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The ‘big data’ concept plays an increasingly important role in many scientific fields. 
Big data involves more than unprecedentedly large volumes of data that become 
available. Different criteria characterizing big data must be carefully considered in 
computational data mining, as we discuss herein focusing on medicinal chemistry. 
This is a scientific discipline where big data is beginning to emerge and provide new 
opportunities. For example, the ability of many drugs to specifically interact with 
multiple targets, termed promiscuity, forms the molecular basis of polypharmacology, 
a hot topic in drug discovery. Compound promiscuity analysis is an area that is much 
influenced by big data phenomena. Different results are obtained depending on 
chosen data selection and confidence criteria, as we also demonstrate.

Lay abstract: ’Big data’ is affecting many areas of life, more so than we might realize. 
It is often not well understood what big data really mean. This is also true in science. 
For example, medicinal chemistry, which is a conservative scientific discipline and slow 
to respond to new trends, is currently entering the big data era. This provides many 
new opportunities and challenges, as exemplified by the computational study of 
biological activities of drugs and other compounds from medicinal chemistry.

For the anticancer drug imatinib (top), a kinase inhibitor, the histogram indicates the 
relative number of target annotations on the basis of low- (red), medium- (green) or 
high-confidence (blue) activity data. Hence, the magnitude of detectable promiscuity 
(multitarget activity) decreases with increasing data confidence.

Entering the ‘big data’ era in medicinal 
chemistry: molecular promiscuity analysis 
revisited

Ye Hu1 & Jürgen Bajorath*,1

1Department of Life Science 

Informatics, B-IT, LIMES Program 

Unit Chemical Biology & Medicinal 

Chemistry, Rheinische Friedrich-

Wilhelms-Universität, Dahlmannstr. 2, 

D-53113 Bonn, Germany 

*Author for correspondence:  

Tel.: +49 228 2699 306 

Fax: +49 228 2699 341 

bajorath@bit.uni-bonn.de

NN

N

N
H

N
H

O

N
N

Perspective

part of

For reprint orders, please contact reprints@future-science.com



10.4155/fsoa-2017-0001 Future Sci. OA (2017) 3(2), FSO179 future science groupfuture science group

Perspective    Hu & Bajorath

First draft submitted: 2 January 2017; Accepted for publication: 26 January 2017; Published online: 
6 March 2017

Keywords:  big data concept • big data criteria • compound activity data • computational mining • drug 
discovery • medicinal chemistry • polypharmacology • promiscuity

The electronic data deluge and ‘big data’ phenomena 
affect essentially all areas of life [1]. What is ‘big data’? 
In 2001, industry analyst D Laney associated ‘big data’ 
with the need to control the volume, velocity and vari-
ety of data  [2]. Volume, velocity and variety represent 
the often-cited ‘3Vs’ of big data, which then became 
an integral part of the general definition put forward 
by Gartner, Inc., a large international information 
technology firm [3]:

“Big data is high-volume, high-velocity and/or 
high-variety information assets that demand cost-

effective, innovative forms of information processing that 
enable enhanced insight, decision making, and process 

automation.”
On the basis of this definition, a characteristic fea-

ture of big data is that conventional data processing, 
storage and transfer infrastructures are insufficient 
for handling such data. Moreover, big data might be 
structured to varying degrees or even be completely 
unstructured. Importantly, big data characteristics go 
much beyond the technical level and scientific big data 
criteria must be carefully considered when drawing 
conclusions from data analysis.

The fundamental big data characterization of Laney 
has been further extended over the years in various 
ways and the ‘3Vs’ have recently become ‘7Vs’ with 
M van Rijmenam adding veracity, variability, visual-
ization and value  [4]. This is probably not the end of 
it – and there is of course also no reason to limit big 
data attributes to ‘Vs’. However, core of big data issues 
are well accounted for by the original attributes and a 
few others.

In science, big data has been on the agenda for at 
least a decade, in some fields more so than in others. 
In particle physics, colliders produce massive amounts 
of data, and this already for more than a decade  [5]. 
In biology, the big data wave hits more recently, due 
to the advent of efficient genomics technologies pro-
viding high throughput  [6]. Consequently, genomic 
sequencing data began to grow exponentially in 
2008  [6]. Thus, in biology, big data is no news and 
building and evolving computational infrastruc-
tures for handling and analyzing big data, especially 
genomic sequencing data, still is a major topic in 
bioinformatics. In physics and biology, big data is 
measured in ‘petabytes’ (1 petabyte = 1015 bytes) and 
cloud computing has become an indispensable part of 
big data storage and analysis.

Big data originating from biology has also entered 
drug discovery  [7,8], where it is complemented with, 
for example, data from high-throughput screens, array 
experiments, imaging, pharmacology and clinical 
investigations, which – at least in part – also have big 
data characteristics by now. These developments con-
siderably challenge drug discovery environments and 
result in the need to explore new training concepts for 
discovery scientists, further emphasize interdisciplin-
ary approaches, and add data science to the spectrum 
of drug discovery-relevant disciplines [8].

Compared to the situation in biology, big data is still 
in its infancy in medicinal chemistry, which is another 
pillar of drug discovery. Clearly, the variety of data asso-
ciated with cells and organisms is principally much larger 
than of data associated with chemical compounds – and 
so are the ensuing data volumes that can be generated. 
However, although big data trends are only beginning 
to emerge in medicinal chemistry [9,10], it is evident that 
this field will also be increasingly influenced by big data 
issues. For example, proprietary medicinal chemistry 
projects in the pharmaceutical industry will inevitably 
need to take compound activity data into consideration 
that is rapidly accumulating in the public domain  [9]. 
Merging internal and external data and viewing chemi-
cal optimization of compound series in an overarching 
context represents a departure from the long-established 
operating culture of medicinal chemistry and presents 
new challenges to practicing chemists. However, the 
opportunities provided by extracting knowledge from 
rapidly growing amounts of compounds and publicly 
available activity data cannot be disregarded.

An important point to emphasize is that our discus-
sion of big data issues in medicinal chemistry primarily 
focuses on experimental data, which typically require 
computational analysis – but not on computationally 
generated data. If we take into consideration that liter-
ally thousands of chemical descriptors and properties 
can be calculated for any given compound, it is evi-
dent that the amount of compound-associated data can 
be further increased by orders of magnitude through 
computational chemistry. However, such ‘theoreti-
cal’ big data represents another category to which big 
data criteria considered herein only vaguely apply and 
the utility of which – and relevance for the practice of 
medicinal chemistry – might also be questioned.

Big data in medicinal chemistry has also been asso-
ciated with specific attributes. While we have stressed 
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complexity, heterogeneity and confidence as additional 
big data criteria of particular relevance for medicinal 
chemistry  [9], for reasons detailed below, Lusher et al. 
have promoted ‘5Vs’ for medicinal chemistry by add-
ing veracity and value to the original ‘3Vs’  [10]. Data 
complexity, heterogeneity and confidence are related to 
some of the ‘Vs’ but are distinct from them. For exam-
ple, data variability influences complexity, heterogene-
ity and confidence all of which, however, include addi-
tional parameters, as further discussed below. On the 
other hand, veracity, the ‘truth’ of data, can be called 
into question at varying confidence levels (and is often – 
but not always – also related to variability). One might 
add that the value of data is mostly relevant for com-
mercial enterprises and as such – albeit justifiable – not 
uniformly applicable to the big data concept.

Regardless of the origins of compound activity data, 
how can one make use of these data and learn from it? 
For example, structure-activity relationships (SARs) 
can be extracted on a large-scale from compounds 
active against current pharmaceutical targets and used 
to complement chemical optimization efforts. More-
over, it is also possible to systematically explore multi-
target activities of small molecules on the basis of avail-
able activity data. Such multitarget activities provide 
the foundation of polypharmacology [11–15], an emerg-
ing concept in drug discovery, according to which 
many bioactive compounds and drugs elicit their 
physiological and therapeutic effects through inter-
actions with multiple – rather than single – targets. 
The ability of small molecules to specifically interact 
with multiple targets is also rationalized as promiscu-
ity  [16], which needs to be clearly distinguished from 
nonspecific interactions and assay artifacts caused by 
aggregating molecules  [17,18] or (reactive) interference 
compounds [19,20].

Another point of consideration is that promiscu-
ity analysis typically does not take relative compound 
potencies into account. Even weak activities should be 
considered, which could give rise to side effects. There-
fore, promiscuity must be differentiated from selectiv-
ity. A promiscuous compound might not be equally 
potent against all of its targets. Rather, it might dis-
play higher potency against one or more targets over 
others. Accordingly, a promiscuous compound might 
or might not display target selectivity. Interestingly, 
however, the majority of promiscuous compounds we 
have identified through data mining were found to dis-
play comparably high potency against their targets [21], 
whereas promiscuous compounds that were selective 
for a primary target over others (on the basis of high vs 
low potency values) were less frequently observed [21].

Furthermore, in the context of promiscuity analy-
sis, the terms ‘frequent hitter’ [22] and ‘privileged (sub)

structure’ [23], which are commonly used in medicinal 
chemistry, might also be considered. Frequent hitters 
refer to compounds that are often active in biological 
screens, which might either be due to promiscuity, as 
rationalized herein, or undesired artifacts. Privileged 
structures refer to common core structures of com-
pounds that are primarily active against a given target 
family over others, but not specific for individual mem-
bers of the family, which would result in intrafamily 
promiscuity.

Exploring compound promiscuity as the molecu-
lar basis of polypharmacology represents an interest-
ing application for emerging big data in medicinal 
chemistry. This is the case because views concerning 
the potential magnitude of promiscuity and poly-
pharmacology widely differ in the field and are often 
articulated on the basis of intuition or subjective 
expectations  [15], without carefully considering avail-
able activity data  [24]. With the advent of big data in 
medicinal chemistry, opportunities increase to arrive at 
quantitative estimates of promiscuity that are backed 
up by statistically significant data volumes.

This contribution focuses on emerging big data 
issues in medicinal chemistry and shows how big data 
criteria influence the analysis of compound activity 
data. Primarily conceived as a perspective-type article, 
it was designed to be ‘data-driven,’ consistent with its 
major theme. Accordingly, we intentionally combine 
the discussion of big data aspects, exemplary studies 
and personal viewpoints with a large-scale analysis of 
compound activity data, resulting in a perspective with 
research components. For reasons discussed above, pro-
miscuity analysis was chosen as an exemplary topic for 
compound data mining to monitor potential progres-
sion of multitarget activities, as data volumes massively 
grow, and re-evaluate previous promiscuity estimates 
in a rigorous manner.

Materials & methods
Databases
Three public domain databases were used as data sources 
including ChEMBL (release 22; ChEMBL22)  [25,26], 
the major repository for compounds and activity 
data from medicinal chemistry literature and patent 
sources, PubChem BioAssay [27], the major repository 
for screening data, and DrugBank (version 5.0.3) [28], a 
comprehensive source of approved and investigational 
drugs.

Compound structures
The structures of all qualifying compounds from dif-
ferent data sources were standardized using the Open-
Eye OEChem toolkit [29]. Canonical simplified molec-
ular-input line-entry system (SMILES) strings  [30] 
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were generated to map compounds across different 
databases.

Targets
ChEMBL provides two internal numerical index sys-
tems as target identifiers including ‘tid’ and ‘CHEMBL_
ID.’ Targets from PubChem are designated using gene 
identifiers. For target annotations in DrugBank, Uni-
Prot IDs [31] are given. To standardize targets from dif-
ferent sources and map them, UniProt IDs were chosen 
as the target identifiers. Thus, target designations in 
ChEMBL and PubChem were converted to UniProt 
IDs (if available) using the ID mapping function of 
ChEMBL or UniProt.

Matched molecular pairs
Structural relationships between compounds were sys-
tematically explored by applying the matched molecu-
lar pair (MMP) formalism [32]. An MMP is generally 
defined as a pair of compounds that only differ by a 
chemical change at a single site [32], in other words, the 
exchange of a pair of substructures, termed a ‘chemical 
transformation’ [33]. Previously defined transformation 
size restrictions were applied to confine MMPs to pairs 
of structural analogs [34]. MMPs were calculated using 
an in-house version of a fragmentation algorithm  [33] 
utilizing the OpenEye toolkit [29].

Compound promiscuity
For each compound, its ‘promiscuity degree’ (PD) was 
defined as the number of targets a compound is known 
to be active against. It is calculated as the total num-
ber of target annotations available at a given point in 
time. Compounds for which only a single target was 
available (PD 1) were classified as target specific. In 
addition, for compounds from ChEMBL and drugs 
mapped to ChEMBL, the progression of PDs was 
monitored over time from 1995 to 2015 on the basis 
of ChEMBL activity records and publication dates 
extracted from them.

Compound activity data volumes
Big data phenomena are often primarily associated 
with unprecedentedly large volumes of available data, 
which is an oversimplification. In medicinal chemis-
try, these data mostly consist of compound structures 
and biological activity records. Pharmacology data or 
clinical records are only infrequently available, at least 
in the public domain. For structures of small mole-
cules, the ZINC database [35] serves as a good example. 
ZINC collects compounds that are relevant for medic-
inal chemistry from vendor sources as well as other 
databases. The current ZINC 15 release (November 
2015) reports approximately 220 million compounds 

with a molecular weight of up to 1000 Da, more than 
120 million of which are proposed to be purchasable 
from medicinal chemistry vendors worldwide  [35]. By 
contrast, the former release of ZINC 14 (August 2015) 
contained 23 million of compounds, in other words, 
an order of magnitude less. This example alone mirrors 
the emerging big data trend in medicinal chemistry. 
However, ZINC compounds are not associated with 
activity data. Thus, going beyond molecular struc-
tures, other public databases must be taken into con-
sideration, in particular, ChEMBL and PubChem, the 
currently most important repositories for compounds 
and activity from medicinal chemistry and biological 
screening, respectively. Since ChEMBL also imports 
data from PubChem, the boundaries between these 
databases become rather fluid, but the data origins 
are recorded and can be easily traced. As reported in 
Table 1, ChEMBL22 contains nearly 1.7 million com-
pounds from medicinal chemistry sources that are 
active against more than 11,200 targets, forming a total 
of more than 14 million ligand–target interactions. In 
the practice of medicinal chemistry, such numbers 
would have been considered science fiction just a few 
years ago. ChEMBL22 also incorporates activity data 
from PubChem. The PubChem BioAssay database 
comprises more than 1.2 million assays with nearly 
2.3 million tested compounds, yielding a total of more 
than 230 million activity annotations covering more 
than 10,000 target proteins. As reported in Table 1, a 
subset of 437,257 screening compounds was tested in 
both primary and confirmatory assays (with varying 
compound concentrations and determination of IC

50
 

values) that involved 456 and 596 targets, respectively. 
In primary assay, these compounds yielded a total of 
nearly 1 million activity annotations and in confirma-
tory assay, more than 500,000 annotations. In addition 
to these large volumes of compounds and activity data 
from medicinal chemistry and screening, DrugBank 
5.0.3 currently reports 1564 approved small-molecule 
drugs annotated with 1836 targets forming a total 
of 11,387 drug–target interactions, which provides 
a basis for systematically comparing activity annota-
tions of drugs and other bioactive compounds at earlier 
stages of the drug development process.

Rationalizing big data
Importantly, focusing on rapidly growing data vol-
umes alone provides an incomplete picture of big data, 
as already implied by the relevance of the ‘3Vs’  [2]. 
This also applies to big data in medicinal chemistry 
and drug discovery. In our view, extracting knowledge 
and learning from big data are especially challenged 
by increasing data complexity and heterogeneity across 
different sources. Moreover, data confidence issues 
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critically influence the results of data mining efforts 
and conclusions drawn from them. In our view, data 
complexity, heterogeneity and confidence represent 
prime big data criteria that must be carefully consid-
ered in data analysis and knowledge extraction. Hence, 
the following discussion will focus on these issues.

Data confidence levels
Figure 1 summarizes criteria for the assembly of com-
pound datasets at varying confidence levels and lists cor-
responding settings of selection parameters that are avail-
able in ChEMBL. Applying these settings, ChEMBL 
datasets reported herein can be fully reproduced.

In our studies, we generally distinguish between 
low-, medium- and high-confidence compound activ-
ity data. Low-confidence data are obtained by collect-
ing all available activity for a given target, regardless 
of assay or activity measurement criteria. As reported 
in Figure 1, ChEMBL22 contains more than a mil-
lion compounds that are active against 4231 human 
targets, corresponding to a total of nearly 6.7 million 
compound–target interactions. For human targets, 
this represents the low-confidence dataset, taking all 
available activity annotations into account. Medium-
confidence activity data are obtained by selecting 
well-defined assays that assess direct interactions of 
compounds with single protein targets at the highest 
level of assay confidence (i.e., confidence score 9, fol-
lowing the ChEMBL assay classification scheme). This 
reduces the number of active compounds from about a 
million to approximately 730,000 and the total num-
ber of ligand–target interactions from approximately 
6.7 to approximately 3 million (Figure 1). Finally, the 
high-confidence dataset is obtained by requiring not 
only highest possible assay confidence but also highest 
measurement confidence. This is achieved by limiting 
activity measurements to explicitly specified (assay-
dependent) IC

50
 values and (assay-independent) equi-

librium constants (K
i
 values) and eliminating activity 

records with inconsistent or inconclusive information 
(Figure 1). These specifications significantly reduce 
the number of ChEMBL compounds active against 
human targets when proceeding from medium- to 
high-confidence data. In the latter dataset, approxi-
mately 222,000 compounds remain that are active 
against 1686 targets, forming a total of nearly 328,000 
interactions. Because IC

50
 and K

i
 values can in princi-

ple not be directly compared, an additional high-confi-
dence data criterion can be applied by separating quali-
fying compounds into different subsets on the basis of 
these measurement types. As reported in Table 1, the 
K

i
 subset of ChEMBL22 comprises 67,179 compounds 

that are active against 867 targets and the IC
50

 subset 
168,559 compounds active against 1578 targets (com-

pounds for which both K
i
 and IC

50
 values are available 

occur in both subsets). We emphasize that even at the 
highest level of activity data confidence, ChEMBL22 
yields nearly 328,000 ligand–target interactions, 
which provide a sound basis for exploring SARs on a 
large scale and determining compound PDs.

Assessing compound promiscuity
Multitarget activities of small molecules provide 
the basis of polypharmacology, which is frequently 
implicated in efficacy  [36], but are also responsible 
for unwanted side effects of drugs or candidate com-
pounds  [13]. In addition, exploring multitarget activi-
ties provides the basis for drug repurposing  [37,38], 
i.e.,  for finding new therapeutic applications for 
approved drugs. Accordingly, quantifying and better 
understanding compound promiscuity is of consider-
able interest for drug discovery research. For the fur-
ther analysis and discussion of PDs, we distinguish 
between drugs and other compounds that are active 
against therapeutically relevant targets but that are not 
drugs (termed ‘bioactive compounds’).

Computational infrastructures
Prior to focusing on quantitative assessments of pro-
miscuity of drugs and bioactive compounds through 
data mining, we briefly review previous studies that 
have reported computational tools and data struc-
tures for promiscuity analysis or other large-scale data 
mining analyses. For example, the ChEMBLSpace 
graphical explorer, a standalone Java implementation, 
was developed to generate and visualize compound-
based target networks on the basis of ChEMBL activ-
ity records and identify compounds with sought after 
multitarget activity profiles  [39]. An interactive Web-
based analysis tool termed PharmaTrek was intro-
duced to mine multitarget activity space by defining, 
for example, a pool of targets and potency thresholds 
of compounds active against these targets [40]. Accord-
ingly, PharmaTrek was applied to ChEMBL to visu-
alize compound activity profiles. Another Web-based 
resource was reported to extract compound activity 
counts from PubChem assays and calculate various 
compound descriptors for subsequent analysis [41]. Fur-
thermore, for migrating and analyzing PubChem assay 
data, the BioAssay Research Database structure was 
generated that also included a number of data mining 
and visualization tools  [42]. Moreover, for drugs, the 
PROMISCUOUS database was introduced compris-
ing 25,000 entries also including experimental drugs 
and drugs withdrawn from the market. In addition, 
21,500 drug–target interactions and 104,000 drug-
based protein–protein relationships were compiled 
from public resources via text and data mining and 
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manually curated [43]. Target and side effect profiles of 
drugs were then visualized in network representations 
that captured relationships between drugs and target 
proteins and between drugs and side effects. The com-
putational tools described above aid in compound data 
and information extraction from major repositories.

Promiscuity estimates
Other investigations have attempted to quantitatively 
estimate the degree of promiscuity of drugs and bioac-
tive compounds. For drugs, network representations of 
drug–target interactions have played an important role 
in early attempts to assess promiscuity [44,45]. From dif-
ferent databases, drugs, targets and interactions were 
collected and analyzed in drug–target networks. From 
such data representations, it was estimated that a drug 
might on average most likely interact with six differ-
ent targets [44,45]. Depending on the datasets that were 
used, interactions per drug ranged from about 3 to 
13 [45]. For drugs directed against different major ther-
apeutic target families, estimates were further refined, 
resulting in two to eight targets per drug, depending 
on the particular family  [14]. Comparable estimates 
were obtained when approved and experimental drugs 
taken from DrugBank were mapped back to ChEMBL 
and drug promiscuity was monitored over a time 
period of 15 years on the basis of high-confidence 
activity data [46]. However, for bioactive compounds, a 
different picture emerged. In an early analysis of Pub-
Chem, multitarget activities were analyzed on the basis 

of more than 600 assays [47]. It was found that approxi-
mately 58% of the screening compounds had only 
single-target activity in combined primary and con-
firmatory assays. When only confirmatory assays were 
considered, approximately 74% of the compounds 
displayed single-target activity  [47]. Moreover, on the 
basis of high-confidence activity data extracted from 
ChEMBL, it was determined that an active compound 
interacted on average with only one to two targets, 
with no significant variations across different thera-
peutic target families [48]. When compound promiscu-
ity was monitored over time on the basis of ChEMBL 
activity records dating back to the mid-1970s, increases 
in average promiscuity beyond the level of two targets 
per compound were only observed when medium- or 
low-confidence activity data were considered  [49]. For 
high-confidence data, average PDs remained constant 
at about 1.5 targets per compound, even during times 
of exponential data growth beginning in 2010  [49]. 
Hence, for bioactive compounds, lower PDs than for 
drugs were consistently determined.

It should be noted that ChEMBL does not contain 
records of inactivity or assay frequency of compounds, 
which are generally not provided in the medicinal 
chemistry literature upon which ChEMBL is based. 
Thus, on the basis of ChEMBL activity records, it can-
not be determined how often and against how many 
targets compounds might have been tested. This situ-
ation gives rise to an occasionally voiced critique con-
cerning PDs derived from ChEMBL (or proprietary 

Table 1. Volumes of currently available compound activity data.

DrugBank 5.0.3 #Approved drugs 1564

  #Targets 1836

  #Drug–target interactions 11,387

ChEMBL22 (all) #Compounds 1,686,695

  #Targets 11,224

  #Compound–target interactions 14,371,197

  Ki IC50 Ki+IC50

ChEMBL22 (high-
confidence) 

#Compounds 67,179 168,559 222,431

#Targets 867 1578 1686

  #Compound–target interactions 111,466 231,189 327,660

  Primary   Confirmatory

PubChem BioAssay #Compounds 437,257

  #Active compounds 267,418   196,607

  #Targets 456   596

  #Compound–target interactions 922,306   507,321

Reported are currently available compound activity data from different sources including DrugBank 5.0.3, ChEMBL22 and the PubChem BioAssay database. For 
ChEMBL22, high-confidence activity data subsets and corresponding target annotations are reported separately for K

i
 and IC

50
 measurements as well as combined 

K
i
 and IC

50
 data. For PubChem BioAssay, compounds tested in both primary and confirmatory assays are given. For each assay category, the number of active 

compounds and target annotations is separately provided.
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compound databases). Essentially, as long as not all 
available compounds have been tested against all possi-
ble targets, promiscuity estimates are likely to be lower 
than ‘true’ PDs, due to data incompleteness, which also 
affected the generation of drug–target networks [44,45]. 
Notably, obtaining a complete compound–target 
interaction matrix represents the ultimate goal of che-
mogenomics [50], which will most likely remain elusive 
from a practical viewpoint. Thus, data incompleteness 
will continue to affect promiscuity analysis; the key 
question is to what extent? Clearly, given the advent of 
big data in medicinal chemistry, current activity data 
volumes are already so large – as discussed earlier – 
that it must be possible to extract statistically meaning-
ful trends from these data. Without doubt, estimates 
quantifying what currently available data tell us are 
scientifically more valid than subjective expectation 
values or partly informed guesses.

Importantly, data incompleteness can be balanced 
for large subsets of active compounds. For example, 
different from ChEMBL records, assay frequency 
information for active compounds can be extracted 
from PubChem, enabling the identification of most 
extensively tested screening hits. More than 430,000 

compounds were identified that were on average tested 
in more than 450 primary and confirmatory assays 
and their PDs were determined  [51]. Even for these 
most extensively assayed small molecules, mean PDs 
were only slightly higher than observed for ChEMBL 
compounds, with 2.5 targets per screening hit [51], thus 
lending further credence to promiscuity estimates for 
bioactive compounds.

As a prominent example, ATP site-directed kinase 
inhibitors used for cancer therapy have become a para-
digm for promiscuous compounds  [52,53]. However, 
this compound class also serves as an instructive exam-
ple for potential ambiguities in judging about promis-
cuity. Although ATP site-directed kinase inhibitors are 
often thought to display a high degree of promiscu-
ity, given the largely conserved ATP binding site in 
many kinases, analysis of high-confidence activity data 
according to Figure 1 does not reveal generally higher 
promiscuity than of compounds directed against other 
major classes of therapeutic targets [48,54]. Data sparse-
ness may certainly influence this assessment, but there 
are other – perhaps more critical – factors to consider. 
Importantly, many practicing drug discovery scientists 
judge activities of kinase inhibitors – as well as of com-

Figure 1. Datasets with varying confidence levels. The selection of low-, medium- and high-confidence sets 
is schematically illustrated. For each set, selection criteria applied for retrieving corresponding bioactivity 
records from ChEMBL are listed (left) and the numbers of qualifying compounds, targets and compound-target 
interactions are given (right).

Criterion:
– Target organism: “Homo sapiens”

+ Criteria:
– Target type: “Single protein”
– Assay relationship type: “D”
– Assay confidence score: 9

+ Criteria:
– Standard activity type: “Ki” or “IC50”
– Standard activity relation: “=”
– Standard activity unit: “nm”
– “Inactive”, “Not active”, “Inconclusive” 

activity records removed
– Inconsistent measurements discarded

Low-confidence set
(activity against human targets)

Medium-confidence set
(+ highest assay confidence)

High-confidence set
(+ highest measurement confidence)

1,084,376 compounds
4231 targets
6,699,975 interactions

729,328 compounds
2475 targets
2,999,784 interactions

222,431 compounds
1686 targets
327,660 interactions
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pounds and drugs directed against other targets – on 
the basis of profiling [55] or small-molecule array exper-
iments [56], which are nowadays widely carried out in 
the pharmaceutical industry, rather than on the basis 
of global data views. However, under the experimental 
conditions of profiling or array experiments, unusually 
high degrees of compound promiscuity are frequently 
observed  [57] resulting from, for example, the use of 
high compound concentrations and/or solid-phase 
assays. Thus, multitarget activities observed in such 
cases must be considered with caution in light of the 
specific experimental conditions applied and are dif-
ficult to generalize. Exclusively basing judgment on a 
given high-throughput assay format might well lead 
to biased views of promiscuity and other compound 
properties, which also recommends complementing in-
house results with external data. Hence, striving for a 
balanced assessment of results obtained under specific 
experimental conditions in light of already available 
internal or external data is – in our view – a conditio 
sine qua non for sound science including research in 
drug discovery environments. However, in our expe-
rience, there often remains considerable room for 
improvement in evaluating data from diverse sources 
in context.

Promiscuity analysis in light of big data 
criteria
In the following, we present up-to-date results of pro-
miscuity analysis paying close attention to big data cri-
teria discussed above, thus highlighting a number of 
critical issues.

Data growth
The top chart in Figure 2A monitors the growth of 
compound activity between August 2012, when our 
previous promiscuity analysis was carried out [48], and 
November 2016. High-confidence activity data from 
ChEMBL22 were taken into consideration together 
with PubChem primary assays (first considered in 

2016) and confirmatory assays and approved drugs 
from DrugBank 5.0.3. Approximately 56,000 addi-
tional compounds were tested in confirmatory assays 
over the past 4 years, whereas the number of com-
pounds in the ChEMBL-derived high-confidence set 
essentially doubled, which was mostly due to large 
increases in the number of compounds with available 
IC

50
 measurements. Thus, there was massive growth 

in bioactive compounds with high-confidence activ-
ity data. Furthermore, as one might expect, the num-
ber of approved drugs only increased moderately by 
290 drugs over the 4-year period.

Promiscuity degrees
The bottom graph in Figure 2A compares PDs of bio-
active compounds, screening compounds and drugs 
in 2012 and 2016. Although the number of bioactive 
compounds with high-confidence activity data dou-
bled within 4 years, the average PD remained constant 
at about 1.5 (K

i
 + IC

50
). For 2016, an average PD of 

3.4 was obtained for PubChem compounds from pri-
mary assays (initial screening hits). For compounds 
from confirmatory assays, the PD also remained essen-
tially constant at 2.5. Thus, for bioactive compounds 
including confirmed screening hits, detectable pro-
miscuity continued to be low, although many more 
compounds became available. By contrast, for drugs, 
there was a notable further increase in average drug 
promiscuity from 5.9 to 7.3. Thus, the PD of drugs was 
much higher than of bioactive compounds including 
primary screening hits. In the two middle graphs of 
Figure 2A, the probability is reported for compounds 
to be active against at least two or more than five tar-
gets, respectively. These probabilities were calculated 
from the global distributions of PDs and also remained 
largely constant over time. For a bioactive compound 
with high-confidence activity data, the probability to 
be active against at least 2 targets was approximately 
30%, for a compound from confirmatory assays 
approximately 50% and for an approved drug approxi-

Table 2. Promiscuity after iterative removal of highly promiscuous drugs.

Removal of top N most 
promiscuous drugs 

Promiscuity degree

Average Median

0 7.3 5.0

50 6.4 4.5

80 6.0 4.0

100 5.8 4.0

150 5.3 4.0

200 4.9 4.0

Average and median drug promiscuity degrees of drugs from DrugBank 5.0.3 are reported after removal of the 50, 80, 100, 150 or 200 
most promiscuous drugs, respectively.
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mately 85%. By contrast, for bioactive compounds, 
the probability to be active against more than 5 targets 
was less than 1%. For PubChem compounds from pri-
mary and confirmatory assays, these probabilities were 
approximately 16% and less than 10%, respectively. 
Furthermore, the proportion of drugs with activity 
against at least 2 targets was comparable between 2012 
and 2016 (i.e.,  84.1 vs 85.6%). However, there still 
was a greater than 40% probability of drugs to inter-
act with more than 5 targets in 2016, with an increase 
from 37.4 to 43.1%. Thus, drugs with higher degrees 
of promiscuity (>5 targets) were more frequent in 2016 
than in 2012.

Rationale for observed promiscuity levels?
The results in Figure 2A clearly show that the promis-
cuity of bioactive compounds is generally low and con-
stant over time while data volumes massively grow and 
drugs are much more promiscuous than other bioactive 
compounds. Can we rationalize these observations? 
Several points may be considered. It is certainly possi-
ble – and also likely – that many bioactive compounds 
from medicinal chemistry have only been tested against 
limited numbers of targets at the time of their publica-
tion. In this context, we also note that the majority of 
single – as well as multitarget compounds available in 
ChEMBL can be traced back to single-source publica-
tions, rather than multiple publications  [58]. Thus, it 
may be the case that many compounds are not exten-
sively retested once they are published. On the other 
hand, negative data and inactive compounds are gener-
ally not reported in the medicinal chemistry literature 
and, therefore, assay frequency remains unknown. At 
the same time, profiling experiments and selectiv-
ity screens are frequently published. Moreover, most 
extensively assayed screening hits matched the low to 
average PDs for compounds from PubChem confirma-
tory assays  [51]. Hence, the situation is multifactorial 
and complex. Regardless of any speculations about the 
origins and magnitude of promiscuity among bioactive 
compounds, what can be concluded with certainty is 
that PDs of bioactive compounds have remained over-
all low while the number of compounds with avail-
able high-confidence activity data has doubled over 
the past 4 years. Thus, these findings are based on 
unprecedentedly large volumes of data from medici-
nal chemistry. Furthermore, there also is no doubt that 
approved drugs are on average much more promiscu-

ous than other bioactive compounds. It is of course 
very likely that drug candidates and drugs are more 
extensively tested than other bioactive compounds. 
However, it is also possible that subsets of promiscuous 
drugs might preferentially be selected for efficacy dur-
ing clinical evaluation, depending on the therapeutic 
applications. On the basis of currently available data, 
not all drugs are promiscuous, which would also be 
difficult to reconcile, given that the quest for target-
specific or -selective compounds has dominated drug 
discovery efforts over the past 2 to 3 decades. Figure 2B 
shows exemplary drugs for different therapeutic appli-
cations that are only annotated with a single target or 
highly promiscuous. The comparison emphasizes high 
PDs of individual kinase inhibitors used for cancer 
treatment or ligands of G protein-coupled receptors 
used as antipsychotic agents. In fact, a close look at the 
drug data in Figure 2A suggests that confined subsets 
of highly promiscuous drugs might strongly influence 
average PDs. This possibility was further investigated 
by recalculating drug PDs following iterative removal 
of increasing numbers of highly promiscuous drugs. 
As reported in Table 2, when the 50 most promiscuous 
drugs were removed, the mean and median degrees of 
drug promiscuity decreased from 7.3 to 6.4 and 5.0 to 
4.5, respectively. When the 100 most promicuous drugs 
were removed, a further decrease of mean and median 
PDs to 5.8 and 4.0 was observed, respectively. These 
100 drugs were reported to interact with 22–85 targets 
and their average PD was 29.6. Removal of the 200 
most promiscuous drugs only led to a further reduc-
tion of the mean PD to 4.9 while the median degree 
of 4.0 remained constant. These 200 drugs were on 
average active against 23.7 targets, ranging from 15 to 
85 targets. Thus, subsets of highly promiscuous drugs 
had a notable influence on global promiscuity assess-
ment. However, even after removal of the 200 most 
promiscuous drugs (i.e., ∼13% of all approved drugs), 
mean and median PDs were still significantly higher 
than those determined for ChEMBL and PubChem 
compounds.

Data heterogeneity
In addition to data volumes, heterogeneity of data across 
different sources was discussed above as another big 
data criterion. Figure 3 compares target annotations of 
four exemplary drugs available in different databases 
and highlights the relevance of the heterogeneity crite-

Figure 4. Structural relationships versus promiscuity degrees (see facig page). (A) shows the proportions of MMPs 
from different sources encoding increasing differences in PDs (ΔPromiscuity). (B) Shows four exemplary pairs of 
drugs that formed MMPs and had large differences in promiscuity. For each drug, the number of targets reported 
in DrugBank 5.0.3 is given and pairwise differences are reported above the arrows. Structural modifications 
distinguishing MMP partners are highlighted in red. 
MMP: Matched molecular pair.
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rion. For nabumetone and topotecan, DrugBank and 
ChEMBL report very similar or the same number of tar-
gets (maximum five), whereas PubChem assays indicate 
much larger numbers of targets for topotecan, yielding a 
total of 55 (!) unique human targets, but not for nabu-
metone. A similar picture is observed for dipyridamole 
that is, however, annotated with 7 targets in DrugBank 
and 11 in ChEMBL. By contrast, terconazole has only 
1 target in DrugBank but 20 in ChEMBL and a total of 
29 unique human targets. These representative examples 
illustrate that there often is a high level of inconsistency 
among target annotations for drugs and other bioactive 
compounds across different data sources, which we have 
observed many times. At face value, completely differ-
ent conclusions would be drawn concerning the PDs 
and target profiles of the well characterized compounds 
shown in Figure 3, depending on the databases used, if 
one was unaware of these heterogeneity issues. These 
comparisons also emphasize the need for stringent and 
consistently applied data selection criteria and protocols 
for across-database analyses.

Data complexity
Complexity of compound activity data, another big 
data criterion we have emphasized, is reflected at dif-

ferent levels. This begins with the formal composi-
tion of activity records, which varies considerably 
across different repositories and might also include 
ontologies and pharmacological information  [59], 
and further extends to scientific issues. An excellent 
example for high scientific complexity of compound 
data is provided by analyzing the interplay between 
structural relationships and PDs. Structural relation-
ships between active compounds were systemati-
cally determined by MMP search calculations. Each 
detected MMP represented a pair of structural analogs 
that were only distinguished by a confined chemical 
change at a single site. Figure 4A shows the proportion 
of MMPs from primary and confirmatory PubChem 
assay compounds, the high-confidence ChEMBL set 
(bioactive), and drugs that encode increasing pro-
miscuity differences. As one might anticipate, many 
structural analogs were active against very similar 
numbers of targets. In fact, for ChEMBL compounds 
with available high-confidence activity data, pairs of 
structural analogs forming approximately 87% of the 
MMPs were active against the same number of targets 
(ΔPromiscuity = 0; not shown) and the proportion of 
MMPs encoding increasing promiscuity differences 
greater than 1 rapidly declined. MMPs of assay hits 

Figure 5. Progression of compound and drug promiscuity over time (also see facing page). In (A), the progression 
of average promiscuity degrees over time is shown for all bioactive compounds (solid lines) and drugs (dashed 
lines) from the low- (red), medium- (green) and combined high-confidence (blue) datasets of ChEMBL22 and 
mean PD ranges are reported (right). (B) Shows six drugs from the high-confidence dataset with largest PD 
increases. For imatinib, the number of target annotations at different confidence levels available in ChEMBL18 [46] 
is given in parentheses.
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more frequently encoded larger differences in promis-
cuity. However, a striking finding was that significant 
proportions of drug MMPs encoded large differences 
in promiscuity. For example, more than 22% of the 
drug MMPs consisted of structural analogs with dif-
ferences in PDs of 6–10 and approximately 13% with 
differences of 11–20. Figure 4B shows exemplary pairs 
of structurally analogous drugs with large differences 
in promiscuity. These pairs are reminiscent of ‘promis-
cuity cliffs,’ originally defined as structural analogs 

with large differences in promiscuity that originated 
from compound array experiments  [57]. For screening 
compounds from array experiments, such differences 
might be attributed to specific experimental conditions 
or artifacts, but for approved drugs, this would hardly 
be possible. For example, aceprometazine and propi-
omazine in Figure 4B only differ by a methyl group, a 
minute structural modification, while the former drug 
is annotated with a single target and the latter with 14 
targets. Similarly, emtricitabine (2 targets) and lami-
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Figure 6. Assay frequency versus promiscuity degrees (see facing page). (A) shows heat maps capturing 
differences in assay frequencies and promiscuity degrees for MMP-forming hits from primary (left) and 
confirmatory (right) PubChem assays. Cells represent MMPs having a given difference in assay frequency (ΔAssay 
frequency) and promiscuity degree (ΔPromiscuity) and are color-coded by MMP population density as indicated. 
(B) shows MMPs representing different relationships between assay frequency and promiscuity degrees. For 
each compound, the number of confirmatory assays and targets is reported. For example, ‘115; 6’ means that the 
compound was tested in 115 confirmatory assays and found to be active against 6 targets. For MMP partners, 
the differences in assay frequency and PD are given in italics above the arrows and structural modifications are 
highlighted in red. 
MMP: Matched molecular pair.
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vudine (20 targets) only differ by single fluorine ring 
substituent. Such structure–promiscuity relationships 
among drugs are puzzling and have not been reported 
before. However, together with similar relationships 
recently detected for other bioactive compounds  [60], 
they are a part of the emerging big data spectrum in 
medicinal chemistry and drug discovery. As to whether 
small-structural modifications may indeed cause such 
significant differences in promiscuity remain to be 
determined. Other possible reasons for these obser-
vations are far from being obvious. Hence, there is 
much room for future research to further explore the 
molecular and/or data basis of complex promiscuity 
relationships among drugs and other bioactive com-
pounds, the origins of which are currently only very 
little understood.

Varying data confidence levels
The critically important role of confidence criteria for 
big data analysis is illustrated by following the progres-
sion of compound promiscuity over time. To these 
ends, drugs were mapped to ChEMBL and activity 
records were selected on the basis of different confi-
dence criteria according to Figure 1 and organized by 
publication dates. Figure 5A shows how average PDs 
have evolved over two decades (1995–2015) for drugs 
and other bioactive compounds on the basis of low-, 
medium- and high-confidence data. For bioactive com-
pounds, mean PDs were found to increase over time 
from about 1.2 (high- and medium-confidence) and 
1.5 (low-) to about 1.5 (high-), 2.2 (medium-) and 2.6 
(low-confidence). Thus, for high-confidence data, the 
increase in mean promiscuity of bioactive compounds 
was only very small during times of large-magnitude 
data growth. Furthermore, there was a clearly detect-
able but only moderate relative increase in promiscuity 
with decreasing data confidence. By contrast, for drugs, 
data confidence-dependent differences in promiscuity 
progression were in part unexpectedly large. On the 
basis of high-confidence data, drug PDs increased 
from about 1.8 to 3.8, which was still comparable in 
magnitude to bioactive compounds with low-confi-
dence data. However, for drugs from the medium- and 
low-confidence sets, average promiscuity increased 
from about 1.6 and 3.0 to 11.6 and 15.1, respectively. 
Thus, completely different views of drug promiscu-
ity and its progression would be obtained depending 
on the chosen data confidence levels, with an in part 
astonishing relative increase in (apparent) promiscuity 
with decreasing data confidence. Clearly, unawareness 
of such data confidence issues and their consequences 
will render data analysis questionable at best. Figure 5B 
shows examples of drugs with largest increases in PDs 
over time on the basis of high-confidence activity data 

and illustrates that promiscuity estimates at lower con-
fidence levels become unrealistic. All of these drugs 
were highly promiscuous on the basis of cumulative 
activity records in 2015. The single drug with the larg-
est PD increase over time – from 1 to 38 – was clozap-
ine, a G protein-coupled receptor ligand and antipsy-
chotic agent used since the early 1970s. Clozapine was 
followed by imatinib, with an increase in its PD from 0 
to 30. Imatinib was developed during the early 2000s 
and became the first ATP-site-directed kinase inhibi-
tor marketed for cancer therapy (Gleevec). For clozap-
ine, high-, medium- and low-confidence data yielded 
final PDs of 38, 53 and 75, respectively. Thus, its PD 
essentially doubled for low- compared to high-confi-
dence data. For imatinib, however, the PD for high-, 
medium- and low-confidence data increased from 30, 
which might be realistic in magnitude for a highly 
promiscuous kinase inhibitor, to 420 and 707, respec-
tively. In the imatinib graph, numbers in parentheses 
report the corresponding values for 2012, confirm-
ing a further increase in PDs during the past 4 years. 
Clearly, for medium- and low-confidence data (i.e., all 
available activity annotations), estimates for imatinib 
become completely unrealistic, also taking into con-
sideration that the human kinome comprises 518 dif-
ferent kinases  [61]. It is self-evident that a compound 
with activity against 700 or so targets, if it would exist, 
could never be used therapeutically; considering any 
form of ‘specific’ ligand–target interactions would be 
absurd at this level. Thus, the imatinib example alone 
teaches us important lessons about the essential role of 
confidence criteria in big data analysis.

Assay frequency
Finally, we focus the analysis on assay frequency, 
which – as discussed above – is often a missing vari-
able in promiscuity assessment, depending on the 
data sources. Therefore, for all MMPs formed by 
PubChem compounds from primary and confirma-
tory assays, respectively, encoded PD differences 
(according to Figure 4A) were systematically related 
to differences in assay frequency between MMP part-
ners. The results are shown in Figure 6A. The heat 
map representations reveal that there was no evident 
relationship between differences in PDs and assay fre-
quency of structural analogs forming MMPs. Rather, 
differences in promiscuity were more or less evenly 
distributed over the entire range of observed differ-
ences in assay frequency. Overall largest MMP popu-
lation density occurred in sections of assay frequency 
differences of up to 200  assays and accompanying 
PD differences of up to 5. All possible relationships 
between assay frequency and PDs were observed, as 
illustrated in Figure 6B. These relationships included 
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comparable confirmatory assay frequency and compa-
rable or significantly different PDs of structural ana-
logs (top two panels) and different assay frequency 
and comparable or different PDs (bottom two pan-
els). Figure 6B shows representative examples. The 
second panel includes two close structural analogs, 
only distinguished by a heteroatom substitution in a 
ring, which were tested in 109 and 114 confirmatory 
assays, respectively. The first compound was found to 
be consistently inactive in all assays it was evaluated 
in, whereas the second was active against 26 differ-
ent targets. Furthermore, the third panel includes an 
exemplary pair of structural analogs that were found 
to be active against the same three targets while one 
was tested in 23 and the other in 205 different con-
firmatory assays. Thus, a variety of relationships were 
observed and increasing assay frequency did not cor-
relate with increasing PDs. These findings further 
complemented the far from being simplistic picture 
of compound and drug promiscuity derived from 
emerging big data.

Conclusion
Medicinal chemistry is experiencing the advent of the 
big data era, which biology already entered more than a 
decade ago, due to the availability of high-throughput 
genomics technologies. In medicinal chemistry, which 
is an integral part of drug discovery and traditionally 
a conservative scientific discipline, big data primarily 
comprise rapidly increasing numbers of compounds 
and volumes of associated activity data. Herein, we 
have discussed important big data criteria including 
data heterogeneity, complexity and confidence that – 
in addition to mere data volumes – play a decisive role 
in utilizing big data and learning from it. The com-
putational analysis of promiscuity of drugs and other 
bioactive compounds as the molecular basis of poly-
pharmacology was selected as an instructive example 
of how big data influences and challenges research in 
medicinal chemistry.

Future perspective
While the practice of medicinal chemistry is just 
beginning to experience big data phenomena, it is 
evident that big data will play an increasingly impor-
tant role going forward. More awareness of big data 
issues and potential caveats will still need to be raised 
to positively impact the field. For example, albeit 
rather obvious, opportunities provided by comple-
menting in-house chemical optimization efforts with 
public domain SAR data are not yet widely appreci-
ated, although they should be routinely considered. 
Incorporating external data – and knowledge derived 
from such data – into discovery projects and decision-

making challenges the practice of medicinal chemis-
try. Big data characteristics further complicate matters. 
Promiscuity analysis serves as a good example. Cur-
rently, multitarget activities of small molecules and 
their potential utility or drawbacks for drug discovery 
are still only little understood. In particular, judging 
about the magnitude of promiscuity among drugs and 
candidate compounds is often much more subject to 
speculation and subjective views than rigorous scien-
tific assessment. Albeit difficult to analyze, big data 
provides an attractive opportunity for a more detailed 
scientific assessment of molecular promiscuity in drug 
discovery. As we have demonstrated herein, the sce-
nario is far from being simple and rigorous data analy-
sis, carefully taking big data criteria into consideration, 
provides as many new questions as insights. What we 
can firmly conclude on the basis of currently available 
compound activity data is that approved drugs are on 
average much more promiscuous than other bioactive 
compounds and bioactive compounds are overall less 
promiscuous than often assumed. Any other conclu-
sions or expectations are not backed up by reliable data 
and belong to the realm of speculation. From careful 
data mining and analysis, new questions arise. As we 
have shown, a variety of structure–promiscuity rela-
tionships can be observed. Are these relationships ‘real’ 
or largely determined by experimental parameters and 
the way data are generated? Furthermore, might it ulti-
mately be possible to learn the molecular language that 
promiscuous compounds and targets use in communi-
cating with each other and prospectively design com-
pounds with desired multitarget activities? If so, how 
might polypharmacology-driven efficacy of drugs and 
unwanted side effects be balanced? Clearly, tackling 
big compound data and learning from these data will 
also provide starting points for deriving new experi-
mentally testable hypotheses with potential for excit-
ing future research, which – after all – is good news 
for science.
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