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Postgraduate School, Ljubljana, Slovenia, 3 Faculty of Mathematics, Natural Science and Information

Technologies, Koper, Slovenia

☯ These authors contributed equally to this work.

* tome.eftimov@ijs.si

Abstract

Evidence-based dietary information represented as unstructured text is a crucial information

that needs to be accessed in order to help dietitians follow the new knowledge arrives daily

with newly published scientific reports. Different named-entity recognition (NER) methods

have been introduced previously to extract useful information from the biomedical literature.

They are focused on, for example extracting gene mentions, proteins mentions, relation-

ships between genes and proteins, chemical concepts and relationships between drugs and

diseases. In this paper, we present a novel NER method, called drNER, for knowledge

extraction of evidence-based dietary information. To the best of our knowledge this is the

first attempt at extracting dietary concepts. DrNER is a rule-based NER that consists of two

phases. The first one involves the detection and determination of the entities mention, and

the second one involves the selection and extraction of the entities. We evaluate the method

by using text corpora from heterogeneous sources, including text from several scientifically

validated web sites and text from scientific publications. Evaluation of the method showed

that drNER gives good results and can be used for knowledge extraction of evidence-based

dietary recommendations.

Introduction

Nutritional sciences, such as clinical nutrition, food and nutrition management, public health

nutrition, etc., combine a strong foundation in the biological, chemical and medical sciences,

with a focus on nutrient/non-nutrient function and metabolism. The main objective of nutri-

tional sciences is to establish food-based dietary guidelines (FBDGs) to achieve optimum

health and the treatment or prevention of disease conditions as well as food production and

safety [1]. Even though FBDGs are simple messages, we must be aware that they are based on

complex scientific facts, which include dietary reference values (DRVs). DRVs are nutrient

recommendations and quantitative reference values for nutritional intakes, such as population

reference intake, the average requirement, adequate intake level, and the lower threshold
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intake. Authorities (e.g. European Food Safety Agency (EFSA) [2]) continuously identify and

review the latest scientific studies, including reports of national and international authorities,

for possible health effects of specific nutrients. For example, if the focus is on dietary fiber,

health effects of dietary fiber are identified by reviewing scientific studies. Then, evidence of

relationships between the intake of a nutrient and health outcome is evaluated. Finally, when

nutrient-health relationships are established, the authority provides scientific advice that can

be used by policy makers. In practice, this means that a daily intake of 25 g of a dietary fiber is

set as a DRV because it is adequate for adults, while consuming greater than 25 g of dietary

fiber per day may reduce the risk of coronary heart disease and type 2 diabetes and may

improve weight maintenance [2]. Most countries have established their own national DRVs

that consider, beside international recommendations and guidelines, also local conditions and

national/ethnical eating culture and habits, and are reviewed and updated from time to time.

A comprehensive review of micronutrient recommendations in Europe, collected within the

EU-funded project EURRECA (EURopean micronutrient RECommendations Aligned) [3],

was published several years ago in [4]. In 2015, the non-profit association EuroFIR [5] updated

EURRECA micronutrient recommendations, enriched them with reference values for other

nutrients, and developed a web service for accessing DRVs through the Quisper server plat-

form [6], aimed at collecting scientifically-validated food-related data and knowledge services

for dietary advising. Beside DRVs for the public, there also exist disease-specific DRVs aimed

at increasing the awareness of clinicians and persons with chronic disease about beneficial

nutritional therapies. Recently, personalized DRVs have become relevant as they consider

genetic predisposition to chronic disease and phenotype information on anthropometry, phys-

ical activity, clinical parameters, and biochemical markers of nutritional status, and give strate-

gies to dramatically reduce the risk of chronic-disease. The EU-funded Food4Me project [7]

performed a pan-European study of over 1,500 participants, which showed that personalized

advice is more effective at improving dietary behavior compared to conventional, population-

based FBDGs [8].

In public health as well as in clinical practice, dietary recommendations should be based on

evidence-based principles, considering scientific knowledge, expert consensus, and clinical

experience.

Both DRVs and FBDGs are relevant and need to be combined in order to develop advanced

health applications such as calculating nutritional values of dishes [9, 10], health recommenda-

tion systems [11–15], etc. The problem with these applications is that they require complete

and the latest knowledge about DRVs and FBDGs. Another problem is that existing resources

consist of a vast amount of both structured and unstructured data and information. Recent

developments in ICT and Computer Science enables collection of the latest knowledge by

exploiting the recently published biomedical literature and scientifically validated public health

web sites. These resources lack coded data (e.g., unique identifiers from ontologies), but do

have a lot of unstructured text that needs to be analyzed to correctly interpret dietary informa-

tion. The amount of information presented as unstructured text is huge and is growing rapidly,

computer-based tools for systematic knowledge identification, extraction, and exploration are

welcome to support human experts when making decisions about appropriate nutritional care

for specific disease states or conditions in typical settings.

There are several questions that need to be considered in order to extract relevant knowl-

edge. Having the dietary information represented as unstructured text, the knowledge that

needs to be extracted is related to DRVs with corresponding life stage groups, gender groups,

and reference values for heights and weights for life stage and gender groups, and food compo-

sition data that usually contains information for a huge number of components, such as

energy, macronutrients (e.g. protein, carbohydrate, fat), and their components (e.g. sugars,
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fatty acids), minerals (e.g. calcium, iron, sodium), and vitamins. So the first question is how to

select parts of the text (phrases) that will be candidates for the entities in which we are inter-

ested. For this purpose, a good tokenization needs to be applied, such that each phrase can be a

candidate for an entity and a phrase should not contain information about more than one

entity. For example, let us have the recommendation “The recommended intake for total fiber
for adults 50 years and younger is set at 38 g for men and 25 g for women, while for men and
women over 50 it is 30 g and 21 g per day, respectively, due to decreased food consumption.” [16].

In this example, it is preferred to obtain “the recommended intake for total fiber” instead of

“fiber” because it contains information about DRVs. Also, another question is how to extract

all useful information from this recommendation and then to relate it together. The informa-

tion that for “adults 50 and younger” the recommended intake is “38 g for men” and “25 g for
women”, while the recommended intake for “men and women over 50” is “30 g” and “21 g per
day”. Then, let us have another dietary recommendation, “Some breakfast cereals contain 150
to 300 mg of sodium before milk is added.”. In this example, the phrase “150 to 300 mg of
sodium” is not preferred because it contains information about more than one entity. It is pre-

ferred to have two different phrases “150 to 300 mg” and “sodium”. Then, a good and represen-

tative knowledge base for each entity we are interested in needs to be selected, in order to link

each phrase to find a set of candidates for each entity. An additional information is also

reported in the action of the recommendation, such as “contain”, “consist”, “should further
increase”, etc.

Automatic identification and classification of words or phrases that describe important

concepts (entities) can be done by a process known as Named Entity Recognition (NER) [17].

NER is a process in which a label (class) or semantic category from a predefined set is assigned

to the words or phrases known as entity mentions in order to describe the concept. There exist

terminological-driven NER methods that aim to map mentions of concepts within texts to ter-

minological resources, rule-based NER methods that use regular expressions of dictionary

information with some characteristics of the entities of interest, and corpus-based NER meth-

ods that use evidence from text corpora and usually use machine learning (ML) approaches.

Each of these different versions of NER method has its own advantages and limitations.

Different ML approaches have been applied in the extraction of concepts from the biomedi-

cal literature and the relations that exist between them. For example, there exist NER methods

used for extracting relationships between genes and proteins, disease-phenotype relationships,

chemical entities, and relationships between drugs and diseases, etc., but to the best of our

knowledge there is no research that is focused on the extraction of dietary information con-

cepts and on the relations that exist between them. Even more, for most machine learning

approaches an annotated corpora in the domain is required. The annotated corpora in each

domain is done by experts from the domain and it requires time and effort to produce it. In

the domain of dietary recommendations an annotated corpora provided by the experts is still

missing.

In this paper, we present a method that is an extension of our previous work [18], which

was focused only on knowledge extraction of dietary information from a single sentence. We

extended the method with several modifications. First, the extended version of the method

works with text that could be a paragraph that contains more sentences instead of working

only with one sentence. The sentence segmentation is introduced and each sentence is addi-

tionally split into more segments according to a set of rules in order to extract more useful

information. Splitting the sentences into more segments improves the results that we obtained

in our first attempt. New representative dictionaries, that are used for the entities we are inter-

ested in, were also added to improve the obtained results. For the evaluation of the method,

instead of using a single sentence as one document as in our previous attempt, a test corpora
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was created, which contains documents form heterogeneous sources. We continue by explain-

ing the related work, which includes the basic concepts for natural language processing (NLP)

and ML, the definition of NER, and the overview of information extraction from the biomedi-

cal literature. Then, the newly proposed NER method for knowledge extraction of evidence-

based dietary recommendations is explained in detail. At the end, the results and a discussion

evaluating the proposed NER method are presented.

Related work

In this section, we start by explaining the basic concepts of NLP and ML. Then, we give an

explanation of the named entity recognition process that is used for automatic extraction of

the useful information from the text. Finally, we give an overview of existing problems and

solutions for information extraction from the biomedical literature.

Natural language processing and machine learning

NLP is a research area of computer science, artificial intelligence, and computational linguis-

tics, concerned with the interactions between computers and human natural languages. More

information about NLP can be found in [19, 20]. NLP works with data represented as unstruc-

tured text, which depends on how people express themselves. Text is processed by sentence

segmentation and further the segments are analyzed by applying tokenization that is a process

of breaking the segments into words that are called tokens. Each of the tokens consists of a

string of characters without white space. The tokens can be analyzed by applying lemmatiza-

tion [21] or stemming [22, 23]. From linguistics, the lemmatization is the process of grouping

together different inflected forms of a word so they can be analyzed as a single item. The unin-

flected form is called lemma. In computational linguistics, the lemmatization is a process of

determining the lemma of a given token (word). It usually works by using vocabulary and

morphological analysis of the token in order to return the lemma or dictionary form of the

token. Stemming is another approach similar to lemmatization. It usually works by removing

the suffixes of the token in order to give a good approximation to the lemma. Further, the

tokens can be analyzed by applying part-of-speech (POS) tagging that is a process of assigning

morphological tags or categories (classes) to each token (e.g, NN (noun, singular or mass), VB

(verb, base form), and VBD (verb, past tense)) [24–28]. Sometimes it can happen that we are

not interested into tokens, but we want to determinate text phrases that are concepts (entities).

Chunking [20] is one approach that uses POS tags and identifies short phrases such as noun

phrase (NP), verb phrase (VP), preposition phrase (PP), etc. Chunking is usually combined

with B-I-O tagging scheme, which gives a tag to each token at the beginning of the phrase (B),

inside the phrase (I), and outside of any phrase that is tagged (O). For example, the noun

phrase (B-NP, I-NP) consists of two tokens, in which the first token is the beginning of the

noun phrase and the second token is inside the noun phrase. Despite the morphological analy-

sis, the sentences can be analyzed according to their syntactic structure. The process of work-

ing with the syntactic analysis of the sentences is called parsing [29].

Alternatively, we have ML, which is a subfield of computer science related to studies of pat-

tern recognition and computational learning theory in artificial intelligence [30]. It focuses on

developing algorithms that can learn and make predictions based on data. The data is pre-

sented as a training set, which is a collection of instances described by attributes called features.

If the training set consists of output labels (classes), given by an expert from the data domain,

that are the desired output of the algorithm, then we have supervised learning. If the desired

output labels are not present in the training set, we have unsupervised learning, the goal of

which is to find some hidden patterns in the data. Also, semi-supervised learning exists, which
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is a combination of supervised and unsupervised learning. The idea of the ML algorithms is to

give further analyses of new unseen instances that are not present in the training set. For exam-

ple, in supervised learning the output label (class) of these new unseen instances needs to be

predicted using the algorithm. Because the ML supervised algorithms perform well for the

instances from the training set, their evaluation needs to be done by using a test set that con-

sists of instances that are not found in the training set. For this purpose, the training set is

often randomly split into two portions, the training set and the test set. Another approach for

evaluating the performance of ML supervised algorithms is to use cross-validation [31].

ML supervised algorithms are the most used algorithms for information extraction from

text. They are based on annotated corpora, which include text in which the labels of the entities

of interest are assigned by domain experts. Using it, different ML models such as decision

trees [32], support vector machines (SVMs) [33], hidden Markov models [34], conditional ran-

dom fields (CRFs) [35], maximum entropy [36], etc., can be applied in order to achieve better

performance. Moreover, the idea of ensemble learning [37] can be used to combine multiple

learning algorithms to obtain better performance that could be obtained from any of the con-

stituent learning algorithms alone.

Named entity recognition

Named entity recognition (NER) [17] is a part of information extraction that aims to deter-

mine and identify words or phrases in text into predefined labels (classes) that describe con-

cepts of interest in a given domain. There exist various NER methods.

Terminology-driven NER methods, also called dictionary-based NER methods [38–40]

work by matching the text phrases with concept synonyms that exist in the terminological

resources (dictionaries). In order to improve the performance of these methods, instead of

strict matching they are combined with some heuristics such as the generating of words that

occur in entity mentions, generating permutations of words in concept synonyms, solving dis-

ambiguation problem, etc. The main disadvantage of these methods is that only the entity

mentions that exist in the resources will be recognized, but the benefit of using them is related

to the frequent updates of the terminological resources with new concepts and synonyms.

Another NER methods are rule-based NER methods [41, 42], which use regular expressions

that combine information from terminological resources and characteristics of the entities of

interest. The main disadvantage of these methods is the manual construction of the rules,

which is a time-consuming task and depends on the domain.

Corpus-based NER methods [43–46] are based on the evidence that exists in an annotated

corpora provided by human experts from the domain and use of ML algorithms to predict the

entities labels. These methods are less affected by terminological resources and manual created

rules, but the limitation is the existence of an annotated corpora for the domain of interest.

The construction of the annotated corpora for a new domain is a time consuming task and

requires effort by the human experts to produce it.

Overview of information extraction from biomedical literature

Nowadays, the information extraction from the biomedical literature is a very important task

in order to improve public health. Because the NER methods with best performances are usu-

ally corpus-based NER methods, there is a need for annotated corpora from biomedical litera-

ture that will include the entities of interest. For this purpose, different annotated corpora are

produced by shared tasks, where the main aim is to challenge and encourage research teams

on NLP problems.

Named-entity recognition method for knowledge extraction of evidence-based dietary recommendations
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BioNLP Shared Task 2013 [47] aims to provide a common framework for information

extraction in the biomedical domain. The biological questions addressed by this task were

related to the molecular biology domain and its related fields. The BioNLP Shared task 2013

consists of six tasks: gene event extraction, cancer genetics, pathway curation, corpus annota-

tion with gene regulation ontology, gene regulation networks in bacteria, and bacteria bio-

topes. BioNLP Shared Task 2016 comprises three tasks that address different aspects of

knowledge acquisition from text and also encompasses a wide range of biological diversity

[48–56]. The SeeDev task [48] aimed at extracting the regulation of the seed development in

plants using a rich model. The Bacteria Biotopes 3 (BB3) task [52, 54] was used for the con-

struction of a bacteria habitat database using external ontologies. The Genia 4 (GE4) task [50]

aimed at delivering a new shared task framework to construct a knowledge base of NFkB syn-

thesis and regulation through IE.

BioCreative II gene mention recognition [57] was a task, where different systems were

designed to identify substrings in sentences corresponding to gene name mentions. The anno-

tated corpora was provided to the participants, on which different methods were used and

results in the performances varied. The best system was a semi-supervised learning method

known as alternating structure optimization (ASO) [58]. Other systems were developed by

using supervised ML algorithms. The second best performing system used CRFs [59], the third

best performing system used a combination of two SVMs and one CRF [60], and the fourth

best performing system used a multimodal approach with two CRFs [61]. For example, one

system that is evaluated on the BioCreative 2 GM task training corpus is BANNER [62]. This is

an open-source biomedical named-entity recognition system implemented using CRF. It rep-

resents an innovative combination go known advances beyond the existing open-source sys-

tems, in a consistent, scalable package that can easily be configured and extended with

additional techniques. The work on gene mention recognition continued in BioCreative III

[63], where the focus was on three tasks: cross-species gene normalization using full text,

extraction of protein-protein interactions from full text, including document selection, identi-

fication of interacting proteins and identification of interacting protein pairs, and an interac-

tive demonstration task for gene indexing and retrieval task using full text. In BioCreative IV

[64], the gene ontology annotation task was reintroduced along with the following new tasks:

interoperability of text mining systems, web service-based named entity recognition, and

chemical/drug entity name recognition. In the chemical/drug named entity recognition two

main aspects were covered, the chemical document indexing and the chemical entity mention

recognition. The extraction of chemical entities from unstructured text is a very important

task for different research areas, because they are related with metabolism, enzymatic reac-

tions, potential adverse effects, etc. The systems presented are based on three general strategies:

supervised ML approaches, rule/knowledge-based approaches, and chemical dictionary look-

up approaches [65]. The evaluation of the systems performances was made using the CHEMD-

NER annotated corpus that was provided by the workshop [66]. Most systems that use super-

vised ML methods are based on the CRFs, some of them used SVMs, and some a combination

of SVMs and CRFs. There were presented systems that use mainly rule-based methods, but

these require a deep understanding of both the existing chemical nomenclature standards as

well as of the CHEMDNER annotation guidelines. The use of dictionary-lookup based systems

required efficient dictionary pruning and post-processing of the results. For example, becas

[67] provides annotations for isolated, nested, and intersected entities. It uses dictionary-

matching techniques to recognise species, anatomical concepts, microRNAs, enzymes, chemi-

cals, drugs, diseases, metabolic pathways, cellular components, biological processes, and

molecular functions. It gives an opportunity to choose the types of entities in which you are

interested. It was validated against CRAFT [68], AnEM [69], and NCBI Diseases corpora [70],
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achieving an f-measure of 76% for genes and proteins, 95% for species, 65% for chemicals,

83% for cellular component, 92% for cells, 63% for molecular functions and biological pro-

cesses, 83% for anatomical entities, and 85% for diseases. Becas[chemicals] [71] is a web appli-

cation and API for recognizing and annotating chemical compounds and drugs. It is a special

branch of becas API focusing on identifying of a large array of chemical substances. It uses

machine-learning techniques, with an optimized feature set including orthographic, morpho-

logical, natural language processing, domain knowledge, and local context features. It was vali-

dated against the BioCreative IV CHEMDNER task corpora, achieving an f-measure of

87.48% for chemical named entities. The work related to chemical named entity recognition

continued also in BioCreative V [72–74], where the focus was on disease and symptoms related

entities and relations that exist between chemical/drug entities and disease entities. BioCrea-

tive 2016 was focused on four main tasks: applications of text mining methods in areas such as

crowdsourcing, database curation, the publication process, and metagenomics; methods for

annotations such as disease, phenotype, and adverse reactions in different text sources litera-

ture, clinical records and social media; methods to achieve interoperability, generalisability,

and scalability in text mining: BioC [75], RDF and semantic web, among others; and the appli-

cation of ontologies in text mining and text mining as an ontology builder.

From an overview of the existing information extraction methods from the biomedical lit-

erature, we can see that a lot of NER methods exist in the domain of biomedical literature and

they are focused on different biomedical domains. The commonly used NER methods are the

corpus-based NER methods that rely on annotated corpora for the domain of interest, which

is produced by the domain experts. We did not find any research that focuses on extracting

dietary information from text. Also, we could not find an annotated corpora that can be used

to developed corpus-based NER methods for dietary information. Therefore, we have devel-

oped a new NER method for knowledge extraction of evidence-based dietary recommenda-

tions from unstructured text data that is not annotated. The method uses a combination of

NLP techniques with Boolean algebra rules and matrix theory in order to extract the entities

from the domain.

Methods

A rule-based NER method for information extraction of evidence-based

dietary recommendations

The dietary information presented in the evidence-based dietary recommendations is pro-

vided through the information about DRVs and FBDGs. Because an annotated corpora in this

domain is still missing, after several discussions with the human experts from the domain, we

realized that the basic dietary information that needs to be extracted is represented with food

entities, Food, nutrient entities (or chemical components), Nutrient, and associated quantity/

unit entities, Quantity/Unit. Also, there is a need to track an additional information that is

reported as an action in the recommendation (e.g, increase, decrease, contains, etc.) in order

to properly interpret the information provided. Despite the main entities that are important,

the recommendation can also consist of other useful information that needs to be tracked such

as life stage group of the population, national characteristics of the population, cultural habits,

etc.

In order to extract the dietary information provided by evidence-based dietary recommen-

dations, we proposed a novel rule-based NER method, that we call drNER. It is a combination

of the terminological-driven NER and rule-based NER. The difference with the purely termi-

nological-driven NERs is that we do not use only dictionaries with concepts and synonyms,

but we allow the reuse of some corpus-based NERs that exist for some entities. So if corpus-
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based NERs exist for some entities we are interested in, we can use these systems to annotate

the text data and then to see if some tokens have labels that correspond to entities of interest.

We also combine corpus-based NERs that exist for some entities in which we are interested,

following the idea of ensemble learning in order to achieve better performance that could be

obtained from any corpus-based NER alone. The difference with the rule-based NERs is that

we do not use rules associated with the characteristics of the entities. This is because having

rules for each of the entities we are interested in, requires too much time and effort to produce

them. We only used a small number of Boolean algebra rules that are not related to the charac-

teristics of the entities, but help us define the phrases that are entities mentions.

DrNER works with text that is composed of sentences and paragraphs. First, we split the

text using sentence segmentation. Then, each sentence is split with an additional segmentation

and each sentence segment is pre-processed and analyzed in two phases. The first one is detec-

tion and determination of the entities mentions. It is based on a combination of NLP methods,

matrix theory, and boolean algebra. The second one is the selection and extraction of the enti-

ties. It uses the information from the first phase by representing it using graph theory and a

small set of rules that define how to extract the useful entities. The workflow diagram of the

NER method is presented in Fig 1.

For a better understanding of the drNER, the pseudocode of the method is presented in

Algorithm 1.

Algorithm 1 drNER

1: Applysentencesegmentationon the text document
2: for each sentence,Φi, in the set of sentences,Φ do
3: ObtainChunksvectorby introducingthe defaultchunkingon Φi
4: SplitΦi on the positionof each ADV P, CONJP,SBAR chunk,or two succes-

sive chunks(O,O), into set Ψ
5: for each sentencesegment,Ψi, in Ψ do
6: Obtainthe Tokensvectorby usingthe word-leveltokenizationon Ψi
7: Obtainthe Chunksvectorby introducingthe defaultchunkingon Ψi
8: Obtainthe XChunks matrixusing the Eq (1)
9: Obtainthe XDictionaries matrixusing the Eq (2)
10: Obtainthe XEntities matrixusingthe Eq (3)
11: Performthe firstpost-hocchunking
12: Performthe secondpost-hocchunking
13: Performthe thirdpost-hocchunking
14: Recalculatethe XChunks matrixusingthe Eq (1)
15: Recalculatethe XEntities matrixusing the Eq (3)
16: Selectthe Actionentityby searchingthe predicatein the VP subtrees
17: Extractall entities
18: Add the labelsfor (Subject,Predicate,Object)using S, P, O
19: end for
20: end for
21: Returnlist of entitiestogetherwith (Subject,Predicate,Object)

labels

Dictionaries

We start by explaining the dictionaries or the terminological resources we used for the drNER.

For the Quantity/Unit entity, an ontology, called Units of Measurements Ontology (UO)

[76–78], is used. The UO is currently being used in many scientific resources for the standard-

ized description of measurement units. From it, the names of the units together with their
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Fig 1. DrNER workflow diagram.

https://doi.org/10.1371/journal.pone.0179488.g001
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symbols are extracted. In addition, a list of measurement units that are used for recipes, such

as tablespoon, teaspoon, etc. are added.

For the Nutrient and the Food entity, dictionaries are constructed using the outputs of dif-

ferent NERs appropriate for the entity.

For the Nutrient entity, a combination of becas API [67], becas[chemicals] API [71] and a

semantic tagger, known as USAS online English semantic tagger [79–81], is used. Both, becas

and becas[chemicals], are web-services-based and corpus-based NER developed as a prat of

BioCreative IV CHEMDNER task. Becas provides annotations for isolated, nested, and inter-

sected entities. It uses dictionary-matching techniques to recognise species, anatomical con-

cepts, microRNAs, enzymes, chemicals, drugs, diseases, metabolic pathways, cellular

components, biological processes, and molecular functions. It also gives an opportunity to

choose the types of entities. Becas[chemicals] is a web application and API for recognizing and

annotating of chemical compounds and drugs. It is a special branch of becas API focused on

the identification of a large array of chemical substances. It uses machine-learning techniques,

with an optimized feature set including orthographic, morphological, natural language pro-

cessing, domain knowledge, and local context features. The USAS online English semantic tag-

ger is a part of the UCREL semantic analysis system, which is a framework of automatic

semantic analysis of text that has been designed across a number of research projects since

1990. The USAS version contains 21 major entity labels, with the possibility of subdivision for

some of them. For our purpose, the focus is on one category with the semantic label O, which

is for terms related to substances, materials, objects, and equipment. From this entity label, we

use only one subcategory O1 that is for terms relating to substances and materials generally.

The idea of using a combination of NER systems comes from the idea of ensemble learning in

order to achieve a better performance of identifying the chemical entities that could be

obtained from any of them alone. So if a token is annotated by at least one of these systems, as

a chemical entity using becas and becas[chemicals] or O1 using the USAS tagger, then we can

assume that the token belongs to this dictionary.

For the Food entity the same semantic tagger as the Nutrient entity, known as USAS online

English semantic tagger, is used. The focus is on two categories. The first one is the category

for terms related to Food and Farming, F. From it, four subcategories are used. The first sub-

category is for terms related to food and food preparation, F1, the second is for terms related to

drinks and drinking, F2, the third is for terms related to cigarettes and drugs, F3, and the forth

for terms related to agriculture and horticulture, F4. The second category is for terms related to

Life and Living things, L. From it, two subcategories are used. The first one is for terms related

to living creatures (e.g. non-human), L2, and the second subcategory is for terms related to

plants and plant-life, L3. In Table 1, the summary of the USAS English tagger categories and

Table 1. USAS categories.

Entity USAS category USAS subcategory

Nutrient

entity

O—Substances, materials, objects, and

equipment

O1—Substances and materials

Food entity F—Food and farming F1—Food and food preparation

F2—Drinks and drinking

F3—Cigarettes and drugs

F4—Agriculture and horticulture

L—Life and living things L2—Living creatures (e.g. non-

human)

L3—Plants and plant life

https://doi.org/10.1371/journal.pone.0179488.t001
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subcategories is presented. So if a token is annotated by this system as F1, F2, F3, F4, L2, or L3,

then we can assume that the token belongs to this dictionary.

It is not possible to provide information about the size of various dictionaries being used

because they are not classical dictionaries that consist of concepts with synonyms. For the

Quantity/Unit entity, an ontology is used together with kitchen-related units. For the Nutrient
entity, three corpus-based NER systems are used, so the results provided as annotations from

these three systems are used and combined. Also, for the Food entity, a corpus-based NER sys-

tem is used, so the results provided as annotations are used.

Pre-processing

Before we start with knowledge extraction, the first step is to pre-process the text data. First,

sentence segmentation is used for each text document. Then, default chunking [82] is intro-

duced on each sentence. In our implementation, the Apache OpenNLP Maxent sentence

detector is used for sentence segmentation and the Apache OpenNLP Maxent chunker is used

for default chunking. They are part of the openNLP R package [82]. After default chunking, if

the sentence consist of ADV P, CONJP, SBAR chunks, or two successive chunk tokens that are

(O, O), we need to split the sentence on that place or places. The ADV P chunk is for an adver-

bial phrase, the CONJP is for a conjunctive phrase, the SBAR is for a subordinated clause, and

(O, O) means that two successive tokens are outside of any chunk. Splitting the sentence into

more segments is useful to extract more information that can stay hidden if the sentence is not

split. Then for each sentence segment the double quotation marks and brackets are removed.

To explain the difference between sentence and sentence segments, we continue with an

example. Let one sentence, obtained from sentence segmentation of a text document, be “The
recommended intake for total fiber for adults 50 years and younger is set at 38 g for men and 25 g
for women, while for men and women over 50 it is 30 g and 21 g per day, respectively, due to
decreased food consumptions.” [16]. The result of the default chunking on this sentence is pre-

sented in Table 2. The column Tokens corresponds to the tokens obtained by the word-level

tokenization and the column Chunk tokens corresponds to the chunk token obtained by the

default chunking. Further, because this sentence consists of two ADV P chunks, it needs to be

split on that places. After splitting, the obtained sentence segments are: “The recommended
intake for total fiber for adults 50 years and younger is set at 38 g for men and 25 g for women.”,

“For men and women over 50 it is 30 g and 21 g per day.”, and “Due to decreased food consump-
tions.”. These sentence segments are further used by the proposed method.

First phase: Detection and determination of the entities mentions

Let F be a sentence or sentence segment that contains dietary information. We start by intro-

ducing the word-level tokenization on F. The result is a n × 1 vector, Tokens, whose elements

are the tokens from F, and n is the number of tokens obtained after the tokenization. Then we

continue with POS (part-of-speech) tagging and the result is an n × 1 vector, POSTags, which is

a collection of POS tags for F.

After processing the sentence at the word-level, we continue with default chunking, which

segments and labels multitoken sequences called chunks. The result is an n × 1 vector, Chunks,
whose elements are chunk tokens tagged in the B-I-O tagging format.

The next step is to define an n × m matrix, XChunks, where m is the number of chunk tokens

from the Chunks vector that begin with the prefix B- or O. The elements of the matrix XChunks
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are defined by the Eq (1), so if the token belongs to the chunk we have 1, and 0 otherwise.

XChunks½i; j� ¼

(
1; if Tokens½i� 2 Chunks½j�

0; otherwise
; ð1Þ

where i = 1, ‥, n and j = 1, ‥, m.

Let k be the number of entities we are interested in, which in our case is 3, Food, Nutrient,
and Quantity/Unit. In order to detect and determinate the entities mentions, we try to link

each chunk with the information from additional terminological resources (dictionaries)

related to the domains of the entities, Dictionaryl, l = 1, ‥, k. Once more we would like to point

out that it is not necessary that these dictionaries are standard resources, which consist of con-

cepts with synonyms, but also they can be NER systems that exist for some entities from the

domain, or even more a combination of NERs in order to achieve better performance. Then

an n × k matrix, XDictionaries, is defined as

XDictionaries½i; l� ¼

(
1; if Tokens½i� 2 Dictionaryl

0; otherwise
: ð2Þ

Table 2. Default chunking result for one sentence.

Token id Tokens Chunk tokens Token id Tokens Chunk tokens

1 The B-NP 26 while B-ADVP

2 recommended I-NP 27 for B-PP

3 intake I-NP 28 men B-NP

4 for B-PP 29 and I-NP

5 total B-NP 30 women I-NP

6 fiber I-NP 31 over B-PP

7 for B-PP 32 50 B-NP

8 adults B-NP 33 it B-NP

9 50 B-NP 34 is B-VP

10 years I-NP 35 30 B-NP

11 and O 36 g I-NP

12 younger B-NP 37 and O

13 is B-VP 38 21 B-NP

14 set I-VP 39 g I-NP

15 at B-PP 40 per B-PP

16 38 B-NP 41 day B-NP

17 g I-NP 42 , O

18 for B-PP 43 respectively B-ADVP

19 men B-NP 44 , O

20 and O 45 due B-PP

21 25 B-NP 46 to I-PP

22 g I-NP 47 decreased B-NP

23 for B-PP 48 food I-NP

24 women B-NP 49 consumptions I-NP

25 , O 50 . O

https://doi.org/10.1371/journal.pone.0179488.t002
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After obtaining the matrices XChunks and XDictionaries, an m × k matrix, XEntities, is defined as

XEntities ¼ XT
Chunks � XDictionaries: ð3Þ

The rows of the matrix XEntities correspond to the chunks and the columns are the dictionaries

we included for the entities. For example if the element XEntities[i, l]� 1, this means that the i-
th chunk is an entity mention solution for the l-th entity. The additional step is to check if a

chunk is an entity mention of more entities. If this is the case, then the chunk obtains the entity

tag from the last token.

In most cases, the potential entity mentions are noun phrases that are the linguistically

meaningful units, but sometimes it can happen that the entity mention can consist of more

noun phrases or even combinations of noun phrases with some other morphological phrases.

To improve the quality of text phrases that can be entities mentions, three additional post-hoc

chunkings are introduced. The first post-hoc chunking combines the information from the

default chunking and the entities labels for each chunk by defining Boolean algebra rules. The

second post-hoc chunking uses the information from the first post-hoc chunking and the POS

tags of the tokens. The last one combines the information from the second post-hoc chunking

and the entities labels for each chunk by defining rules.

First post-hoc chunking. In the first post-hoc chunking, trigrams of successive chunks

(Chunki, Chunki+1, Chunki+2) are analyzed and merged into one new noun chunk if the tri-

gram is composed as (B − NP, B − PP, B − NP). This is done except in cases when the two

noun chunks correspond to entity mentions of different entities because merging them can

lose information about one entity described by one of the noun chunks. In order not to lose

this information, we define a boolean function when this chunking needs to be performed. In

Table 3 the boolean function, together with the boolean variables A and B, that in our case can

be different entities, is presented. Further, a Karnaugh map Fig 2, also known as a K-map [83],

is used to simplify the boolean algebra expression when this chunking needs to be performed.

The boolean algebra expression or the boolean function, is obtained in a simplified form, as a

sum of minterms, as

f ðA;BÞ ¼ :A _ :B ¼ :ðA ^ BÞ: ð4Þ

Because the number of the entities we are interested in can be greater than 2, k> 2, the bool-

ean algebra expression obtained using Eq (4) needs to be defined for each variation of pairs of

entities. The number of functions is determined using the formula of the variations without

repetition Vr;w ¼
r!

ðr� wÞ!, where r is the number of different elements, in our case the number of

different entities, k, and w is the size of the variation or how many elements need to be selected

from the set of r elements. In our case, w is 2 because we are working with a pair of entities.

Then all the obtained functions are merged together with boolean AND conditions into one

expression. This expression defines whether the first chunking needs to be performed.

Table 3. The Boolean function for the first post-hoc chunking.

A B f

0 0 1

0 1 1

1 0 1

1 1 0

https://doi.org/10.1371/journal.pone.0179488.t003
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To see how the first post-hoc chunking works, let us focus on one example using the sen-

tence “People of any age who are African Americans should further reduce sodium intake to 300
mg per day.” [16]. This sentence does not consist of ADV P, CONJP, SBAR chunks, or two suc-

cessive chunks that are (O, O), so it is not split into sentence segments. The results of the

default chunking and linking each token to a dictionary is presented in Table 4. The Tokens
column corresponds to the result of the word-level tokenization. The POS tags column corre-

sponds to the result of the POS tagging. The Chunk tokens column corresponds to the result of

the default chunking, where each chunk token is presented in B-I-O tagging format and the

beginning of each new chunk is marked with the symbol �. The Food, Nutrient, and Quantity/
Unit columns correspond to the linking of each token to the dictionaries used for each entity.

In the column Chunk1 tokens the result of the first post-hoc chunking is presented, here only

the new chunks formed are presented in bold font. From this table, we can see how each

chunk consists of one or more chunk tokens. For example, “sodium intake” is one noun chunk

that consists of two chunk tokens (B − NP, I − NP). After using the information given in this

table and calculating the matrices XChunks and XDictionaries, the matrix XEntities is presented in

Table 5.

Further, the information from the matrix XEntities is used for the first post-hoc chunking. In

order not to lose information by applying it, the boolean function, must be defined. In our

case, we are interested in three entities, Food, Nutrient, and Quantity/Unit. By using the Eq (4),

the function is defined for all variations of pairs of entities. In our case, the number of varia-

tions is V3,2 = 6. Let the trigram of successive chunks be (Chunki, Chunki+1, Chunki+2). Then,

Fig 2. Karnaugh map of the Boolean function for the first post-hoc chunking.

https://doi.org/10.1371/journal.pone.0179488.g002
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the boolean function is defined as

:ðNutrienti ^ Quantity=Unitiþ2Þ ^ :ðQuantity=Uniti ^ Nutrientiþ2Þ

^:ðNutrienti ^ Foodiþ2Þ ^ :ðFoodi ^ Nutrientiþ2Þ

^:ðFoodi ^ Quantity=Unitiþ2Þ ^ :ðQuantity=Uniti ^ Foodiþ2Þ;

ð5Þ

which is true only if there is no pair for which both values are one. In the example, there are

three trigrams of successive chunks that satisfy the condition (B − NP, B − PP, B − NP). They

are (“People”, “of”, “any age”), (“sodium intake”, “to”, “300 mg”), and (“300 mg”, “per”, “day”).

For the first one, (“People”, “of”, “any age”), the boolean function defined by Eq (5) is true

because all entity labels are 0. So this post-hoc chunking needs to be performed and the chunks

are merged into one new noun chunk, “People of any age”. For the trigram (“sodium intake”,

“to”, “300 mg”), the boolean function is false because the label Nutrienti = 1 and the label

Quantity/Uniti+2 = 1, so there is a pair where both values are one. According to this,

¬(Nutrienti ^ Quantity/Uniti+2) = 0 and the value of the boolean function is false, so in this

case the first post-hoc chunking should not be performed. In this example, if we merged the

chunks we will lose information about one entity. For the last trigram (“300 mg”, “per”, “day”),

the label Quantity/Unit i = 1, while other labels are Nutrienti+2 = 0, Foodi+2 = 0, so the boolean

function is true. In this case, the first post-hoc chunking should be performed and the new

chunk is “300 mg per day”.

Second post-hoc chunking. In the second post-hoc chunking, trigrams of successive

chunks obtained by the first post-hoc chunking (Chunki, Chunki+1, Chunki+2) are analyzed

Table 4. Example of first post-hoc chunking.

Tokens POS tags Chunk tokens Food Nutrient Quantity/Unit Chunk1 tokens

People NNS B-NP* 0 0 0 B-NP*

of IN B-PP* 0 0 0 I-NP

any DT B-NP* 0 0 0 I-NP

age NN I-NP 0 0 0 I-NP

who WP B-NP* 0 0 0 B-NP*

are VBP B-VP* 0 0 0 B-VP*

African JJ B-NP* 0 0 0 B-NP*

Americans NNP I-NP 0 0 0 I-NP

should MD B-VP* 0 0 0 B-VP*

further RBR I-VP 0 0 0 I-VP

reduce VB I-VP 0 0 0 I-VP

sodium NN B-NP* 0 1 0 B-NP*

intake NN I-NP 0 0 0 I-NP

to TO B-PP* 0 0 0 B-PP*

300 CD B-NP* 0 0 0 B-NP*

mg NN I-NP 0 0 1 I-NP

per IN B-PP* 0 0 0 I-NP

day NN B-NP* 0 0 0 I-NP

. . O 0 0 0 O

1 indicates the result of the first post-hoc chunking

* indicates a beginning of new chunk

https://doi.org/10.1371/journal.pone.0179488.t004
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and merged into one new noun chunk if the trigram is composed as (B − NP, B − VP, B − NP)

and the first noun chunk has a POS tag that is a Wh-pronoun [27], such as who, what, which,

etc.

To see how the second post-hoc chunking works, the obtained result from the example of

the first post-hoc chunking is used. In this post-hoc chunking we are interested in the trigrams

of successive chunks that satisfy the condition (B − NP, B − VP, B − NP). By using the obtained

result from the first post-hoc chunking, which is presented in Table 5, column Chunk1 tokens,
there are two trigrams that satisfied this condition, (“who”, “are”, “African Americans”) and

(“African Americans”, “should further reduce”, “sodium intake”). From them, only the first one

has the first noun chunk that is a Wh-pronoun, so they are merged together, “who are African
Americans”.

Third post-hoc chunking. In the third post-hoc chunking, bigrams of successive chunks

obtained by the second post-hoc chunking (Chunki, Chunki+1) are merged into one new noun

chunk if the bigram is composed as (B − NP, B − NP) and only one of the noun chunks is

labeled as an entity of interest, or both of them have the same label.

By using the obtained result from the example of the second post-hoc chunking, there are

no bigrams of chunks that satisfied the condition (B − NP, B − NP), and only one of the noun

chunks is labeled as an entity of interest, or both of them have the same label.

After performing the three post-hoc chunkings, the matrix XChunks needs to be recalculated

because the number of chunks is different from the number obtained by the default chunking.

At the end of the first phase, the matrix XEntities is recalculated and their columns correspond

to the sets of entity mentions for each entity.

Second phase: Selection and extraction of the entities

The result from the first phase of the NER method are sets of entities mentions for each entity.

The next step is the second phase in which the entities mentions form the sets that contribute

to the dietary information need to be selected.

Table 5. XEntities.

Chunks Chunk tokens Food Nutrient Quantity/Unit

People B-NP* 0 0 0

of B-PP* 0 0 0

any age B-NP* 0 0 0

who B-NP* 0 0 0

are B-VP* 0 0 0

African Americans B-NP* 0 0 0

should further reduce B-VP* 0 0 0

sodium intake B-NP* 0 1 0

to B-PP* 0 0 0

300 mg B-NP* 0 0 1

per B-PP* 0 0 0

day B-NP* 0 0 0

. O 0 0 0

* indicates a beginning of new chunk

https://doi.org/10.1371/journal.pone.0179488.t005
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For this purpose, the sentence or sentence segment is represented as a graph, in which each

chunk is connected only with its neighbors (predecessor and successor chunk). Then the start

or initial node of the graph from where the search for all entities begins, is selected using syn-

tactic bracketing or tree parsing. Each sentence or sentence segment, F, is represented by the

parser as a tree having three children: a noun phrase (NP), a verbal phrase (VP) and a full stop

(.). In addition, each sentence is formed as a combination of three parts, Subject, Predicate, and

Object [84]. The Subject is the person or a thing who or which carries out the action of the

verb. The Predicate in a sentence is what us tells about what a person or a thing does or did, or

what happened to a person or to a thing. The Object is the person or a thing upon whom or

upon which the action of the verb is carried out.

The initial node of the graph is the predicate of the sentence. The search for the predicate is

performed in V P. The initial node can be found in the following subtrees V B (verb, base

form), V BD (verb, past tense), V BG (verb, present participle or gerund), V BN (verb, past par-

ticiple), V BP (verb, present tense, not 3rd person singular), V BZ (verb, present tense, 3rd per-

son singular), and MD (verb, modal). Further, from all solutions returned by searching for the

predicate, the initial node is the verb chunk that is closest to the root of the sentence (number

of edges from the verb node to the root node) and it is located in the verbal phrase that is clos-

est to the root. The extracted predicate is stored in an entity called Action. We need to note

here that because of the segmentation defined in the pre-processing step, which is done in

order to extract all relevant information, it can happen that some sentence segments do not

have a V P, so the Action entity is not returned.

If the Action entity is selected, all other entities of interest need to be selected. Because it can

happen that no entity mention is the subject in the sentence, one additional entity called

Group is added, into which the noun chunks that perform the action are stored. The Group
entity is searched in the predecessor chunks from the Action entity that is selected. The search

starts from the Action entity and then goes back to the beginning of the sentence. The results

are the successive noun chunks that can also be separated by punctuation.

In order to know on which side of the Action entity the extracted entities are located, one of

the labels S, P, or O that indicate (Subject, Predicate, Object) is added to each extracted entity.

The Action entity has the label P because it is the predicate of the sentence. All entities that are

predecessor chunks of the Action entity have the label S as they are subjects in the sentence.

The entities that are successor chunks of the Action entity have the label O because they corre-

spond to the objects in the sentence.

Two scenarios of entities selection exist. In the first one if the Action entity is not selected,

then all the entities mentions from the XEntities matrix are extracted. In the second scenario,

only one Action entity is returned. Then for each entity using the set of its entities mentions,

the entity mention or the chunk that is closest to the Action entity is selected, according to the

number of edges between the candidate and the Action entity in the graph. If the set of entities

mentions consists of more candidates for the same entity, they are extracted if they are on the

same side from the Action entity as the one extracted or they are on the other side of the Action
entity, but there is no additional verbal phrase in this part of the sentence.

Results and discussion

In this section, we present the result of evaluation of the proposed NER method in the domain

of evidence-based dietary recommendations. The main basic entities in the domain are the

Food entity, Nutrient entity, and Quantity/Unit entity. For a better understanding of how the

method works, we provide two examples. The first example focuses only on one sentence and

the second one provides the results obtained from several sentences in order to present the
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concepts in which we are interested. Further, the construction of the heterogeneous test cor-

pora that consists of text paragraphs is explained. Then, the obtained result using the explained

test corpora is presented. Finally, we compare the methodology of the drNER with the meth-

odologies of some other approaches that exist for biomedical domains.

Examples

Example 1. To demonstrate how drNER works, we give an example where the focus is

only on one sentence that provides dietary information.

Let F1 be the dietary recommendation “People of any age who are African Americans should
further reduce sodium intake to 300 mg per day.” [16].

Table 6 gives results from the first phase of the NER method for F1. The Tokens column

corresponds to the result of the word-level tokenization. The POS tags column corresponds to

the result of the POS tagging. The Chunk tokens column corresponds to the result of the default

chunking, where each chunk token is presented in the B-I-O tagging format and the beginning

of each new chunk is marked with an �. The Food, Nutrient, and Quantity/Unit columns corre-

spond to the linking of each token to the dictionaries used for each entity. In the column

Chunk1 tokens the result of the first post-hoc chunking is presented, where new chunks formed

by this chunking are presented in bold font. The new chunks formed by the second post-hoc

chunking are presented in bold font in the Chunk2 tokens column. In the Chunk3 tokens

Table 6. The first phase of the drNER method forΦ1.

Tokens POS tags Chunk tokens Food Nutrient Quantity/Unit Chunk1 tokens Chunk2 tokens Chunk3 tokens

People NNS B-NP* 0 0 0 B-NP* B-NP* B-NP*

of IN B-PP* 0 0 0 I-NP I-NP I-NP

any DT B-NP* 0 0 0 I-NP I-NP I-NP

age NN I-NP 0 0 0 I-NP I-NP I-NP

who WP B-NP* 0 0 0 B-NP* B-NP* B-NP*

are VBP B-VP* 0 0 0 B-VP* I-NP I-NP

African JJ B-NP* 0 0 0 B-NP* I-NP I-NP

Americans NNP I-NP 0 0 0 I-NP I-NP I-NP

should MD B-VP* 0 0 0 B-VP* B-VP* B-VP*

further RBR I-VP 0 0 0 I-VP I-VP I-VP

reduce VB I-VP 0 0 0 I-VP I-VP I-VP

sodium NN B-NP* 0 1 0 B-NP* B-NP* B-NP*

intake NN I-NP 0 0 0 I-NP I-NP I-NP

to TO B-PP* 0 0 0 B-PP* B-PP* B-PP*

300 CD B-NP* 0 0 0 B-NP* B-NP* B-NP*

mg NN I-NP 0 0 1 I-NP I-NP I-NP

per IN B-PP* 0 0 0 I-NP I-NP I-NP

day NN B-NP* 0 0 0 I-NP I-NP I-NP

. . O 0 0 0 O O O

1 indicates the result of the first post-hoc chunking
2 indicates the result of the second post-hoc chunking
3 indicates the result of the third post-hoc chunking

* indicates a beginning of new chunk

https://doi.org/10.1371/journal.pone.0179488.t006
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column the result of the third post-hoc chunking is presented and in this example nothing is

changed by applying this chunking.

Then, by using the Eq (3), the XEntities matrix is calculated, where rows correspond to the

different chunks and columns correspond to the entities, Food, Nutrient, and Quantity/Unit.
The XEntities matrix has 6 rows (different chunks) and 3 columns. The Food column gives the

set of the entities mentions for the Food entity, which in our example is an empty set because

the dietary recommendation does not consist of food entities. The Nutrient column gives the

set of entities mentions for the Nutrient entity, and is a set with one element that is “sodium

intake” identified by the row and the chunk that has a nonzero element in the Nutrient col-

umn. The Quantity/Unit column gives the set of the entities mentions for the Quantity/Unit
entity, and is a set with one element that is “300 mg per day”.

After the first phase, the recommendation F1 is represented as undirected graph, where

each chunk is connected only with its neighbors. In Fig 3 a graphic representation of the rec-

ommendation F1 is presented.

The first step of the second phase is to select the initial node of the graph or the Action entity

from where the search for all entities will start. To select the Action entity the parse tree of the

recommendation F1 is used. In Fig 4 we present the parse tree of the recommendation F1,

from which we search for the predicate in the verbal phrases. The result is the verb “should”

from the MD subtree, since it is closest to the root of the sentence. So, the chunk that consists

of the returned verb, “should further reduce”, is selected as the Action entity.

The last step of the second phase is to select all other important entities. By using the second

scenario (since the Action entity is returned), we found one Nutrient entity “sodium intake”,

one Quantity/Unit entity “300 mg per day”, and for the Group entity we obtained “People of

any age” and “who are African Americans”, while we did not find Food entity because there

are no food related terms in the recommendation. At the end, the labels for the Subject, Predi-
cate and Object are added (“People of any age”, S1), (“who are African Americans”, S1),

(“should further reduce”, P1), (“sodium intake”, O1), and (“300 mg per day”, O1), which is also

the result from our method. The index of the labels indicates from which part of the sentence

the entity is extracted. In this example it is 1, because the recommendation does not contain

any ADV P, CONJP, SBAR, or two successive chunks that are (O,O), so it is not split at the

beginning.

Example 2. In the second example we present the results obtained for 15 sentences that

are extracted from the Food and Nutrition Information Centre of United States Department

of Agriculture [16]. This example helps the readers to get more familiar with the concepts

from the dietary domain that need to be extracted. The results are presented in Table 7.

If we look at sentence 5, “1 teaspoon of table salt contains 2300mg of sodium.”, the recom-

mendation is not split by the splitting proposed in the pre-processing part because it does not

consist of ADV P, CONJP, SBAR, or two successive chunks that are (O,O). By using the drNER

method (“table salt”, S1) is the Food entity extracted. There is one Action entity, (“contains”,

P1), one Nutrient entity, (“sodium”, O1), and two Quantity/Unit entities, (“1 teaspoon”, S1) and

(“2300 mg”, O1). The labels that are given to each of the extracted entities are the labels for the

Subject, Predicate, and Object that help us better to interpret the extracted information. For

example, in this dietary recommendation we have two Quantity/Unit entities, one of them is

related to an entity extracted in the subject of the sentence, and the other one is related to an

entity that is extracted in the object of the sentence. For example, from the label of the Quan-
tity/Unit entity, (“1 teaspoon”, S1), we can see that this entity is related to some other entity

that is extracted from the same part of the sentence, or the Food entity, (“table salt”, S1). The

other Quantity/Unit entity, (“2300 mg”, O1), is related to an entity that is found in the object of

the sentence, or in our case is related to the Nutrient entity, (“sodium”, O1). Finally, the
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extracted knowledge can be interpreted as ((“1 teaspoon”, S1), (“table salt”, S1)) and ((“2300

mg”, O1), (“sodium”, O1)), and (((“1 teaspoon”, S1), (“table salt”, S1)); (“contains”, P1); ((“2300

mg”, O1), (“sodium”, O1))).

Alternatively, the sentence 13, “The recommended intake for total fiber for adults 50 years
and younger is set at 38 g for men and 25 g for women, while for men and women over 50 it is 30
g and 21 g per day, respectively, due to decreased food consumption.”, consists of two adverb

chunks, so it needs to be split. If the recommendation is not split, than the entities “The recom-

mended intake for adults” and “50 years” are extracted as Group entities, “is set” and “is” are

extracted as Action entities, “decreased food consumption” is extracted as Food entity, and “38

g for men” and “25 g for women” are extracted as Quantity/Unit entities, and the information

Fig 3. Graphic representation of the recommendationΦ1.

https://doi.org/10.1371/journal.pone.0179488.g003
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for men and women over 50 remains hidden, since it is not extracted. For this reason, the rec-

ommendation is split in the location of each adverb chunk. In this recommendation, there are

two adverb chunks, “while” and “respectively”, so we split it in three parts, “The recommended
intake for total fiber for adults 50 years and younger is set at 38 g for men and 25 g for women.”,

“For men and women over 50 it is 30 g and 21 g per day.”, and “Due to decreased food consump-
tion.”. The proposed method is then used on each part of the recommendation obtained after

splitting. For the first part, the extracted entities are: (“The recommended intake for total fiber

for adults”, S1) as Nutrient entity, (“50 years”, S1) and (“younger”, S1) as Group entities, (“is

set”, P1) as Action entity, and (“38 g for men”, O1) and (“25 g for women”, O1) as Quantity/

Unit entities. By applying the method on the second part of the recommendation, the extracted

terms are (“For men and women over 50”, S2) and (“it”, S2) as Group entities, (“is”, P2) as

Action entity, and (“30 g”, O2) and (“21 g per day”, O2) as Quantity/Unit entities. For the

third part of the recommendation, only one extracted term exists (“decreased food

consumption”, S3).

Evaluation

Test corpora. Due to the lack of annotated corpora in the domain of dietary information

and in order to evaluate the newly proposed NER method for evidence-based dietary recom-

mendations we created a test corpora. The main question was how to select the documents for

the test corpora. We fixed the number at 100 because after extraction we need to manually

check the extracted information. In order to promote diversity in the test corpora, we selected

the documents from heterogeneous sources. We did this because different heterogeneous

sources have different ways of reporting dietary recommendations. Fifty documents are

Fig 4. Parse tree ofΦ1.

https://doi.org/10.1371/journal.pone.0179488.g004
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dietary recommendation summaries, which are extracted from the scientifically validated web

site, of the Food and Nutrition Information Center of United States Department of Agriculture

[16]. These documents are extracted from 12 different institutions and their distribution per

institution is presented in Fig 5.

The other 50 documents are abstracts of scientific publications. They were selected by using

the PubMed API [85] in combination with two keywords, “food composition” and “dietary

intake”. Further, 25 abstracts are selected randomly from the documents that are returned for

Table 7. Knowledge extraction of 15 dietary recommendations.

Recommendation Group Action Food Nutrientt Quantity/Unit

1.

Good sources of magnesium are: fruits

or vegetables, nuts, peas and beans,

soy products, whole grains and milk.
-

are (P1) fruits or vegetables, nuts,

peas and beans (O1) soy

products (O1) whole

grains and milk (O1)

Good sources of

magnesium (S1)
-

2.

The RDAs for Mg are 300 mg for young

women and 350 mg for young men.
-

are (P1)

-

The RDAs for Mg (S1) 300 mg for young

women (O1) 350

mg for young men

(O1)

3.

Increase potassium by ordering a salad,

extra steamed or roasted vegetables,

bean-based dishes fruit salads, and

low-fat milk instead of soda.

- -

salad (S1) extra steamed

or roasted vegetables

(S1) fruit salads (S1) law-

fat milk (S2)

Increase potassium (S1)

soda (S3)
-

4. Babies need protein about 10 g a day. Babies (S1) need (P1) - protein (O1) 10 g a day (O1)

5.
1 teaspoon of table salt contains 2300

mg of sodium.
-

contains

(P1)

table salt (S1) sodium (O1) 1 teaspoon (S1)

2300 mg (O1)

6.

Milk, cheese, yogurt and other dairy

products are good sources of calcium

and protein, plus many other vitamins

and minerals.

-

are (P1) Milk, cheese, yogurt and

other dietary products

(S1)

good sources of calcium

and protein (O1) many

other vitamins and

minerals (S2)

-

7.

Breast milk provides sufficient zinc, 2

mg/day for the first 4-6 months of life. -

provides

(P1)

Breast milk (S1) sufficient zinc (O1) 2 mg/day for the

first 4-6 months of

life (O1)

8.

If you’re trying to get more omega-3,

you might choose salmon, tuna, or eggs

enriched with omega-3.

you (S2) ’re trying to

get (P2)

enriched

(P3)

salmon, tuna, (O2) eggs

(S3)

more omega-3 (O2)

omega-3 (O3)
-

9.
If you need to get more fiber, look to

beans, vegetables, nuts and legumes.

You (S2) need to get

(P2)

beans, vegetables, nuts,

and legumes (O2)

more fiber (O2)
-

10.

Eating foods high in vitamin C and iron

can reduce the absorption of ingested

nickel.

-

can reduce

(P1)

Eating foods (S1) vitamin C and iron(S1)

the absorption of

ingested nickel (O1)

-

11.

The body of a 76 kg man contains about

12 kg of protein. -

contains

(P1) -

protein (O1) The body of a 76

kg man (S1) about

12 kg (O1)

12.

Excellent sources of alpha-linolenic

acid, ALA, include flaxseeds and

walnuts.

-

include (P1) flaxseeds and walnuts

(O1)

Excellent sources of

alpha- linolenic acid (S1)

ALA(S1)

-

13.

The recommended intake for total fiber

for adults 50 years and younger is set at

38 g for men and 25 g for women, while

for men and women over 50 it is 30 g

and 21 g per day, respectively, due to

decreased food consumption.

50 years (S1)

younger (S1) for

men and women

over 50 (S2) it

(S2)

is set (P1) is

(P2)

decreased food

consumption(S3)

The recommended

intake for total fiber for

adults (S1)

38 g for men (O1)

25 g for women

(O1) 30 g (O2) 21

g per day (O2)

14. I’m good at tennis. - - - - -

15. Your hat looks very nice. - - - - -

https://doi.org/10.1371/journal.pone.0179488.t007
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each key word. The average number of sentences per document is 3.88 for documents from

scientifically validated web sites and 6.54 for abstracts of scientific publications. This result is

reasonable because the paragraphs from the scientifically validated web sites are summaries of

dietary recommendations, while the abstracts from the scientific publications may contain die-

tary recommendations, but also contain other information about the study. The distribution

of the number of sentences per document for the two subsets of the test corpora are presented

in Figs 6 and 7.

This test corpora is not annotated. The results that are obtained by the drNER are further

manually checked by 2 human experts, who are clinical dietitians, in order to see if the

extracted entities have the correct label and if there are missing entities by drNER. The test

corpora together with the obtained results for each document, separately, are available at the

following link dx.doi.org/10.17504/protocols.io.hqbb5sn.

Result. We evaluated the drNER on the above test corpora. For each document in the test

corpora, we tried to extract all useful information related to dietary recommendations, with

focus on the Food entities, Nutrient entities, and Quantity/Unit entities. In Table 8, the result

of the evaluation for each entity is presented. In this table, the results for the documents that

are extracted from scientifically validated web sites and scientific publications are provided,

separately. At the bottom of the table the summary of results of our test corpora is presented.

The results are presented by reporting the number of true positives, false positives, and false

negatives. The true positives are the extracted entities for which the obtained entity label from

drNER and the human expert is the same. The false positives are the extracted entities for

which the drNER label (known as expectation) is positive, but this is false according to the

external judgment of the human expert. For example, for the Food label, if an extracted entity

Fig 5. Distribution of documents per institution.

https://doi.org/10.1371/journal.pone.0179488.g005
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is labeled as Food by drNER, but the human expert provided that the true label is Nutrient, it

means that this is false positive for the Food label. The false negatives are the entities for which

the drNER label (known as expectation) is negative, but this is false according to the external

judgment of the human expert. For example, for the Food label, if an extracted entity is not

labeled as Food by drNER, but the human expert provided that the true label is Food, it means

that this is false negative for the Food label. Also, in false negatives are some entities that are

not recognized as a given entity of interest by drNER, but the human experts assumed that this

information from the document should be extracted.

The number of true positive Food entities is 539. Out of them 326 are from the documents

that are extracted from scientifically validated web sites and 213 are from scientific publica-

tions. Also, there are 5 false positives, from the scientifically validated web sites, related to

phrases that consist of verbs related to food such as “need to eat”, “eating”, etc., when they are

not selected as an Action entity. In the future, this can be omitted by checking the tags of the

Fig 6. Distribution of number of sentences per documents from scientifically validated web sites.

https://doi.org/10.1371/journal.pone.0179488.g006

Named-entity recognition method for knowledge extraction of evidence-based dietary recommendations

PLOS ONE | https://doi.org/10.1371/journal.pone.0179488 June 23, 2017 24 / 32

https://doi.org/10.1371/journal.pone.0179488.g006
https://doi.org/10.1371/journal.pone.0179488


Fig 7. Distribution of number of sentences per documents that are abstracts from scientific publications.

https://doi.org/10.1371/journal.pone.0179488.g007

Table 8. Evaluation results.

Food Nutrient Quantity/Unit

TP FP FN TP FP FN TP FP FN

Scientifically validated web sites 326 5 22 243 0 13 47 0 2

Scientific publications 213 0 3 314 2 4 39 0 9

Test corpora 539 5 25 557 2 17 86 0 11

TP indicates true positives

FP indicates false positives

FN indicates false negatives

https://doi.org/10.1371/journal.pone.0179488.t008

Named-entity recognition method for knowledge extraction of evidence-based dietary recommendations

PLOS ONE | https://doi.org/10.1371/journal.pone.0179488 June 23, 2017 25 / 32

https://doi.org/10.1371/journal.pone.0179488.g007
https://doi.org/10.1371/journal.pone.0179488.t008
https://doi.org/10.1371/journal.pone.0179488


chunks, so if they are verb chunks they can be removed from the candidate solutions. The

number of false negatives for the Food entity is 25, out of which 22 are from the documents

from the scientifically validated web sites and 3 of them are found in the scientific publications.

They occur because “grains” is not recognized as a Food item by the USAS English semantic

tagger we use as our dictionary. For some false negatives when the information about the Food
entity is not extracted because it is not found in the dictionary, the information about it can be

extracted in the Group entity that is proposed by the method to catch some additional useful

information related to dietary information.

In the case of the Nutrient entity, the number of true positives in our test corpora is 557.

Out of them, 243 are found from the documents extracted from the scientifically validated web

sites and 314 are extracted from scientific publications. The number of false positives is 2, and

the number of false negatives is 17. Out of them, 13 are extracted from the documents from

scientifically validated web sites and 4 are found in the scientific publications. Most of them

are related to the fact that none of the corpus-based NER, that we used as dictionaries, recog-

nize the concepts as a chemical entity. Some of them are related to “omega-3s”. It is interesting

that “omega-3” is recognized, but the plural form is problematic for all dictionaries we used. In

the future, these results can be improved by adapting a heuristic approach for linking the

tokens to the dictionaries.

For the Quantity/Unit entity, the number of true positives is 86. Out of them, 47 are from

the documents extracted from the scientifically validated web sites and 39 of them are found in

the scientific publications. We did not find any false positives and the number of false nega-

tives is 11. The false negatives are related to some units such as “ngg(-1)”, “mgkg”, etc. This

happens because these units do not exist in the dictionaries we used. Also, we use lemma of

each token when we link it to the dictionaries related to the Quantity/Unit entity in order to

distinguish between singular and plural forms of the units. We did this only for the Quantity/

Unit entity because for others we used corpus-based NER systems that already include this

information.

Discussion

To the best of our knowledge, drNER is the first NER method that is focused on knowledge

extraction of evidence-based dietary recommendations. The dietary domain brings a new

application domain, with similar goals as previous IE shared tasks on biological event extrac-

tion. However, an annotated corpora does not exist, so there are no methods that focus on

knowledge extraction. Because of that, a comparison of the drNER is made with some NER

methods that can be used for each entity, separately, or they are NER methods that can in our

case be used as dictionaries for some entities. For example, let us focus on one sentence “People
of any age who are African Americans should further reduce sodium intake to 300 mg per day.”
[16]. By using the USAS English online tagger and becas[chemicals] API, the Nutrient entity

which will be extracted is “sodium”, while by using the becas API it is not recognized. By using

the dictionaries applied for the Quantity/Unit entity, the only entity extracted here will be

“mg”. The result by applying the drNER on this sentence is (“People of any age”, S1) and (“who

are African Americans”, S1) as Group enitites, (“should further reduce”, P1) as Action entity,

(“sodium intake”, O1) as Nutrient entity, and (“300 mg per day”, O1) as Quantity/Unit entity. If

the recommendation is “The RDAs for Mg are 300 mg for young women and 350 mg for young
men.”, by using the USAS English online tagger the result for the Nutrient entity is “Mg”, while

by using the drNER it is “The RDAs for Mg”. So instead of extracting only the nutrient compo-

nent, the drNER also could extract the type of the DRVs reported. In our proposed method, by

applying the three proposed post-hoc chunkings, we can obtain also the phrases that differ
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from the phrases that can be obtained by the corpus-based NERs used as dictionaries and give

us more information for the entities. Also, adding the Action entity and the labels for the Sub-
ject, Predicate, and Object provides additional information, and the Group entity helps to catch

information that could be important to better interpret the extracted information.

To compare the methodology used in the drNER, we compare it with methodologies used

by other NER methods used for other biomedical domains. For example, the SeeDev task that

was a part of the 4th BioNLP Shared task consists two subtasks, SeeDev-binary on binary rela-

tion extraction and SeeDev-full on full event extraction. Because there is an annotated corpora,

all 7 teams used supervised ML approaches. Five systems used SVMs and two systems were

based on different algorithms, maximum entropy (MaxEnt) and a convolutional neural net-

work. The methodology of the drNER method is completely different from the methodologies

used by these approaches. The drNER is pure NLP method that is not based on annotated cor-

pora, while all the SeeDev methods are based on ML approaches. Also, the entities involved in

drNER are related to the dietary domain, and the SeeDev approaches involved in the extrac-

tion are related to genetic and molecular mechanisms involved in plant seed development.

Another method is BANNER, evaluated on the BioCreative 2 GM training corpora, which is

designed to maximize domain independence by not employing semantic features or rule-

based processing steps. The domain-specific performance is not the purpose of the system, but

researchers could adopt BANNER for a specific domain, by applying two types of post-pro-

cessing. BANNER is based on annotated corpora and it uses CRFs. So the difference between

the methodology used by BANNER and drNER is the same as the difference in the approaches

presented on SeeDev task. Because an annotated corpora in the dietary domain does not exist,

it is better to compare the methodology of the drNER with the methodologies of rule-based

NERs that exist in the biomedical domains. Many rule-based NER methods use rules that com-

bine terminological resources and the characteristics of the entities, but to write rules that

depend from the characteristics for each entity is a time-consuming task. Further more, it

requires a good understanding of the domain. For example, Lowe et al. [86] give a grammar

and dictionary driven approach to entity recognition that uses a mixture of expertly curated

grammars and dictionaries, as well as dictionaries automatically derived from public resources.

They have created 486 rules. The benefit of this approach is that it works well when you do not

have annotated data but requires dictionaries and grammars related to each entity. In our case,

we do not have expertly created grammars for the entities we are interested in, but we only

used a small number of Boolean algebra rules that are unrelated to the characteristics of the

entities, but help us define the phrases that are entities mentions.

Conclusion

In this paper we present a NER method for knowledge extraction of evidence-based dietary

recommendations, called drNER. The goal of this method is to promote progress in informa-

tion extraction in the field of dietary domain, especially focused on three main entities: Food,

Nutrient, and Quantity/Unit. The dietary domain brings a new application domain, which has

similar tasks on biomedical extraction, and is crucial for promoting health and well-being.

The proposed NER method for knowledge extraction of evidence-based dietary recommen-

dations is a combination of terminological-driven NER and rule-based NER. The difference

with the purely terminological-driven NER methods is that we allow for the use of corpus-

based NERs as dictionaries for some entities of interest, instead of using dictionaries that con-

sist of concepts and synonyms. The difference with the rule-based NERs is that we do not use

rules based on the characteristics of the entities. We only have a small number of Boolean alge-

bra rules that are not related to the characteristics, but help us to define the phrases that are
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entity mentions. The method consists of two-phases. The first phase involves the detection and

determination of the entity mentions. It works by using some NLP methods and linking each

token to a dictionary for each entity in which we are interested. After that, it uses three post-

hoc chunkings in order to better determinate the entities mentions. The second phase is the

selection and extraction of the entities. It is based on text syntactic analysis. Finally, by apply-

ing the rules defined in this phase, we can extract useful information related to dietary

recommendations.

To the best of our knowledge, drNER is the first NER method where the focus is in the

domain of evidence-based dietary recommendations, which is an untapped domain. The eval-

uation of drNER is done on test corpora that includes 100 documents. We fixed this number

at 100 because an annotated corpora in this domain does not exist and after extraction, the

extracted entities was manually checked by human experts to see if they have the correct labels.

The test corpora included 50 summary paragraphs of dietary recommendations extracted

from 12 different scientifically validated web sites and 50 abstracts of scientific publications

that are related to “food-composition” and “dietary intake”. The best results achieved rely on

the fact that for some entities such as Food and Nutrient, the terminological resources are not

classic dictionaries that consist of concepts with synonyms, but they could be some corpus-

based NERs that exist. For example, the Nutrient entity is related to chemical-named entity

recognition. By using chemical NERs we can obtain the chemical information, but the type of

DRVs or some additional information associated with it, is not extracted. For this purpose,

three post-hoc chunkings are presented and help in modelling the dietary domain.

For future work, we plan to normalize the extracted entities. Then, we will try to find a

good way to represent the extracted knowledge to human experts. By using the extracted

knowledge from the dietary domain and the knowledge for drugs, diseases, and genes, that can

be obtained from methods presented as a part of shared workshops, we will try to build an

annotated corpora and to increase adoption of linked data techniques as an effective solution

to knowledge representation and management in Life and Health Sciences [87]. Having an

annotated corpora and knowledge representation, the next step will be to extract the relations

that exists between these entities.
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