDTA phenyl methyl sulfonyl fluoride buffer used for esti-
mating the levels of DNA, RNA, protein, lipid peroxidation, and
nonenzymic antioxidant [glutathione (GSH)], and activities of
enzymic antioxidants such as super oxide dismutase, catalase,
glutathione-S-transferase.

2.5. Cytostatic effect

Cytostatic effect of mangiferin on RD cells was determined
by estimating the levels of DNA, RNA, and protein. The cell
suspension was treated with 5% Trichloro acetic acid (TCA)
to precipitate nucleic acids and proteins. The precipitate was
washed with 10% TCA (ice cold) and 95% ethanol to remove
lipids. To the resulting precipitate 5% TCA was added and the
mixture was incubated at 70 ◦C for 15 minutes. After centrifu-
gation (10,000 g for 10 minutes), the supernatant was used for
DNA and RNA estimation.

2.6. Estimation of DNA

To the nucleic acid extract, 1N perchloric acid and dipheny-
lamine reagent were added and the mixture was incubated at

95 ◦C for 10 minutes. A blank and the standard (calf thymus
DNA) samples were also tested concurrently. Absorbance was
read at 640 nm, and the values were expressed as �g/5 × 106

cells.16



monitored at the excitation wavelength of 510 nm and emis-
sion wavelength cycling between 340 nm and 380 nm using
68

2.7. Estimation of RNA

To the nucleic acid extract, 5% TCA was added to make up
the volume to 2.0 mL. To this, 3.0 mL of oricinol ferric chloride
reagent was added and the mixture was incubated at 95 ◦C for
20 minutes. Absorbance was read at 640 nm, and values were
expressed as �g/5 × 106 cells Rawal et al.17

2.8. Estimation of protein

Protein was estimated following the procedure described by
Lowry et al.18

2.9. Release of LDH

The supernatant from the different treatment groups was
used for the assay of LDH, as described by Nieland.19 The prin-
ciple involves conversion of lithium lactate to pyruvate, and
the color developed in the presence of Nicotinamide Adenine
Dinucleotide (NAD) and dinitrophenyl hydrazine was mea-
sured at 420 nm. The results were expressed as % LDH release
compared to the control group.

2.10. Nitric oxide assay

The nitrite concentration in the supernatant was measured
using Griess reagent at 540 nm.20

2.11. Estimation of protein, and nonenzymic and
enzymic antioxidant status

Cell extracts were prepared by sonication using a buffer
(50 mM Tris, 5 mM EDTA, 10 �g/mL phenyl methyl sulfonyl flu-
oride, pH 7.6). After sonication, the extract was centrifuged
(4000 × 2500 g, 5 minutes, 4 ◦C), and the supernatant was iso-
lated and used for the assays. Protein concentration was
determined by Lowry et al.18

2.12. Total reduced GSH

Estimation of the total reduced GSH was carried out following
the procedure described by Moron et al.21 After precipitation
of protein using TCA, the supernatant was treated with DTNB
(5,5′-dithiobis-(2-nitrobenzoic acid)) and absorbance was mea-
sured at 412 nm. The GSH content was determined using
the standard GSH concentration and expressed as nmoles of
GSH/mg of protein.

2.13. Antioxidant enzyme activities
(glutathione-S-transferase, catalase, and superoxide
dismutase)

Glutathione-S-transferase activity was determined accord-
ing to Habig et al.22 The reaction mixture contained 50 �g
protein in 0.1 M phosphate buffer (pH 6.5), 1 mM 1-chloro-2,4-
dinitrobenzene (CDNB), and 1 mM GSH in a final volume of

3 mL. The change in absorbance (340 nm) was measured at
every 30 seconds for 3 minutes in a UV–visible double-beam
spectrophotometer. The enzyme activity was expressed
as nmoles of CDNB conjugated/min/mg protein. Catalase
Integr Med Res ( 2 0 1 5 ) 66–75

activity was determined following the method described by
Aebi.23 The reaction mixture contained 50 �g of protein in
phosphate buffer (50 mM, pH 7.0). H2O2 (10 mM) was added
to initiate the reaction. Change in absorbance (240 nm) was
measured every 30 seconds for 3 minutes. The enzyme activity
was expressed as �moles of H2O2 utilized/min/mg protein.
Superoxide dismutase activity was measured as described by
Marklund and Marklund.24 The assay mixture contained 50 �g
of protein in 50 mM Tris-cacodylic acid buffer (pH 8.2), and
pyrogallol solution (0.2 mM) and EDTA (1 mM). Auto-oxidation
of pyrogallol was measured at 420 nm every 30 seconds for
3 minutes (1 unit = the amount of enzyme required to inhibit
pyrogallol auto-oxidation by 50%).

2.14. Estimation of lipid peroxidation

Lipid peroxidation was determined according to Okhawa
et al.25 To the cell extract were added 8% Sodium dodecyl sul-
fate (SDS) and 0.8% Thiobarbituric acid (TBA) in 20% acetic
acid. The final reaction volume was made up with distilled
water and the mixture was heated at 90 ◦C for 60 minutes in a
water bath. The tubes were allowed to cool; butanol/pyridine
mixture was added to these and shaken vigorously. An
organic layer was isolated after centrifugation at 4000 rpm for
10 minutes and measured at 532 nm. The lipid peroxide con-
tent was expressed as nmoles of TBA reactants/mg of protein.

2.15. Measurement of intracellular reactive oxygen
species generation

Cells at a density of 1 × 105 cells/well were incubated with
25 �L of DCF-DA for 30 minutes. After 30 minutes, the cells
were incubated with different concentrations of mangiferin
for different time periods. The samples were centrifuged at
1500 rpm for 10 minutes. To the cell pellet, 1.0 mL of phos-
phate buffered saline (PBS) was added and fluorescence
emission was measured at the excitation (480 nm) and emis-
sion (520 nm) wavelengths using a Hitachi spectrofluorimeter
(Hitachi Co., Tokyo, Japan).26 The whole experiment was per-
formed in dark condition. The values were compared with
those of the control group and expressed as % DCF fluores-
cence.

2.16. Measurement of intracellular calcium levels

Intracellular calcium ([Ca2+]i) was analyzed as described by
Sul et al.27 The cells at a density of 1 × 106 cells/well were
treated with different concentrations of mangiferin and incu-
bated for 24 hours. After the treatment schedule, 5 �M Fura
2-AM in calcium buffer was added and the mixture was further
incubated for 1 hour. Cells were washed with PBS, trypsinized,
and suspended in 1.0 mL PBS. Fluorescence emission was
a fluorimeter. The [Ca2+]i level is proportional to the ratio of
intensities at 340 nm and 380 nm. The values are expressed as
% Fura 2-AM fluorescence when compared with the control
group.

dx.doi.org/10.1016/j.imr.2014.09.006
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Fig. 1 – Cytotoxic effect of mangiferin on rhabdomyosarcoma cells. (A) Cell viability by MTT assay: Cell viability was
expressed in percentage while compared with the control group (IC50 = 70 �M). (B) LDH leakage: Mangiferin caused a
dose-dependent increase in LDH release. Results were expressed as % LDH leakage when compared with the control group.
(C) Nitrite release: A dose-dependent increase in nitrite release was observed when compared with the control group.
Results were expressed as nmoles of nitrite released. Results shown are mean ± SD (n = 6).
Significant differences were indicated as follows:
* p < 0.01.
*** p < 0.001.
Group I, control group; Group II, 50 �M mangiferin group; Group III, 70 �M mangiferin group; Group IV, 90 �M mangiferin
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.17. Measurement of mitochondrial calcium levels

itochondrial Ca2+ ([Ca2+]m) levels were analyzed using the
hod 2-AM (mitochondrial Ca2+-sensitive fluorescent dye)
old/warm incubation protocol.28 Cells (1 × 106 cells/well)
ere treated with different concentrations of mangiferin and

ncubated for 24 hours. After 24 hours, the cells were washed
n PBS and loaded with Rhod 2-AM (1 �M) for 120 minutes
t 4 ◦C, followed by incubation at 37 ◦C for 30 minutes. After
ncubation, the cells were washed with PBS, trypsinized,
nd suspended in 1.0 mL PBS. Mitochondrial calcium levels
ere detected with a fluorescence spectrophotometer (exci-

ation/emission: 533/576 nm). The values are calculated as
relative Rhod-fluorescence as compared to the control

roup.

.18. Measurement of mitochondrial membrane

otential (� M)

he cells (1 × 106 cells/well) were treated with different con-
entrations of mangiferin and incubated for 24 hours. After
ard deviation.

24 hours, the cells were washed with PBS and incubated with
50 nM DiOC6

3 at 37 ◦C for 30 minutes. Simultaneously a posi-
tive control of CCCP (50 �M; carbonyl cyanide m-chlorophenyl
hydrazone) was maintained. CCCP was added to the positive
control group 15 minutes prior to the addition of DiOC6.3 DiOC6

was removed and the cells were suspended in 1.0 mL PBS.3 The
readings were taken at an excitation wavelength of 488 nm and
an emission wavelength of 500 nm in a fluorimeter.29 The val-
ues are expressed as % relative fluorescence as compared to
the control group.

2.19. Analysis of early/late apoptotic event: Acridine
orange/ethidium bromide staining

The cells (1 × 106 cells/well) were treated with different
concentrations of mangiferin and incubated for 24 hours at
37 ◦C. Next, the cells were washed with PBS, and acridine

orange/ethidium bromide (AO/ETBR) was added (1 �g/mL
each). After 30 minutes, the cells were pelleted down, sus-
pended in PBS and mounted on a slide. Images were captured
by an Olympus fluorescent microscope using a green filter
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Fig. 2 – Mangiferin induces ROS generation and [Ca2+]i levels in RD cells. (A) Time course—ROS generation: Mangiferin
caused an early rise in ROS generation (1 hour) when compared with the control cells. (B) Dose-dependent ROS generation:
A dose-dependent increase in ROS accumulation was observed at 24 hours. Results were expressed as % ROS generation. (C)
[Ca2+]i levels: A dose-dependent increase in intracellular calcium was observed during mangiferin treatment. Results were
expressed as % relative Fura 2-AM fluorescence. Results shown are mean ± SD (n = 6).
Significant differences were indicated as follows:
* p < 0.05.
** p < 0.01.
*** p < 0.001.
[Ca2+]i, intracellular calcium levels; DCF, 2,7-dichlorodihydrofluorescein; Group I, control group; Group II, 50 �M mangiferin
group; Group III, 70 �M mangiferin group; Group IV, 90 �M mangiferin group; NS, nonsignificant; RD, rhabdomyosarcoma;

ROS, reactive oxygen species; SD, standard deviation.

(excitation wavelength 536 nm and emission wavelength
617 nm).30

2.20. Statistical analysis

Data were analyzed using Student t test. Differences in
p values (* p < 0.05, ** p < 0.01, and *** p < 0.001) were con-
sidered as statistically significant. Data are expressed as
mean ± standard deviation.

3. Results

3.1. Mangiferin induces cytotoxicity by LDH and NO
release

To assess the cytotoxicity, cells were treated with mangiferin
for 24 hours, and the cell viability was determined using an
MTT assay. Mangiferin caused cell death dose dependently.

IC50 value was found to be 70 �M, which is significantly
(p < 0.001) different from that of the control group (Fig. 1A).
Further experiments were carried out with control–untreated
cells (Group I), 50 �M mangiferin (Group II), 70 �M Mangiferin
(Group III), and 90 �M mangiferin (Group IV). Loss of cell mem-
brane integrity induces the release of membrane-bound LDH
into the cell culture medium, which is directly related to cyto-
toxicity. Nitrite is the stable end product of NO. NO can regulate
many physiological processes in vivo and in vitro through S-
nitrosothiols, which cause damage to DNA, protein, and lipid
molecules, ultimately leading to apoptosis.31 Fig. 1B, 1C shows
a dose-dependent increase in LDH and NO concentrations
when compared with the control group.

3.2. Mangiferin caused [Ca2+]i release and
accumulation of reactive oxygen species in RD cells

Oxidative stress and changes in [Ca2+]i can induce mitochon-
drial pore opening through oxidization of membrane protein
thiol groups. We therefore used DCF-DA and Fura 2-AM fluo-
rescent dye to measure the concentration of reactive oxygen
species (ROS) generated and [Ca2+]i levels, respectively, by the

spectrofluorimetric method. The rise in ROS level was evident
as early as 1 hour of addition of the dye, and increased accu-
mulation of ROS was observed at 24 hours in a dose-dependent
manner when compared with the control group (Fig. 2A, 2B).

dx.doi.org/10.1016/j.imr.2014.09.006
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Table 1 – Mangiferin dose dependently affects levels of
biomolecules in RD cells*

Group DNA RNA Protein

I 5.3 ± 0.7 7.4 ± 1.4 92.5 ± 5.1
II 4.1 ± 0.4*** 6.7 ± 1.2** 72.5 ± 4.8***

III 3.2 ± 0.6*** 5.5 ± 1.1*** 58.5 ± 4.4
IV 2.1 ± 0.5 3.9 ± 0.5 42.3 ± 4.2

Values are expressed as �g/5 × 106 cells. Results shown are
mean ± SD (n = 6). Statistical analysis of the data was performed
using the Student t test.
∗ Statistical significance was obtained when groups treated with

different concentrations of mangiferin were compared with the
control group.

∗∗ p < 0.05.
∗∗∗ p < 0.01.

p < 0.001.
Group I, control group; Group II, 50 �M mangiferin group; Group
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m
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[
g
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dose-dependent increase in the levels of [Ca2+]i levels was
bserved when compared with the control group (Fig. 2C).

.3. Mangiferin enhanced [Ca2+]m and disrupted
itochondrial membrane potential (� M) in RD cells

e next determined whether mangiferin causes an increase
n mitochondrial Ca2+ concentrations using Rhod 2-AM. Fig. 3A
hows a dose-dependent increase in [Ca2+]m when compared
ith the control group. DiOC6 is a carbocyanine derivative with

hort alkyl tails.3 It decreases fluorescence by accumulation on
yperpolarized membranes.3 Fig. 3B shows a dose-dependent

oss of mitochondrial membrane potential when compared
ith the control group.

.4. Mangiferin causes an imbalance in lipid
eroxidation and antioxidant status

ncreased generation and accumulation of ROS damages
embrane phospholipids and also causes an imbalance in

he antioxidant status of the cells. Damage to the phos-
holipids initiates lipid peroxidation. Mangiferin caused a
ignificant increase in Thiobarbituric acid reactive substances
TBARS) levels in a dose-dependent manner. GSH is the major
ntracellular nonprotein thiol, and its redox status is criti-
al for various biological events.32 In mangiferin-treated cells,
here was a significant reduction in the levels of GSH in

dose-dependent manner (Table 1). Antioxidant enzymes
revent oxidative stress by their defense mechanisms. The

resent study showed that mangiferin treatment significantly
ecreased the antioxidant status in a dose-dependent manner

Table 1).

ig. 3 – Mangiferin modulates [Ca2+]m and induces loss of mitoch
aused significant changes in [Ca2+]m in a dose-dependent mann
uorescence. (B) Mitochondrial membrane potential (� M): A do
bserved during mangiferin treatment. The cells were treated wi
ean ± SD (n = 6).

ignificant differences were indicated as follows:
p < 0.05.

* p < 0.01.
** p < 0.001.
Ca2+]m, mitochondrial calcium levels; CCCP, carbonyl cyanide 4-
roup; Group II, 50 �M mangiferin group; Group III, 70 �M mangi
onsignificant; SD, standard deviation.
III, 70 �M mangiferin group; Group IV, 90 �M mangiferin group; RD,
rhabdomyosarcoma; SD, standard deviation.

3.5. Effect of mangiferin on the levels of biomolecules
(DNA, RNA, and protein)

In the presence of ROS, phenolic compounds undergo redox
cycling and form phenoxyl radicals. These compounds
cause damage to various biological molecules inside the
cell.33 Table 2 shows a significant decrease in the levels of
biomolecules (DNA, RNA, and protein) in mangiferin-treated
cells.
3.6. Mangiferin induces apoptosis in RD cells

AO/ETBR double staining was performed to identify the cell
death induced by mangiferin (early or late apoptotic/necrosis;

ondrial membrane potential. (A) [Ca2+]m levels: Mangiferin
er. Results were expressed as % relative Rhod 2-AM

se-dependent significant loss of membrane potential was
th 50 �M CCCP as a positive control. Results shown are

(trifluoromethoxy) phenylhydrazone; Group I, control
ferin group; Group IV, 90 �M mangiferin group; NS,
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Table 2 – Effect of mangiferin on antioxidant status and lipid peroxidation levels

Group¶ GSHa SOD† CAT‡ GST LPO||

I 32.5 ± 2.7 30.6 ± 1.9 23.4 ± 1.5 25.6 ± 2.5 5 ± 0.51
II 29.5 ± 2.1** 26.4 ± 1.7** 21.4 ± 1.2* 21.6 ± 2.2** 14 ± 0.63*

III 24.5 ± 1.7*** 20.6 ± 1.9*** 15.4 ± 1.1** 17.6 ± 2.1** 22 ± 0.47**

IV 21.5 ± 1.9*** 17.6 ± 1.8*** 11.4 ± 1.5*** 14.3 ± 1.8*** 27 ± 0.12**

a GSH content was expressed as nM of GSH/mg of protein.
† SOD 1 U is the amount of enzyme required for 50% inhibition of pyrogallol auto-oxidation.
‡ Catalase 1 U is the enzyme that consumes 1 nmole H2O2/minute.

GST 1 U represents the enzyme that conjugates 1 �mole CDNB/min.
|| LPO was expressed as TBA reactants (nM)/mg of protein.

¶ Statistical significance was obtained when different concentrations of mangiferin-treated groups were compared with the control group.
∗ p < 0.05.

∗∗ p < 0.01.
∗∗∗ p < 0.001.

up; G
ation
CAT, catalase; Group I, control group; Group II, 50 �M mangiferin gro
GSH, glutathione; GST, glutathione-S-transferase; LPO, lipid peroxid

Fig. 4). Control cells (Fig. 4A) were stained uniformly, which
appeared as green nuclei with intact nuclear membranes.
Cells treated with 50 �M mangiferin showed nuclear conden-
sation (Fig. 4B). Cells treated with 70 �M (Fig. 4C) and 90 �M
(Fig. 4D) mangiferin showed late apoptosis, while the nuclei
appeared orange with chromatin condensation and intranu-
cleosomal formation. Fig. 5 shows the percentage of viable and
apoptotic cells during mangiferin treatment.

4. Discussion

RD is the most invasive tumor that targets the head and neck
regions.34 Attempts to alleviate this cancer have led to the
development of certain drugs, but these drugs are found to
cause various toxic effects. Chemotherapy is the only way
to efficiently treat these cancers without any side effects.
In recent years, it has been documented that polyphenols
and flavanoids possess antioxidant or pro-oxidant activities,
depending on the environment in which they are present
as well as the concentration used. These compounds are
excellent targets for chemoprevention because they act as
pro-oxidants in an environment with an excessive amount
of ROS, as in cancer cells. Mangiferin isolated from the bark
of M. indica can act as a pro-oxidant at a high concentration,
which can efficiently target cancer cells.35 The present study
showed that mangiferin induced cell death in RD cells with an
IC50 value of 70 �M. LDH is a cytosolic enzyme, and membrane
damage due to cytotoxicity leads to an increase in the release
of this enzyme from the cell. The increase in the LDH during
mangiferin treatment implies that mangiferin causes severe
damage to cells, leading to cytotoxicity.

NO plays a major role in cellular signaling; however,
at higher concentrations it exhibits cytotoxic effects. NO
causes nitration and nitrosylation of proteins and damages
DNA.36 In addition, one of the most sensitive targets of NO
is GSH. Reports suggest that NO induces GSH depletion,

thereby sensitizing the cells for NO-mediated cytotoxicity.37

Increased levels of GSH caused resistance of RD to vincristine,
which was overcome by buthionine sulfoximine-mediated
GSH depletion.38 A significant increase in NO levels with
roup III, 70 �M mangiferin group; Group IV, 90 �M mangiferin group;
; SOD, superoxide dismutase.

concomitant depletion in levels of GSH might be attributed to
cell death induced by mangiferin in RD cells.

The mangiferin-induced early rise in ROS levels was found
to increase in a sustained manner, suggesting it to be an
important mediator in mangiferin-induced cell death. Ear-
lier reports suggest that under the conditions of enhanced
mitochondrial ROS generation, mangiferin gives rise to the
oxidized products of semiquinone radicals and quinines,
which further potentiate the oxidative stress.35 The gener-
ated ROS attack various biomolecules in the cells, of which
polyunsaturated fatty acids in the membrane are sensitive
and prone to oxidation. These ROS act on the methylene
group present between the double bonds of the Polyunsat-
urated fatty acids (PUFA) and initiate lipid peroxidation.39

These fatty acid oxidation products exacerbate stress condi-
tions inside the cells. Normally, the cells are equipped with the
antioxidant defense mechanism to efficiently remove these
toxic substances generated by free radical attack. The antiox-
idant enzymes superoxide dismutase, catalase, and GSH are
involved in the cellular defense and protect cells against free
radical damage. It has been documented that, in its defense
mechanism to prevent the oxidative stress, GSH forms adducts
with oxidation products of mangiferin, leading to further gen-
eration of ROS.35,40 Similar reactions have been reported in
quercetin, involving the formation of quercetin glutathionyl
adducts.41 Quercetin glutathionyl adduct-induced damages
to DNA and protein have been documented in case of can-
cer cells.42 An imbalance in redox homeostasis enhances the
accumulation of free radicals.43 Thus, the observed reduction
in the antioxidant status might be explained as the inability
of the cells to counteract the overwhelmed oxidative stress
situation created by mangiferin.

Ca2+ levels regulate various cellular signaling, so mainte-
nance of calcium levels is a perquisite for normal cellular
processes. Because mitochondria have the highest Ca2+ accu-
mulation capacity, increased levels of [Ca2+]i levels modulate
mitochondrial calcium homeostasis.44 In addition, increases
in Ca2+ levels are sensitive to various events occurring in

mitochondria, such as ATP production, ROS generation, and
mitochondrial membrane potential, which in turn lead to
the release of proapoptotic proteins.45 Increases in ROS and
[Ca2+]i levels are implicated in oxidizing the thiol interactions
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Fig. 4 – Mangiferin induces late apoptotic event in rhabdomyosarcoma cells. Early/late apoptotic event or necrosis induced
by mangiferin in RD cells was analyzed by acridine orange/ETBR staining [magnification 100× and 400×; scale bar: 100×
(10 �m); 400× (50 �m)]. (A) Control cells show bright green nuclei with intact plasma and nuclear membrane. (B) Cells treated
with 50 �M mangiferin show minimal cell damage with nuclear condensation. (C) Cells treated with 70 �M mangiferin show
cells with late apoptosis with intranucleosomal DNA (white arrows). (D) Cells treated with 90 �M mangiferin show late
apoptotic event, with nuclei appearing in orange with condensed chromatin (blue arrows) and intranucleosomal DNA
(white arrows).
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TBR, ethidium bromide; RD, rhabdomyosarcoma.

n mitochondrial membrane, leading to the loss of mito-
hondrial membrane potential. One of the early events in
poptosis includes dissipation of mitochondrial membrane
otential. In the present study, the loss of mitochondrial mem-
rane potential was associated with an increase in [Ca2+]i and
OS generation. The present findings of mangiferin-induced
xidative stress corroborate with earlier observations of Pardo-
ndreu et al.35

Loss of mitochondrial membrane potential subsequently
46
eleases apoptotic proteins and executes cell death. Mor-

hological changes during apoptosis can be studied well using
uorescent staining techniques. Depending on the fluores-
ent properties of fluorochromes, it is possible to characterize
the mode of cell death (early or late apoptosis/necrosis). Fluo-
rochromes such AO and ETBR have specificity for nucleic acids;
however, AO can enter into viable and apoptotic cells, while
ETBR can enter only into the cells with late apoptosis and
necrosis. Viable cells stained with AO emit a green fluores-
cence and have an intact nucleus, while early apoptotic cells
appear to have a green nucleus with chromatin condensation
and nuclear membrane blebbing. In cells exhibiting late apo-
ptosis stain with both AO and ETBR, the nuclei appear orange

with chromatin condensation. Necrotic cells are stained only
by ETBR, and thus appear orange with an intact structure.
Differential scoring with AO/ETBR showed a late event of
apoptosis during mangiferin treatment. Mangiferin-induced
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Fig. 5 – Percentage of viable and apoptotic cells. Cells
treated with mangiferin were analyzed for cell death using
AO/ETBR staining. A total of 200 cells per treatment group
were screened and analyzed for the differential uptake of
AO/ETBR. Significant increase in induction of late apoptosis
was observed at 50 �M (* p < 0.05), 70 �M († p < 0.001), and
90 �M (‡ p < 0.001).
AO, acridine orange; ETBR, ethidium bromide; NS,

r

nonsignificant levels of early apoptosis.

anticancer effects have been reported in various other cell
lines.47–49

In conclusion, the study shows that mangiferin induced
cytotoxicity and apoptosis in RD cells through sustained
oxidative stress and depletion of antioxidant status. The
results suggest a potential anticancer effect of mangiferin
against RD. Further research is required to study the molec-
ular mechanism through which mangiferin exerts its effect
on RD.
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