Skip to main content
. 2017 May 9;117(8):1075–1085. doi: 10.1017/S0007114517000903

Fig. 3.

Fig. 3

Metabolic profiling revealed changes in PUFA synthesis. (a) Metabolites illustrated in the PUFA synthesis pathway with lipoxygenase (LOX) and cytochrome P450 (CYP)-derived eicosanoid classes. Inline graphic, Inline graphic, Statistically significant lower and higher metabolite levels in the high-arachidonic acid (ARA) group compared with the control group. Grey highlighted metabolites were not detected. (b) and (c) Box plots of normalised data expressed as scaled intensity of single n-3 and n-6 PUFA, respectively. Inline graphic, Control; Inline graphic, high-ARA; ARA, 20 : 4n-6; DHA, 22 : 6n-3; EPA, 20 : 5 n-3; n-3 DPA, 22 : 5 n-3; n-6 DPA, 22 : 5 n-6; 5-HEPE, 5-hydroxy-EPA; 5-HETE, 5-hydroxy-eicosatetraenoic acid; 12-HETE, 12-hydroxy-eicosatetraenoic acid; 5-KETE (5-oxo-ETE), 5-keto-eicosatetraenoic acid (5-oxo-eicosatetraenoic acid); 13/9-HODE, 13/9-hydroxy-octadecadienoic acid; 12,13-DiHOME, 12,13-dihydroxy-octadecenoic acid; 9,10-DiHOME, 9,10-dihydroxy-octadecenoic acid. * Significant difference (P<0·05) between feed groups (Welch’s two-sample t test).