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Abstract

Background—With the advancement in biomedicine, many biologically targeted therapies have 

been developed. These targeted agents, however, may not work for everyone. Biomarker profiles 

can be used to identify effective targeted therapies. Our goals are to characterize the molecular 

signature of individual tumors, offer the best-fit targeted therapies to patients in a study, and 

identify promising agents for future development.

Methods—We propose an outcome-based adaptive randomization trial design for patients with 

advanced stage non-small cell lung cancer. All patients have baseline biopsy samples taken for 

biomarker assessment prior to randomization to treatments. The primary endpoint of this study is 

the disease control rate at 8 weeks after randomization. The Bayesian probit model is used to 

characterize the disease control rate. Patients are adaptively randomized to one of four treatments 

with the randomization rate based on the updated disease control rate from the accumulated data in 

the trial. For each biomarker profile, high-performing treatments have higher randomization rates, 

and vice versa. An early stopping rule is implemented to suspend low-performing treatments from 

randomization.

Results—Based on extensive simulation studies, with a total of 200 evaluable patients, our trial 

has desirable operating characteristics to: (1) identify effective agents with a high probability; (2) 

suspend ineffective agents; and (3) treat more patients with effective agents that correspond to 

their biomarker profiles. Our trial design continues to update and refine the estimates as the trial 

progresses.

Limitations—This biomarker-based trial requires biopsible tumors and a two-week turn around 

time for biomarker profiling before randomization. Additionally, in order to learn from the interim 

data and adjust the randomization rate accordingly, the outcome-based adaptive randomization 

design is applicable only for trials when the endpoint can be assessed in a relative short period of 

time.
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Conclusion—Bayesian adaptive randomization trial design is a smart, novel, and ethical design. 

In conjunction with an early stopping rule, it can be used to efficiently identify effective agents, 

eliminate ineffective ones, and match effective treatments with patients’ biomarker profiles. The 

proposed design is suitable for the development of targeted therapies and provides a rational 

design for personalized medicine.

Introduction

In recent years, the use of adaptive design methods based on interim observed data from on-

going trials has become popular in clinical development due to their flexibility in the trial 

conduct. The outcome-based adaptive randomization (AR) design can be used to adjust the 

treatment assignment probabilities according to the performance of each treatment during 

the trial. As the trial progresses, more patients can be treated with more promising regimens 

based on the updated data. Several AR designs have been reported under names such as 

‘play the winner,’ ‘biased coin,’ and ‘urn design.’ By incorporating early stopping rules for 

efficacy and/or futility, AR designs can be more efficient in selecting effective treatments or 

eliminating ineffective ones. The resulting designs are also more ethical because more 

patients are treated with effective treatments [1,2]. The use of AR designs in clinical trials 

can be found in many articles and books [3–8].

AR was first developed in the frequentist’s context, but has recently been expanded to the 

Bayesian framework. The Bayesian approach provides a natural way to incorporate prior 

information to the available data to form current knowledge. Furthermore, the Bayesian 

design allows for continuous updating and improving of the model estimates based on 

cumulative data observed over time. The Bayesian design is more flexible in trial conduct 

because even when the trial deviates from the original design, the inference remains 

unchanged because Bayesian inference is based on the data likelihood and not constrained to 

a preset, fixed design. Excellent introduction to the Bayesian clinical trial methods including 

Bayesian AR can be found in recent literature [9–16].

In this article, we design a clinical trial by using an AR design with an underlying 

hierarchical Bayes model to provide estimations for the treatment effect and the covariate 

effect. In many randomized designs, the baseline covariate is considered as prognostic (i.e., a 

covariate can impact the outcome but the effect is constant across all treatments) [17–19]. 

However, our AR design allows the covariate effect to be predictive (i.e., the effect of 

covariate on treatment outcome may vary with specific treatment). It offers an alternative to 

model all the treatment by covariate interactions when the covariate is predictive. The 

predictive model setting is consistent with the current knowledge of targeted agent 

development [20–22]. Furthermore, the addition of the hierarchical Bayes structure in the 

AR model allows ‘borrowing strength’, or information-sharing across patients receiving the 

same treatment but with different covariate profiles. Specifically, the information obtained in 

one subset of patients provides indirect information for patients with similar characteristics. 

When subsets of patients behave similarly, more information is shared. Conversely, when 

subgroups behave differently, less information is shared. Major goals for our trial design are: 

(1) to characterize the molecular signature of each tumor, (2) to offer the best-fit targeted 

therapy to patients in the trial, and (3) to identify promising targeted agents and their 
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corresponding predictive signatures for future development. An overview of our clinical trial 

is given in Section Biomarker-integrated approaches of targeted therapy of lung cancer 

elimination (BATTLE), while the details of the hierarchical Bayes model are described in 

Section Hierarchical probit model. In Section AR and decision results the AR and decision 

rules of our trial design are specified. The operating characteristics of our trial design, 

illustrated by different scenarios of simulation studies are presented and compared in Section 

Simulation results, with a discussion in Section Discussion.

Biomarker-integrated approaches of targeted therapy of lung cancer 

elimination (BATTLE)

With the advancement of molecular biology and genomic research, many target-based agents 

that offer mechanism-based therapy have been developed in the past decade [23–26]. 

Because targeted agents are developed to address specific disease-causing defects, they offer 

hope for increasing treatment efficacy while reducing toxicity. Many targeted agents, 

however, do not work in all patients. The challenge of trial design is to screen for effective 

drugs and identify which patient groups will or will not benefit from the drugs. We use the 

BATTLE project, a phase II design in patients with advanced non-small cell lung cancer 

(NSCLC), to illustrate our trial design methodology.

The BATTLE project consists of one umbrella trial and four parallel phase II studies with 

biomarker-based targeted therapies in patients with advanced NSCLC previously treated 

with chemotherapy but subsequently failed. The four targeted therapies are erlotinib 

(Treatment 1), sorafenib (Treatment 2), vandetanib (Treatment 3), and the combination of 

erlotinib and bexarotene (Treatment 4). It is assumed that each treatment may be more 

efficacious in patients with a certain biomarker profile matching the agent’s mechanism of 

action. Therefore, the goal of this project is to establish a clinical trial prototype towards the 

development of targeted therapy that tests the efficacy of molecular targeted agents in 

advanced NSCLC patients by utilizing their biomarker profiles.

A total of 200 evaluable patients are expected to be enrolled into the study. All eligible 

patients will be required to have baseline core biopsy samples taken for biomarker profile 

assessment before randomization. Four types of biomarker classes (EGFR mutation/

amplification, K-ras and/or B-raf mutation, VEGF and/or VEGFR expression, and RXR 

and/or cyclin D1 expression) will be assessed. Each patient will be assigned to one of the 

five marker groups (MGs) based on his or her profile. The priority of the marker group 

assignments and the associated distributions are shown in Figure 1. For example, if a patient 

has an EGFR mutation, he or she will be assigned to MG 1 regardless of the status of other 

biomarkers. Otherwise, a patient will be assigned to MG 2 if there is a K-ras and/or B-raf 

mutation. Similarly, MG 3 patients will have a positive VEGF and/or VEGFR expression, 

and MG 4 patients will have a positive RXR and/or cyclin D1 expression. Patients will be 

assigned to MG 1 through MG 4 in a sequential order. If none of the biomarkers are positive, 

the patient will be assigned to MG 5. The formation of the five biomarker groups reduces the 

total number of all possible biomarker combinations (24 = 16). Based on our preliminary 

data, it is estimated that 15, 20, 30, 25, and 10 percent patients will belong to MGs 1, 2, 3, 4, 
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and 5, respectively. The order of the assignment was derived based on the strength of the 

predictive markers evidence with respect to the corresponding treatments. Given four 

treatments and five marker groups, there are 20 treatment by marker subgroups – a 

substantial reduction from 64 all possible combinations.

Prior studies in this advanced, chemotherapy-treated NSCLC patient population have 

demonstrated the median time to progression of 2 to 3 months [27,28]. Hence, we consider a 

treatment successful if a patient reaches disease control status (i.e., progression-free) at 8 

weeks. The 8-week disease control rate has been shown to be a good predictor for clinical 

benefit including survival in patients with advanced NSCLC [29]. The main objective of this 

study is to estimate and test the disease control rate for each treatment given patients’ tumor 

biomarker profiles. The primary endpoint is the 8-week disease control rate, which is 

defined as the fraction of patients who show no sign of objective disease progression at 8 

weeks after randomization. The null and target disease control rates are set at 0.3 and 0.5, 

respectively.

Hierarchical probit model

The Bayesian probit model [30] is used to characterize the disease control rate for each 

treatment by marker subgroup. A probit model is a popular specification of a generalized 

linear model using the probit link function to model categorical or ordinal data. A latent 

continuous variable is introduced to model the relationship between response data and 

covariates. Let j and k denote the treatment and marker group, respectively. There are a total 

of four treatments and five marker groups. Let i be the index for the patient, from 1 to njk, 

where, njk is the total number of patients in the combination of treatment j and marker group 

k. Let, yijk be the random variable of disease control (progression-free at 8 weeks). It takes 

the value of 0 if patients experience progression or die within 8 weeks of the treatment. 

Otherwise, it equals to 1. A latent continuous variable zijk is introduced to model the disease 

control rate. Let

(1)

The disease control rate for treatment j, MG k, is the probability that the latent variable is 

greater than 0, defined as γjk = P(yijk = 1) = P(zijk > 0). For each subgroup, we assume that 

zijk follows a normal distribution with a location parameter μjk. Note that because only the 

sign of zijk matters for determining yijk, the model can be identified up to a multiplicative 

constant on zijk. For the purpose of identifiability, we set the variance of zijk as 1 [31]. For a 

given marker group, a normally distributed hyper prior N(ϕj, σ2) is imposed on the location 

parameters μjk of the latent variable. The parameter ϕj is also normally distributed with mean 

0 and variance τ2, which allows for the exchange of information across different treatments. 

This hierarchical model setting allows borrowing information across different marker groups 

(k) within a treatment (j).
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(2)

The parameters σ2 and τ2 control the extent of the borrowing across marker groups within 

each treatment and across all treatments, respectively. Our default configuration is to use the 

vague prior with σ2 = 106 and τ2 = 106. The details for computing the posterior distributions 

via Gibbs sampling from the full conditional distributions are given in the Appendix.

AR and decision rules

An outcome-based AR scheme is proposed for the BATTLE project. Because patients with 

distinct biomarker statuses may respond differently to different treatments, the biomarker 

status must be taken into consideration when assigning patients into various treatments. For 

example, if patients with EGFR mutation are more likely to respond to erlotinib than other 

treatments, it is desirable to assign more these types of patients to erlotinib. Because the true 

disease control rate for each of the treatment by marker combinations is unknown when the 

trial begins, ER is applied in the first part of the trial until at least one patient is enrolled in 

each subgroup with a known disease control status. Then, patients are adaptively 

randomized thereafter. Bayesian adaptive design can help to refine the estimation and 

randomize the patients accordingly as the trial progresses. Under the Bayesian probit model 

described above, all data are used in computing the posterior disease control rate and thus in 

determining the randomization ratio. The model gains efficiency by combining the data from 

all subgroups.

The randomization rate is computed based on the estimated posterior mean of the disease 

control rate of each treatment in each marker group. To ensure a certain minimal probability 

of randomization for each nonsuspended treatment, if the estimated disease control rate is < 

10%, 10% is used in calculating the randomization ratio. AR will be carried out until the last 

patient is enrolled, unless the trial is stopped early because all four treatments are suspended 

due to futility. The randomization ratio for a patient in MG k to receive treatment j is 

proportional to the estimated mean disease control rate in MG k with treatment j. This is 

mathematically defined as:

(3)

where γ̂ corresponds to the posterior mean of the disease control rate and Ω indicates the 

subset of all eligible and nonsuspended treatments for that patient at the time of 

randomization. For example, let us assume that the next patient to be randomized is in MG 

1. If the current estimated disease control rates of treatments 1, 2, 3, and 4 in MG 1 are 0.6, 

0.3, 0.2, and 0.1, the randomization rates to treatments 1, 2, 3, and 4 are 0.50, 0.25, 0.17, and 

0.08, respectively.
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An early stopping rule can be added to our trial design. If the current data shows that a 

treatment is unlikely to be beneficial to patients with certain biomarker profiles, 

randomization to that treatment is suspended. Specifically, denote the target disease control 

rate by θ1 and the critical probability for early stopping, i.e., suspension of randomization 

due to futility by δL. Recall that the estimated disease control rate of the jth treatment for the 

kth marker group is Pr [zijk>0|Data]. Therefore, the trial will be suspended for the jth 

treatment and kth marker group if the chance that the estimated disease control rate greater 

than θ1 is less than or equal to δL, i.e., :

(4)

We choose 0.5 and 0.1 for θ1 and δL, respectively, so that if given the current data, there is 

less than a 10% chance that the disease control rate in this treatment by marker subgroup is 

greater than 0.5, the treatment is suspended for this subgroup. The stopping rule will be 

applied after AR begins. Note that the early stopping criterion will be updated when each 

new outcome is observed. The suspension of a treatment in a certain marker group is only 

temporary and is reversible. If the updated data shows that the early stopping (suspension) 

criterion no longer holds, the treatment can be reopened to patients in that marker group.

Let θ0 and δU be the disease control rate for standard treatment and the critical probability 

for declaring an effective treatment, respectively. The treatment will be considered a success 

at the end of a trial if the probability that the estimated disease control rate is equal to or 

greater than θ0 is at least δU, i.e.,

(5)

In this study, we set θ0 and δU at 0.3 and 0.8, respectively, which means that if the 

probability of a disease control rate greater than 0.3 is 80% or higher, the treatment will be 

declared effective for this treatment by marker subgroup. Please note that our trial design has 

no early stopping rule for effective treatments. If a treatment shows early signs of efficacy, 

patients will continue to be enrolled under the AR scheme and the declaration of efficacy 

will occur at the end of the trial. The above design parameters were chosen via extensive 

simulation studies to ensure that the design possessed desirable operating characteristics 

(shown in Section Simulation results).

Simulation results

We evaluate the operating characteristics of our trial design under various scenarios through 

simulations. In this phase II trial with five marker groups, four treatments, and a limited 

sample size of 200 evaluable patients, our target is to achieve a 20% false positive rate (i.e., 

claiming the non-effective treatment effective, which corresponds to the frequentist’s type I 

error rate), and an 80% power (i.e., claiming the effective treatment effective). A higher false 

positive rate is allowed so that we will not miss any potentially effective treatments. Once 

effective treatments are identified, they will be confirmed by larger studies in the future.
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We conducted simulations with 1000 runs for each scenario. We assumed that for MG 1, the 

true DCR for Treatment 1 was 80%, but only 30% for all other treatments. We assumed that 

for MG 2, the true DCR for Treatment 2 was 60%, with 30% for all other treatments. 

Similarly, MG 3 and MG 4 had only one effective treatment, but there was no effective 

treatment in MG 5. In Scenario 1, both equal randomization (ER) and AR were studied 

without an early stopping rule. Scenario 2 depicted the same situation as Scenario 1, but 

applying an early stopping rule. Vague priors with σ2 = τ2 = 106 were used in Scenarios 1 

and 2. The effect of prior specification with varying treatment effect was examined in 

Scenario 3. We also studied the null case when the disease control rate was 0.30 for all 

subgroups and verified that the false positive rate were all under 20% (between 15% and 

19%, data not shown).

Scenario 1: one effective treatment for MGs 1– 4, no effective treatment for 

MG 5; with no early stopping rule; and with vague priors

Table 1 shows the simulation results for Scenario 1 with both ER and AR. The top section of 

the table gives the observed mean and the model-based posterior mean of disease control 

rates. Under ER, the true disease control rates could be estimated unbiasedly. In this case, 

the observed rates were exactly the same as the true rates, i.e., the disease control rates for 

Treatments 1–4 were 0.8, 0.3, 0.3, 0.3 in MG 1; 0.3, 0.6, 0.3, 0.3 in MG 2; 0.3, 0.3, 0.6, 0.3 

in MG 3; 0.3, 0.3, 0.3, 0.6 in MG 4; and 0.3, 0.3, 0.3, 0.3 in MG 5, respectively. The model-

based posterior disease control rates also provided accurate estimates of the true rates. 

Conversely, with AR, the observed and the model-based rates were slightly lower than the 

corresponding true rates. This finding agrees with a well known result that AR causes bias in 

estimating the true parameters [5,6]. As expected, the average sample sizes for the four 

treatments were approximately the same within a given marker group when ER was applied. 

ER lacks the flexibility to allocate more patients into more effective treatments even when 

there is clear evidence that some treatments outperform the others. Conversely, after the 

initial ER phase, AR allocated patients into treatments based on the model-based disease 

control rates. As a result, of the 30.6 patients in MG 1, 11.0 (35.9%) were randomized to 

Treatment 1 but only 6.7 (21.9%), 6.3 (20.6%), and 6.6 (21.6%) were randomized to 

Treatments 2 through 4, respectively. The results showed that larger proportions of patients 

were randomized into more effective treatments for MGs 1–4 under AR. For MG 5, there 

was no allocation preference because none of the treatments were effective. The total 

numbers of patients reaching disease control status were 76.3 (38.2% of 200 randomized 

patients) using ER and 80.9 (40.5%) using AR. The results show that more patients reached 

disease control status with the AR design.

The probability of declaring an effective treatment for each biomarker group was also 

explored. This probability was at least 85% for effective treatments but 20% or less for 

ineffective treatments. The highest probabilities of declaring an effective treatment were 

0.96 for ER and 0.97 for AR in patients with MG 1 and assigned to Treatment 1. Higher 

statistical power could be found in effective treatment by marker subgroups. The probability 

of declaring an effective treatment was about the same between the ER and AR designs 

when the treatment was effective. However, when the treatments were not efficacious, the 
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probabilities of declaring an effective treatment were lower for AR (between 15% to 18%) 

than those for ER (between 19% to 20%).

Scenario 2: One effective treatment for MGs 1–4, no effective treatment for 

MG 5; with an early stopping rule; and with vague priors

The operating characteristics for the ER and AR designs when applying an early stopping 

rule (i.e., suspending inefficacious treatments from randomization) were shown in Table 2. 

Compared with the results in Scenario 1, the observed disease control rates for ER were no 

longer unbiased when an early stopping rule was implemented. For both ER and AR, the 

observed and model-based disease control rates under estimated the true rates. The bias for 

the model-based posterior mean estimates were smaller than that of the observed mean 

estimates. The standard errors for the posterior mean estimates ranged from 0.15 to 0.26 for 

the AR design.

When an early stopping rule was applied to ER, the average sample size was larger for 

effective treatments and smaller for ineffective treatments. For example, for patients in MG 

1, the average sample size for Treatment 1 was 11.4 but was only about 6 for Treatments 2, 

3, and 4. Similarly, more patients were randomized into effective treatments in MGs 2, 3, 

and 4. This was a result of suspending ineffective treatments early. For AR, applying an 

early stopping rule provided further improvement on randomizing more patients into 

effective treatments. Comparing Scenario 1 versus Scenario 2, the percentage of patients 

receiving effective treatments increased from 35.9% to 43.2% for MG 1, 32.4% to 38.8% for 

MG 2, 33.2% to 43.0% for MG 3, and 32.8% to 41.6% for MG 4. The percentage of patients 

receiving effective treatments were also higher in AR compared to ER when an early 

stopping rule was applied. For patients in MG 5, since there were no effective treatments, 

percentages of patients randomizing into Treatments 1–4 were about the same for both ER 

and AR.

The additional row of ‘None’ indicates the average number of patients who were not 

randomized due to lack of efficacy in all treatments. In MGs 1–4, less than 4% of the 

patients were in the ‘None’ category because there was one effective treatment in each MG. 

However, for MG 5, 9.1% and 10.9% of the patients using ER and AR were not randomized 

due to no effective treatments for this marker group. These patients might receive other 

treatments off protocol.

The probabilities of declaring effective treatments were comparable between ER and AR. 

When the treatment was efficacious, the lowest power was 83% for ER and 82% for AR (in 

Treatment 2, MG 2). The probabilities of identifying effective treatments were slightly lower 

with an early stopping rule than without it, but were still above the pre-specified target of 

80%. The false positive rates for declaring ineffective treatments as effective, were between 

0.14 and 0.19 for ER and were between 0.12 and 0.17 for AR. The probabilities of 

suspending treatments were also comparable between ER and AR designs. When the 

treatments were effective, the probabilities of suspending were no larger than 0.11 for ER 

and 0.12 for AR (in Treatment 2, MG 2). Conversely, for ineffective treatments, the 

probabilities of suspending were at least 0.52 for ER and 0.53 for AR (in Treatment 4, MG 

Zhou et al. Page 8

Clin Trials. Author manuscript; available in PMC 2017 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1). The probabilities of reopening the suspended treatments ranged from 0.13 to 0.31 in 

these cases. (data not shown)

When an early stopping rule was applied to the ER design, the operating characteristics were 

shaped to be similar to those in the AR design. The AR design, however, still randomized 

more patients into effective treatments compared to the ER design. Consequently, the total 

number of patients reaching disease control status was 81.4 (41.9% of an averaged 194.1 

randomized patients) for the ER design, which was lower than 83.0 (43.0% of an averaged 

192.9 randomized patients) for the AR design. For the AR design, the median (mean) 

number of patients required before starting AR was 85 (92), corresponding to almost half of 

the patients were in the ER phase before AR.

Scenario 3: Varying effectiveness for Treatments 1–4; AR utilized without 

an early stopping rule; and with varying informative priors on σ2

Scenario 3 was constructed to assess the impact of the prior distribution on the operating 

characteristics of the AR design. We assumed that the disease control rates varied from 0.3 

to 0.8 for Treatment 1 and from 0.3 to 0.6 for Treatment 3 in different MGs. On the other 

hand, the disease control rates for Treatments 2 and 4 were 0.6 (effective) and 0.3 

(ineffective) across all MGs, respectively. From (2), we let the variance of μjk, σ2, vary at 

100, 10, and 1 across all MGs. To avoid assuming that treatments had similar efficacy, the 

variance of ϕj, τ2, remained at 106. In Table 3, the results for σ2 = 100 and 10 were closer 

than that of σ2 = 10 and 1, indicating that there was little borrowing across MGs when σ2 = 

100 and 10, and much borrowing when σ2 = 1. The amount of borrowing can be easily 

identified by examining the model-based posterior mean estimation of the disease control 

rates. As σ2 went from 100 to 1, the model-based disease control rates for Treatment 1 

decreased from 0.77 to 0.74 in MG 1 and from 0.78 to 0.75 in MG 2. In the meantime, the 

corresponding disease control rate for Treatment 1 increased substantially from 0.27 to 0.42 

in MG 5. We saw a similar trend in Treatment 3 across different MGs, where estimated 

disease control rates for effective treatment by marker subgroups decreased, but estimated 

disease control rates for ineffective subgroups increased. The amount of borrowing was also 

reflected from the probability of declaring an effective treatment. One prominent finding 

was that Treatment 1 in MG 5 had a 15% chance of being declared effective when σ2 = 100 

and a 33% chance of being declared effective when σ2 = 1. The increase in the probability 

can be attributed to (1) the treatment being very effective in all other MGs and, (2) a small 

σ2 dictating that the variation of the disease control rates across all MGs would be small. In 

this case, too much borrowing led to a higher chance of the false conclusion that Treatment 1 

worked in MG 5 in the situation of heterogeneous disease control rates across MGs. When 

the treatment effect was homogeneous across MGs, more borrowing yielded better results 

with respect to less biased estimates of disease control rate and more accurate declarations 

of effective treatments. For example, when the treatment is working, the probability of 

declaring it effective for Treatment 2, MG 5 increased from 68% for σ2 = 100 and 10 to 75% 

for σ2 = 1. On the other hand, when treatment is not working, the probability of declaring it 

effective reduced from 19% for σ2 = 100 to 16% and 11% when σ2 = 10 and σ2 = 1, 

respectively in Treatment 4, MG 5.
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Discussion

Randomized clinical trials have become the gold standard for comparing treatment regimens 

in the past 50) years [32–35]. Randomization is essential in controlling both known and 

unknown biases including patient selection bias, treatment allocation bias, outcome 

evaluation bias, etc. The majority of trials use a fixed randomization ratio (e.g., 1 : 1 or 1 : 2 

between the two treatments). A design with a fixed randomization ratio is simple but rigid. It 

does not allow for changing the randomization ratio during the trial to favor treatments that 

are more likely to be effective. It also does not take an individual patient’s disease 

characteristics into consideration when determining treatment assignments. In this article, 

we propose an AR trial design under the framework of a hierarchical Bayes model. Based on 

extensive simulation studies, we have shown that with a total of 200 evaluable patients, our 

trial design has desirable operating characteristics that: (1) select clinically effective agents 

with a high probability and ineffective agents with a low probability; (2) treat more patients 

with effective agents according to their tumor biomarker profiles; and (3) suspend ineffective 

agents from enrollment with a high probability by applying an early stopping rule. The 

Bayesian AR design is a smart, novel, and ethical design. In conjunction with an early 

stopping rule, it can be applied to efficiently identify effective agents and eliminate 

ineffective ones. By aligning effective treatments with patients’ biomarker profiles, more 

patients are treated with effective therapies, and hence, more patients could reach disease 

control status. AR design with early stopping is ideally suitable for the development of 

targeted therapy. Our trial design continues to ‘learn’ by updating the posterior distribution 

and improves the estimates as the trial progresses. It is a ‘smart’ design that matches patients 

with the drugs best suited for them. However, there are still important issues that require 

further discussion.

Prior specifications

In Bayesian data analysis, it is customary to take several priors, each reflecting a different 

degree of optimism or uncertainty, to assess their effect on posterior inferences. In our 

model, σ2 controls the amount of borrowing from across different MGs for the same 

treatment. The amount of borrowing is limited when σ2 is 10 or larger. However, when σ2 is 

1, there may be too much borrowing and thus result can in wrong conclusion in determining 

treatment efficacy. The other parameter τ2 governs the variation of treatment effect across all 

treatments. A small τ2 indicates that the treatment efficacy is similar while a large τ2 allows 

treatment efficacy to be different among treatments. In our simulation studies, we also found 

that a small τ2 is not desirable. (data not shown) Because little is known about the treatment 

effect for patients with particular biomarker profiles, vague priors such as σ2 = 106 and τ2 = 

106 are reasonable choices for our trial design and yield desirable operating characteristics.

Adaptive randomization versus equal randomization

Our simulation studies showed that both the ER and AR designs controlled the type I and 

type II error rates but the AR design allocated more patients into effective treatments, hence, 

more patients reached disease control status. This result held in designs with and without an 

early stopping rule. AR is a rational choice for the development of predictive markers. 

Bayesian AR paradigm provides an ideal framework to align patients with better treatments. 
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The concept of selecting proper patient groups for evaluating targeted therapies is consistent 

with the idea of enriching the patient population. It has been shown that choosing patients 

who are more likely to benefit from the targeted therapy can increase the efficiency of the 

trial design [36,37]. One known ramification of the AR design is that it results in biased 

estimates due to dependent samples. The magnitude of such bias can be quantified and 

corrected [38,39].

Another important consideration is when to start AR. If AR starts early, the randomization 

ratio is largely determined by the early results from a few patients and can vary greatly. If 

AR starts late, the result is more similar to ER. In our proposed trial, we start AR after 

observing at least one response outcome in all treatment by marker subgroups. 

Consequently, approximately 90 patients were enrolled in the ER part of the study before 

AR. This contributes to the fact that only a moderate difference was found in the operating 

characteristics between ER and AR designs. When adequate prior information becomes 

available, the AR process can start earlier. The issue of determining the best time to start the 

AR process remains an open question, and is a topic of future research.

Early stopping rules

When evidence accumulates that a treatment does not work in patients with certain 

biomarker profiles, we have devised an early stopping rule that suspends the randomization 

of patients with the same biomarker profiles into that treatment. The suspension is not 

permanent, however. Due to the dynamic nature of our trial design, the model continues to 

update when new outcomes are observed. At any given time, if the treatment efficacy 

exceeds the threshold of the stopping rule, the suspension is lifted. As much as researchers 

like to see success, only a small number of new treatments are truly effective. Therefore, 

applying an early stopping rule can increase the study efficiency by terminating ineffective 

treatments early, saving resources, and enhancing the study ethics [40]. Applying an early 

stopping rule improves the operating characteristics for both ER and AR designs. When an 

early stopping rule is applied to the ER design, ineffective treatments are suspended early 

and patients are randomized into effective treatments. It produces a similar effect as in the 

AR design. The percentages of randomized patients reaching disease control status were 

38.2% in the ER design with no early stopping rule, 40.5% in the AR design with no early 

stopping rule, 41.9% in the ER design with an early stopping rule, and 43.0% in the AR 

design with an early stopping rule in scenarios 1 and 2. The AR design with an early 

stopping rule has the highest proportion of patients reaching disease control status.

Challenges in trial conduct

There are several challenges associated with the conduct of this biomarker driven, outcome-

based AR trial. First, the time for a patient’s biomarker assessment needs to be short because 

the patient’s treatment assignment depends on the determination of the marker profile. For 

the BATTLE project, we have assembled a designated molecular pathology laboratory. The 

turn around time is usually within 1 week but cannot be longer than 2 weeks as stipulated in 

the protocol. Second, the time for outcome assessment must be relatively short as well, so 

that the decision based on up-to-date data can provide appropriate guidance for subsequent 

treatment assignments. If a trial has a fast accrual rate, many patients may have been 
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enrolled into the trial before the outcome data becomes available to provide useful 

information for the AR. Therefore, quick and easily assessable endpoints and slow to 

moderate accrual rates (relative to the outcome assessment time) are most suitable for 

outcome-based AR designs.

In clinical settings, not every patient has a biopsiable tumor, nor has the desire to undergo an 

additional biopsy procedure. Also, the amount and quality of tissue samples may vary, 

leading to an incomplete biomarker panel for some patients. Shall patients with no or partial 

biomarker results be enrolled in the study? If so, how? Biomarker diagnostic tools may have 

varying sensitivity and specificity. Hence, the assignment of a patient to a biomarker group 

may not be 100% accurate. These practical considerations pose challenges to the trial design 

and requires further investigation.

In the midst of many challenges, we have derived an AR design to achieve our goals. Our 

trial design presents a step towards personalized medicine. With the advancement of medical 

knowledge and molecular, genomic biomarker tools, an efficient and flexible design such as 

ours will enable us continue to learn more about new agents’ clinical activities and 

molecular underpinning. Researchers can then apply this knowledge to better treat patients 

enrolled in a trial. The success of such trials require an integrated multi-disciplinary research 

team consisting of clinical investigators, who see patients and perform biopsies, basic 

scientists, who run the biomarker analysis, computer programmers, who build web-based 

database applications to capture data in real time, and statisticians who provide the statistical 

design and implement AR.

Acknowledgments

This work was supported in part by a Department of Defense grant W81XWH-06-1-303 and a National Cancer 
Institute grant CA 16672. The authors thank the entire BATTLE research team led by Dr Waun Ki Hong for their 
support and collaboration. The authors also thank the Editor, Associate Editor, and reviewers for constructive 
comments and Rebecca Partida and M. Victoria Cervantes for their editorial assistance.

Abbreviations

AR adaptive randomization

BATTLE biomarker-integrated approaches of targeted therapy of lung cancer 

elimination

EGFR epidermal growth factor receptor

ER equal randomization

MG biomarker group or marker group in short

NSCLC non-small cell lung cancer

RXR retinoid X receptor

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor

Zhou et al. Page 12

Clin Trials. Author manuscript; available in PMC 2017 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Palmer CR. Ethics, data-dependent designs, and the strategy of clinical trials: time to start learning-
as-we-go? Statistical Methods in Medical Research. 2002; 11:381–402. [PubMed: 12357585] 

2. Thall PF. Ethical issues in oncology biostatistics. Statistical Methods in Medical Research. 2002; 
11:429–48. [PubMed: 12357588] 

3. Rosenberger WF. Randomized play-the-winner clinical trials: review and recommendations. 
Controlled Clinical Trials. 1999; 20:328–42. [PubMed: 10440560] 

4. Biswas A. Adaptive designs for binary treatment responses in phase III clinical trials: controversies 
and progress. Statistical Methods in Medical Research. 2001; 10:353–64. [PubMed: 11697227] 

5. Rosenberger, WF., Lachin, JM. Randomization in Clinical Trials: Theory and Practice. New York: 
Wiley; 2002. 

6. Hu, F., Rosenberger, WF. The Theory of Response-adaptive Randomization in Clinical Trials. 
Wiley; Hoboken, New Jersey: 2006. 

7. Show, S-C., Chang, M. Adaptive Design Methods in Clinical Trials. Chapman and Hall/CRC; Boca 
Raton, Florida: 2007. 

8. Chang, M. Adaptive Design Theory and Implementation Using SAS and R. Chapman and Hall/
CRC; Boca Raton, Florida: 2008. 

9. Goodman SN. Introduction to Bayesian methods I: measuring the strength of evidence. Clinical 
Trials. 2005; 2:282–90. [PubMed: 16281426] 

10. Louis TA. Introduction to Bayesian methods II: fundamental concepts. Clinical Trials. 2005; 
2:291–94. [PubMed: 16281427] 

11. Berry DA. Introduction to Bayesian methods III: use and interpretation of Bayesian tools in design 
and analysis. Clinical Trials. 2005; 2:295–300. [PubMed: 16281428] 

12. Spiegelhalter, DJ., Abrams, KR., Myles, JP. Bayesian Approaches to Clinical Trials and Health-
Care Evaluation. John Wiley & Sons; Chichester, West Sussex, UK: 2004. 

13. Berry DA. Bayesian statistics and the efficiency and ethics of clinical trials. Statistical Science. 
2004; 19:175–87.

14. Berry DA. A guid to drug discovery: Bayesian clinical trials. Nature Reviews Drug Discovery. 
2006; 5:27–36. [PubMed: 16485344] 

15. Berry, DA. Statistical innovations in cancer research. In: Holland, J.Frei, T., et al., editors. Cancer 
Medicine. 7. BC Decker; London: 2005. p. 411-25.

16. Berry DA. Adaptive trial design. Clinical Advances in Hematologic Oncology. 2007; 5(7):522–24.

17. Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the 
controlled clinical trial. Biometrics. 1975; 31:103–15. [PubMed: 1100130] 

18. Scott NW, McPherson GC, Ramsay CR, Campbell MK. The method of minimization for allocation 
to clinical trials a review. Control Clin Trials. 2002; 23:662–74. [PubMed: 12505244] 

19. Thall PF, Wathen JK. Covariate-adjusted adaptive randomization in a sarcoma trial with multi-
stage treatments. Statistics in Medicine. 2005; 24:1947–64. [PubMed: 15806621] 

20. Park JW, Kerbel RS, Kelloff GJ, et al. Rationale for biomarkers and surrogate end points in 
mechanism-driven oncology drug development. Clinical Cancer Research. 2004; 10:3885–96. 
[PubMed: 15173098] 

21. Therasse P, Carbonnelle S, Bogaerts J. Clinical trials design and treatment tailoring: general 
principles applied to breast cancer research. Critical Reviews in Oncology/Hematology. 2006; 
59:98–105. [PubMed: 16431124] 

22. Carr KM, Rosenblatt K, Petricoin EF, Liotta LA. Genomic and proteomic approaches for studying 
human cancer: prospects for true patient-tailored therapy. Human Genomics. 2004; 1:134–40. 
[PubMed: 15601541] 

23. Kummar S, Gutierrez M, Doroshow JH, Murgo AJ. Drug development in oncology: classical 
cytotoxics and molecularly targeted agents. British Journal of Clinical Pharmacology. 2006; 
62:15–26. [PubMed: 16842375] 

24. Markman M. Unique issues in the development of ‘targeted’ antineoplastic pharmaceutical agents. 
Current Oncology Reports. 2005; 7:235–36. [PubMed: 15946580] 

Zhou et al. Page 13

Clin Trials. Author manuscript; available in PMC 2017 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Chen EX, Siu LL. Development of molecular targeted anticancer agents: Successes, failures and 
future directions. Current Pharmaceutical Design. 2005; 11:265–72. [PubMed: 15638762] 

26. Wolf M, Swaisland H, Averbuch S. Development of the novel biologically targeted anticancer 
agent gefitinib: determining the optimum dose for clinical efficacy. Clinical Cancer Research. 
2004; 10:4607–13. [PubMed: 15269131] 

27. Fossella FV, DeVore R, Kerr RN, et al. Randomized phase III trial of docetaxel versus vinorelbine 
or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with 
platinum-containing chemotherapy regimens. TAX 320 Non-Small-Cell Lung Cancer Study 
Group. Journal of Clinical Oncology. 2000; 18:2354–62. [PubMed: 10856094] 

28. Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase III trial of pemetrexed versus 
docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin 
Oncol. 2004; 22:1589–97. [PubMed: 15117980] 

29. Lara PN Jr, Redman MW, Kelly K, Gandara DR, et al. Disease control rate at 8 weeks predicts 
clinical benefit in advanced non-small-cell lung cancer: Results from Southwest Oncology Group 
randomized trials. Journal of Clinical Oncology. 2008; 26:463–67. [PubMed: 18202421] 

30. Albert JH, Chib S. Bayesian analysis of binary and polychotomous response Data. Journal of the 
American Statistical Association. 1993; 88:669–79.

31. Johnson, VE., Albert, JH. Ordinal Data Modeling. Springer-Verlag; New York: 2000. 

32. Pocock, SJ. Clinical Trials: A Practical Approach. Wiley; Chichester: 1983. 

33. Friedman, LM., Furberg, C., DeMets, DL. Fundamentals of Clinical Trials. New York: Springer; 
1998. 

34. Piantadosi, S. Clinical trials: A Methodologic Perspective. 2. Wiley-Interscience; Hoboken: 2005. 

35. Lee, JJ. Clinical Trial Design for Anticancer Therapies. In: Alison, M., editor. The Cancer 
Handbook. 2. John Wiley & Sons; Chichester, West Sussex, UK: 2007. 

36. Simon R, Maitournam A. Evaluating the efficiency of targeted designs for randomized clinical 
trials. Clinical Cancer Research. 2004; 10:6759–63. [PubMed: 15501951] 

37. Maitournam A, Simon R. On the efficiency of targeted clinical trials. Statistics in Medicine. 2005; 
24:329–39. [PubMed: 15551403] 

38. Hu F, Rosenberger WF. Optimality, Variability, Power: Evaluating Response-Adaptive 
Randomization Procedures for Treatment Comparisons. Journal of the American Statistical 
Association. 2003; 98:671–78.

39. Coad DS, Ivanova A. Bias calculations for adaptive urn designs. Sequential Analysis. 2001; 20:91–
116.

40. Lee JJ, Feng L. Randomized phase II designs in cancer clinical trials: current status and future 
directions. Journal of Clinical Oncology. 2005; 23:4450–57. [PubMed: 15994154] 

Appendix: full conditional distributions for the model

We present the full conditional distributions for the hierarchical probit model in this section. 

Gibbs sampling method is applied to compute the posterior distributions. Denote Lijk as the 

likelihood for the ith patient in kth marker group receiving jth treatment. Assuming 

independence across patients, the overall likelihood is a product,
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The full conditional distributions of the parameters are proportional to the product of the 

likelihood of data and the prior distributions. Therefore, they follow normal distributions 

given the use of conjugate priors. The mean of the posterior distribution is the weighted 

average of the mean of the prior distribution and the mean of data. The latent variable zijk 

follows a truncated normal distribution. If yijk = 0, zijk can be sampled from the normal 

distribution centering at μjk and the variance of 1 and bounded in the region of less than 0. 

Otherwise, zijk can be sampled from the same normal distribution but bounded in the region 

of greater than 0.
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Figure 1. 
Schematic diagram of the flow of the BATTLE trial. All eligible patients will be enrolled in 

the Umbrella protocol first. Tissue biopsy will be taken for biomarker profiling. According 

to the characteristics of the four biomarker categories, patients will be assigned to the 

biomarker group 1 to 5 in a sequential order. The symbols ‘+’, ‘−’, and ‘x’ correspond to the 

positive, negative, and either positive or negative biomarker status, respectively. Patients will 

be adaptively randomized to one of the four treatments according to their biomarker groups. 

The dashed arrow indicates the putative effective treatment for each of the biomarker groups
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