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Abstract

Models of mRNA translation usually presume that transcripts are linear; upon reaching the

end of a transcript each terminating ribosome returns to the cytoplasmic pool before initiat-

ing anew on a different transcript. A consequence of linear models is that faster translation

of a given mRNA is unlikely to generate more of the encoded protein, particularly at low ribo-

some availability. Recent evidence indicates that eukaryotic mRNAs are circularized, poten-

tially allowing terminating ribosomes to preferentially reinitiate on the same transcript. Here

we model the effect of ribosome reinitiation on translation and show that, at high levels of

reinitiation, protein synthesis rates are dominated by the time required to translate a given

transcript. Our model provides a simple mechanistic explanation for many previously enig-

matic features of eukaryotic translation, including the negative correlation of both ribosome

densities and protein abundance on transcript length, the importance of codon usage in

determining protein synthesis rates, and the negative correlation between transcript length

and both codon adaptation and 5’ mRNA folding energies. In contrast to linear models

where translation is largely limited by initiation rates, our model reveals that all three stages

of translation—initiation, elongation, and termination/reinitiation—determine protein synthe-

sis rates even at low ribosome availability.

Author summary

Recent advances in proteomics show that translation is strongly dependent on transcript

length, but current theoretical models fail to capture this relationship. Here, we propose

that the high initiation rates and protein yields of short transcripts result from terminating

ribosomes reinitiating on the same transcript. The frequency of reinitiation depends on

the time required to complete one full transit of a transcript, coupling transcript lengths

and elongation rates to protein yield. Any slow step reduces the protein yield of shorter

transcripts more than the yield of longer transcripts, generating stronger selective pressure

to eliminate slow steps in shorter transcripts and explaining the widespread negative cor-

relations in eukaryotes between transcript length and both 5’ mRNA folding energy and

codon adaptation. Our reinitiation-based model reconciles conflicting results from
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previous initiation-limited models with recent advances in biotechnology and identifies

the mechanism underlying length-dependent translation, allowing powerful prediction of

translational regulation across eukaryotes.

Introduction

The physiological state of a cell is largely determined by the identity and abundance of the pro-

teins encoded by its genome. Understanding how genetic information is first transcribed into

messenger RNA and then translated into protein is therefore fundamental to our understand-

ing of biological systems. A wide variety of technologies has allowed detailed investigations of

transcription, but—until very recently—a lack of similar tools for empirical research on trans-

lation has meant that the study of post-transcriptional regulation has been largely restricted

to mathematical models with little opportunity for parameterization or evaluation. Recent

advances in both sequencing technology and mass spectrometry have now produced large

amounts of data on the translation of eukaryotic mRNA, revealing how transcript features,

RNA-binding proteins, and non-coding RNAs influence translation [1,2]. While many of the

determinants of translation rates revealed by these empirical studies were predicted by existing

models, some remain difficult to explain. Perhaps the most striking correlate of translation

rate is the length of the transcript itself. Multiple experimental studies, across a wide range of

eukaryotic organisms, have demonstrated a steep negative correlation between the length of a

given coding sequence (CDS) and three different measures of translation: translation initiation

rates [3–5], the density of ribosomes on a transcript [5–15], and the abundance of the encoded

protein [16–19].

Ribosome and polysome profiling experiments have shown a positive relationship between

ribosome density and protein abundance, leading to the conclusion that transcripts with

higher ribosome densities have higher translation rates [9,11,20]. A positive relationship

between ribosome density and translation rate can occur when translation is limited by low

initiation rates. In traditional models of translation, initiation can be limiting when other steps

in translation, such as elongation, occur quickly enough to prevent collisions between ribo-

somes [20]. Consistent with this key role of initiation rates in determining translation rates,

Arava et al [6] found that the higher densities of ribosomes on shorter transcripts was most

consistent with shorter transcripts having exponentially higher initiation rates than longer

transcripts, estimating a halving of the initiation rate with every 400-codon-increase in CDS

length. More recent analyses [3,4] have revealed that the relationship between CDS length and

initiation rates is better described by a power law: the initiation rate is roughly halved for every

doubling of CDS length (i.e. a log-log slope of approximately -1). However, the assumption of

initiation-limitation leaves little room for variation in elongation rates to influence translation

rates, which is at odds with recent work demonstrating that codon usage can be an important

determinant of protein yields [21,22].

If translation is limited by the ability of transcripts to capture ribosomes from the cyto-

plasmic pool (the de novo initiation rate), mechanisms that allow transcripts to retain termi-

nating ribosomes for subsequent rounds of translation should improve translation rates. The

closed-loop model of translation was first proposed as a hypothetical mechanism to improve

translation efficiency through intrapolysomal ribosome reinitiation [23,24]. By bringing the

sites of termination and initiation into close proximity through circularization of the mRNA,

the closed-loop complex allows ribosomes that have finished translating to reinitiate transla-

tion on the same mRNA molecule rather than returning to the cytoplasmic pool. The closed-

loop model was initially based on the appearance of many polysomes in electron micrographs
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as circular, rather than linear, structures (detailed high resolution tomographic analyses of cir-

cular polysomes are now available [25]). Recent theoretical and experimental studies have

shown that secondary structures in single stranded RNAs bring the 5’ and 3’ ends close

together (equivalent to the distance spanned by 9–16 nucleotides) meaning that mRNAs are

effectively circularized [26,27]. Interactions between initiation factors bound to the 5’ end, and

proteins associated with the 3’ end including release and recycling factors, and the poly(A)

binding proteins, are thought to facilitate translation, possibly by stabilizing the closed-loop

structure or by actively promoting reinitiation [28,29].

The importance of reinitiation of ribosomes on circular transcripts in determining protein

yield is well established in vitro [23,24,30–32]. Measuring translation of the luminescent pro-

tein luciferase in a eukaryotic cell-free system, Kopeina et al [31] showed that circular poly-

somes rarely exchanged ribosomes with the free pool or lost ribosomes to other transcripts,

but linear polysomes did so frequently. On circular polysomes, most terminating ribosomes

immediately reinitiated on the same mRNA molecule (see also [30]). Alekhina et al [32] found

that protein production in a similar cell-free system does not rapidly reach a steady state, as

would be expected under a linear model of translation, but rather accelerates over the lifetime

of the transcript, consistent with reinitiation on the same transcript. They proposed that the

translation rate initially depends on slow de novo initiation of ribosomes from the free pool

but soon becomes dominated by the much faster process of reinitiation.

Here, we use a minimal computational model to investigate the consequences of ribosome

reinitiation on translation, with particular focus on transcript length and codon usage. We

find that reinitiation causes ribosome densities, overall initiation rates, and protein yields to

decrease with increasing transcript length. Furthermore, higher levels of reinitiation increase

the importance of codon usage in determining translation rates in a length-dependent manner,

even at low ribosome densities or low de novo initiation rates. Reinitiation therefore provides

a potential mechanistic explanation for multiple previously-enigmatic patterns observed in

empirical studies of translation.

Model

We use a totally asymmetric simple exclusion process (TASEP, reviewed in [33]) to investigate

the closed loop model of translation. The TASEP (Fig 1) models each transcript as a one-

dimensional lattice consisting of a number of sites equal to the number of codons in the CDS:

each site represents a single codon. Each site can be either free or occupied by a ribosome.

Ribosomes move along the transcript in the 5’ to 3’ direction and cannot occupy the same

codon(s) as any other ribosome. In our model, the transcript is circularized, meaning that ter-

minating ribosomes can not only be released into the cytoplasmic pool (as in a linear TASEP)

but can also move to the initiation site of the same transcript (reinitiation).

Four different types of reactions can take place in the TASEP: (i) de novo initiation: a free

ribosome can be placed onto the 5’ end of the transcript (the initiation site) at the de novo initi-

ation rate; (ii) elongation: ribosomes at any codon on the transcript (except the termination

site) can move forward one codon in the 3’ direction at the elongation rate; if a ribosome occu-

pies the termination site, it can either (iii) leave the transcript at the release rate or (iv) it can

move to the initiation site at the reinitiation rate.

We model ribosomes as extended particles that occupy ten codons each: the A-sites (where

each codon is translated) of adjacent ribosomes must be spaced apart by at least 10 codons.

Thus, the elongation reaction is only possible when the A-site of the next ribosome in the 3’

direction is> 10 codons downstream. Similarly, neither de novo initiation nor reinitiation is

possible if any of the first 10 codons is occupied by an A-site.
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Analytical solutions of the TASEP are possible, but currently can only be applied to the

steady state. Consequently, most TASEP models, including a recent study of reinitiation [34],

investigate translation at the steady state, where the rate at which ribosomes join a transcript

equals the rate at which they leave, and the translation rate is constant. However, every real

transcript spends some proportion of its lifetime outside of the steady state, where these solu-

tions do not apply; the assumption of a perpetual steady state is therefore an approximation. A

new transcript does not instantly acquire ribosomes distributed along its length. Instead, ribo-

somes join at the 5’ end and gradually progress towards the stop codon, where they can be

released. In the absence of reinitiation, the steady state can be reached once the first ribosome

to join a transcript is released. The duration of this "pioneer round" [35] increases with tran-

script length, but generally represents a small proportion of eukaryotic transcript lifetimes. In

Fig 1. The closed-loop model of translation. Ribosomes (shaded in grey), modeled as extended particles

that occupy 10 codons (black boxes), join the transcript at the start codon from the cytoplasmic pool at the de

novo initiation rate, and hop to the next codon (in the 5’ to 3’ direction) at the elongation rate. Upon reaching

the stop codon, ribosomes either return to the cytoplasmic pool at the release rate or return to the start codon

at the reinitiation rate. The reinitiation level is determined by the reinitiation rate divided by the sum of the

reinitiation and release rates. If the initiation site is occupied (i.e. any of the first 10 codons is being decoded),

new ribosomes fail to join the transcript and reinitiating ribosomes either remain at the termination site or

return to the cytoplasmic pool at the release rate. An elongating ribosome fails to step forward if the distance

between its center and that of the ribosome in front is� 10 codons (collision). Stochastic simulations were

performed using the Gillespie algorithm. The Gillespie algorithm consists of multiple steps: (1) Initialization:

the simulation time is set to zero; at this point in our simulations, all transcripts are empty and the only possible

reaction is de novo initiation; (2) List all possible reactions: all possible reactions are determined and their

rates are used to calculate the total rate of possible reactions; (3) Monte Carlo step: two random numbers are

generated, the first determines the waiting time until the next reaction based on the total rate of possible

reactions, and the second determines which reaction occurs using each reaction rate as a probabilistic

weight; (4) Update: the time is increased by the randomly generated waiting time from step 3 and the chosen

reaction is performed; (5) Iteration: repeat from step 2 unless the transcript lifetime has been reached.

https://doi.org/10.1371/journal.pcbi.1005592.g001
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the absence of reinitiation the steady state is therefore a good approximation (although it can

be inappropriate for prokaryotes with short-lived transcripts [36,37]). However under reinitia-

tion, ribosomes do not necessarily leave the transcript upon termination, which causes the

effective initiation rate (and the translation rate) to increase over time [32]. The time to reach

the steady state therefore increases with both transcript length and reinitiation probability, and

the time spent outside of the steady state thus represents a greater proportion of transcript life-

times (S1 Fig). The steady state assumption consequently becomes a much worse approxima-

tion of translation at higher levels of reinitiation, overestimating translation rates on long

transcripts and underestimating translation on short transcripts (S1 Fig). It is therefore impos-

sible to make a fair comparison of translation at different reinitiation levels using the steady

state approximation, particularly for transcripts of different lengths.

Since we do not assume that translation on any given transcript is always at the steady state,

we cannot use the steady state analytical solutions of the TASEP. Instead, we perform stochas-

tic simulations using the Gillespie algorithm [38], which capture both the steady state and the

non-steady state. In models that assume the steady state, all translation that occurs in simula-

tions prior to the steady state is ignored. For example, in a recent reinitiation-based model of

translation in yeast, the first 105 s of simulations was discarded [34]. Given that the average

lifetime of yeast transcripts is on the scale of 103−104 s [39], this means that all translation

occurring over biologically plausible lifetimes was excluded from the analysis. Here, we make

no assumptions about the steady state; we simply account for all translation that occurs during

the lifetime of a transcript (both before and after the steady state is achieved). We simulated

translation on each transcript independently. Each run generated a time evolution of the ri-

bosome occupancy at each codon on a given transcript. We computed three measures of trans-

lation: ribosome density (the average number of ribosomes on a transcript over its lifetime

divided by one tenth of CDS length, because each ribosome occupies 10 codons), effective

initiation rate (the total number of initiations occurring through either de novo initiation or

reinitiation divided by transcript lifetime) and protein yield (the total number of ribosomes

reaching the stop codon of a transcript). We averaged the results of 1000 runs to produce

results that are not subject to large stochastic fluctuations. We do not consider untranslated

regions and our transcripts therefore represent only the CDS. The code for our TASEP is avail-

able at: https://github.com/marvinboe/reTASEP

Changing any transcriptome-wide parameter can dramatically alter global ribosome usage.

For instance, at a given de novo initiation rate, increasing the reinitiation probability increases

the total number of actively translating ribosomes. While this effect may be true, given that

reinitiation is expected to allow more efficient use of ribosomes (see Discussion), it makes

parameterizing the model difficult because the actual level of reinitiation is unknown. To keep

all simulations consistent with empirical values, we have adjusted the de novo initiation rate to

maintain the empirically observed average ribosome density. For simplicity, we have kept the

number of ribosomes on a 400-codon-long transcript constant (at 6 ribosomes) for all tran-

scriptome-wide reinitiation probabilities and elongation rates. See S1 Text for details on

parameter estimates used in each simulation.

Results

High levels of reinitiation generate length-dependent translation

Our model captures the negative correlation between ribosome density and CDS length

observed in empirical studies, but only if the probability of reinitiation is high (Fig 2). This

result is intuitive; if reinitiation were perfect, all ribosomes that initiate would continue to

reinitiate and translate, never leaving a transcript until it degrades. The density of ribosomes

Ribosome reinitiation on circular transcripts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005592 June 9, 2017 5 / 19

https://github.com/marvinboe/reTASEP
https://doi.org/10.1371/journal.pcbi.1005592


on a transcript of a given length and age would therefore be determined exclusively by the de
novo initiation rate. If the de novo initiation rate is the same for all transcripts, then all tran-

scripts of a given age should carry the same number of ribosomes and ribosome density will

be the inverse of CDS length (with a log-log slope of -1). At a given elongation rate, the time

required for a ribosome to complete one cycle (travel from the start codon to the stop codon)

is less for short transcripts than for long transcripts. This means that, prior to the steady state,

Fig 2. Reinitiation of post-termination ribosomes causes length-dependent translation. Ribosome density is the average number of ribosomes

occupying a transcript during its lifetime divided by one tenth of the CDS length (since each ribosome occupies 10 codons). The effective initiation rate is the

total number of initiation events (de novo initiation and reinitiation) divided by transcript lifetime. Protein yield is the total number of ribosomes reaching the

stop codon during the lifetime of a transcript. Slopes (95% confidence intervals) are indicated in the bottom left corner of each panel. De novo initiation rates

were adjusted at each reinitiation level so that a 400-codon long transcript carried 6 ribosomes. Top: experimentally observed relationships between CDS

length and ribosome density (left), initiation rate (center) or protein abundance (right) in the budding yeast Saccharomyces cerevisiae. Middle: experimentally

observed relationship between CDS length and ribosome density (left) and protein abundance (right) in the human HEK293T cell line. Estimates of the

initiation rate are not currently available for this cell line, so we have used this space to list the slopes from our simulations. Bottom: predicted relationships

between ribosome density (left), the effective initiation rate (center), and protein yield (right) and CDS length at different reinitiation levels (different colours)

from our simulations. Simulations were performed using a fixed elongation rate of 10s-1. See S2 Fig for simulations at other parameter values. Data sources:

Yeast densities are weighted averages of the signals in polysomal fractions for 6071 transcripts from [6]; initiation rates for 5348 transcripts were calculated by

Ciandrini et al [3] based on ribosome density data from [7]; protein abundances of 4694 proteins included in the Peptide Atlas 2013 dataset from PaxDb [40]

normalized against the total number of proteins (expressed as parts per million). HEK293T densities were calculated from mean ribosome numbers (across 3

replicates) reported by Hendrickson et al [11]; protein abundances of 2636 proteins with identified CDS lengths included in the Geiger MCP 2012 data set

(based on spectral counting) from PaxDb [40].

https://doi.org/10.1371/journal.pcbi.1005592.g002
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reinitiation occurs more frequently on shorter transcripts resulting in higher protein yields for

short transcripts than long transcripts. When all or nearly all terminating ribosomes reinitiate,

the effective initiation rate is much higher for shorter transcripts—providing a simple mecha-

nism that could explain the length-dependence of initiation rates predicted by recent studies

of translation [3–5,8]. The higher ribosome densities on shorter transcripts increase the likeli-

hood of collisions between ribosomes, resulting in deviations from the expected power law

relationship between measures of translation and CDS length (Fig 2) through two related

mechanisms. First, more frequent collisions between elongating ribosomes on shorter tran-

scripts slow down translation, generating less steep slopes for the effective initiation rate and

protein yield at low CDS lengths. Second, the initiation site is more likely to be occupied on a

short transcript than on a long transcript, resulting in higher levels of initiation interference

[21] on shorter transcripts, further flattening length-dependence for all measures of translation

on short transcripts.

When reinitiation is not perfect, ribosomes can return to the cytoplasmic pool after termi-

nation, and the effect of CDS length on ribosome density, effective initiation rate, and protein

yield is diminished. Even small reductions in reinitiation probability greatly weaken length-

dependence (Fig 2). This is because short transcripts have more opportunities to lose ribo-

somes than do long transcripts. While a successful reinitiation event only guarantees that a

ribosome remains associated with the transcript until the next termination event, ribosome

loss is permanent. In the complete absence of reinitiation, length-dependence is therefore

abolished.

Reinitiation, but not de novo initiation, has a larger effect on short

transcripts than long transcripts

While changing transcriptome-wide parameters can dramatically affect global ribosome usage

(see Model), altering parameters of transcripts encoded by a single gene will have little effect

on global ribosome usage. This is because nearly all endogenous genes are expressed at low lev-

els, so changing the translation parameters of the transcripts produced by a single gene will

have a negligible effect on global ribosome availability [4,20,41]. By studying transcripts of

individual genes, we can therefore investigate the consequences of changing a single parameter

while holding all other values constant. We first tested the effects of altering the reinitiation

rate of transcripts encoded by a single gene (Fig 3A and 3B). Doubling the reinitiation rate

results in an extremely similar increase in all three measures of translation (ribosome density,

effective initiation rate, and protein yield; results are therefore only shown for ribosome den-

sity), but the effects are greater for short transcripts than long transcripts. These effects are

mirrored by a length-dependent decrease in translation when the reinitiation rate is halved

(Fig 3B). Furthermore, the length-dependent effects of changing the reinitiation rate of a single

transcript species are generally stronger at higher transcriptome-wide reinitiation probabili-

ties, except when reinitiation is so high that ribosomes rarely leave the transcript (e.g. 99.9%).

We next tested the effects of altering the de novo initiation rate of a single transcript species

(Fig 3C and 3D). In the absence of reinitiation, doubling the de novo initiation rate had an

equal effect on ribosome density for transcripts of all lengths. However, at higher levels of rein-

itiation, doubling the de novo initiation rate resulted in a smaller increase in ribosome density

on short transcripts than on long transcripts, caused by increased initiation interference; the

higher density of ribosomes on short transcripts under reinitiation increases the probability

that the initiation site is blocked, preventing successful de novo initiation. The effects of alter-

ing the de novo initiation rate on the effective initiation rate and protein yield are very similar

to the effects on ribosome density.
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High levels of reinitiation couple effective initiation rates and protein

yields to the elongation rate

So far, we have assumed that all transcripts have identical elongation rates, but in reality the

elongation rate varies between transcripts encoded by different genes [42]. We therefore inves-

tigated the consequences of changing the elongation rate of a single CDS from 10s-1 to either

20s-1 or 5s-1 (Fig 4). Increasing the elongation rate reduces the amount of time between initia-

tion and termination. In the absence of reinitiation, this causes ribosomes to spend less time

on the altered transcript resulting in decreased ribosome density, but has little effect on the ini-

tiation rate or protein yield since these elongation rates are generally not limiting. Altered

elongation rates do affect how long it takes to clear the initiation site and therefore the amount

of initiation interference, explaining the relatively small differences in initiation rates and pro-

tein yields seen at 0% reinitiation [21].

Under perfect reinitiation, terminating ribosomes explicitly reinitiate on the same tran-

script. Changing the elongation rate of a single gene therefore has no effect on the density of

ribosomes on the altered transcript. However, by altering the time between reinitiation events,

changing the elongation rate results in an equal change in the effective initiation rate of the

altered transcript (Fig 4). The protein yield of any endogenous gene is therefore exquisitely

Fig 3. Transcript-specific change of the reinitiation rate, but not the de novo initiation rate, has larger

effects on short transcripts than long transcripts. We simulated the effects of changing the reinitiation

rate (A, B) or the de novo initiation rate (C, D) of a single transcript species by 2-fold or 0.5-fold at different

transcriptome-wide reinitiation levels. For each transcriptome-wide reinitiation level (different colours),

doubling (or halving) the reinitiation rate shifted the reinitiation level to: 99% to 99.5% (98.0%); 95% to 97.5%

(90.5%); 90% to 94.7% (81.8%); 80% to 88.9% (66.7%); 50% to 66.7% (33.3%); 0% to 0% (0%). Doubling or

halving the reinitiation rate at very high transcriptome-wide reinitiation levels (e.g. 99.9%) has little effect on

translation since ribosomes rarely leave transcripts. Y-axes show the ribosome density of altered transcripts

relative to an equivalent transcript at the transcriptome wide reinitiation level. The effects of changing either

the reinitiation rate or the de novo initiation rate on the effective initiation rate and protein yield were nearly

identical to the effects on ribosome density. Transcriptome-wide de novo initiation rates were adjusted at each

reinitiation level so that a 400-codon long CDS at the transcriptome-wide reinitiation level carried 6 ribosomes.

https://doi.org/10.1371/journal.pcbi.1005592.g003
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sensitive to changes in elongation rate under perfect reinitiation. Under perfect reinitiation,

this effect is seen at all CDS lengths. The importance of the elongation rate decreases dramati-

cally when reinitiation levels are reduced: faster elongation results in more opportunities to

lose ribosomes, particularly on short transcripts.

Length-dependent consequences of a single slow step on translation

So far, we have only considered the effects of changing the average elongation rate of a tran-

script. However, it is difficult to imagine a mechanism that could simultaneously alter the elon-

gation rate of all codons in a single transcript species without affecting the global elongation

rate. Instead, transcripts are likely altered by mutations affecting a single codon at a time.

Codon usage can affect elongation by determining the stability of secondary structures in the

mRNA, but different codons are also decoded at different rates depending on the cellular avail-

ability of the appropriate tRNA. Most amino acids are encoded by multiple codons, and some

codons (including synonymous codons that code for the same amino acid) are decoded faster

than others [42,43]. We therefore investigated the consequences of a single slow step on trans-

lation of transcript species of different lengths (Fig 5). Here, we only examined translation at

99.9% reinitiation; similar results would be expected for other models of length-dependent

translation including those that omit reinitiation. Introducing a single slow step into any tran-

script reduces its effective initiation rate and protein yield, but the effects are much larger for

Fig 4. Transcript-specific change in translation caused by altering the average elongation rate of a single coding sequence.

We simulated the effects of changing the average elongation rate of a single transcript species from 10s-1 to either (A) 20s-1 or (B) 5s-1

at different reinitiation levels (different colours). CDS length refers to the length of the altered coding sequence. Y-axes show the effect

of altering the elongation rate on the ribosome density (left), effective initiation rate (center), and protein yield (right) of the altered

transcript at the higher or lower elongation rate relative to 10s-1 (dotted line). De novo initiation rates were adjusted at each reinitiation

level so that a 400-codon long transcript with a fixed elongation rate of 10s-1 carried 6 ribosomes.

https://doi.org/10.1371/journal.pcbi.1005592.g004
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short transcripts than for long transcripts (Fig 5). The length-dependence of a single slow step

arises from two sources. First, a single site represents a larger proportion of a short transcript

than a long transcript and consequently results in a greater decrease in the average elongation

rate [44]. Second, short transcripts have higher ribosome densities and are therefore more

prone to collisions or "traffic jams" than are long transcripts. Effective initiation rates and pro-

tein yields are particularly sensitive to single slow steps near the start codon, with larger effects

Fig 5. The consequences of a single slow step under length-dependent translation. We investigated the consequences of introducing

a slow elongation step at either the start codon (green), the middle codon (grey), or the final codon (immediately before the stop codon, blue)

under 99.9% reinitiation. CDS length refers to the length of the altered coding sequence. Slow codons were translated at 1s-1 (filled circles),

0.1s-1 (open circles), or 0.01s-1 (plus signs). Y-axes show the effect of a single slow step on the ribosome density (A), effective initiation rate

(B), and protein yield (C) at the lower elongation rate relative to 10s-1 (dotted line).

https://doi.org/10.1371/journal.pcbi.1005592.g005
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on shorter transcripts: slow clearance of the initiation site delays reinitiation and blocks de
novo initiation resulting in lower ribosome densities on affected transcripts.

A yeast-specific model of translation with reinitiation

Given the importance of variation in elongation rates to translation under reinitiation, we used

our model to simulate translation in S. cerevisiae using codon-specific decoding rates. We used

decoding rates (see S1 Table) estimated by Gilchrist & Wagner [45] which are based on tRNA

availability and wobble pairing rules and scaled so that the average decoding rate is 10s-1; they

are related to measures of codon occupancy reported in [5] (r = 0.494, n = 61, P< 0.0001).

Since efficient reinitiation couples protein production to elongation rates, synonymous codon

usage should have detectable consequences for protein yield at high levels of reinitiation. We

tested the effects of synonymous codon usage at 99.9% reinitiation by predicting the yields of

nine different synthetic GFP constructs [46] that differ only in their synonymous codon usage

(Fig 6A). We compared these predictions to observed protein abundances measured in S. cerevi-
siae expressing each construct, and found a strong positive correlation between predicted yields

and observed abundances (r = 0.750, n = 9, P = 0.020); our model predicted approximately half

Fig 6. Simulating translation in the budding yeast S. cerevisiae. Our simulations were run using yeast-specific decoding rates [45] and a

transcript lifetime of 1553s [39]. Results are shown for 99.9% reinitiation (see S3 Fig & S4 Fig for simulations at other reinitiation levels). (A)

Correlation of model-predicted protein yields (proteins per mRNA per lifetime) for 9 differently codon-optimized GFP coding sequences with

experimentally measured abundances (arbitrary units) from [46]. (B) Correlation of model-predicted ribosome density (left), effective initiation rate

(middle), and protein yield (right) with experimentally measured values. Sources of experimental data are the same as in Fig 2. When X and Y-axis

scales are equivalent, the 1:1 line is represented by a dotted line. When X and Y-axis scales are not equivalent, the solid line is the regression line.

https://doi.org/10.1371/journal.pcbi.1005592.g006
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of the observed effect of using different synonymous codons (relative expression of highest vs.

lowest construct, model = 2.4-fold, observed = 5.4-fold). Thus, efficient reinitiation correctly

predicts a role for synonymous codon usage in determining yield.

Having established that Gilchrist & Wagner’s [45] codon-specific elongation rates are realis-

tic, we used them to simulate the entire budding yeast translatome. The results of our simula-

tions at 99.9% reinitiation are strongly correlated (Fig 6B) with experimental measures of

ribosome densities (r = 0.932, n = 5542, using data from [6]) and calculated initiation rates

(r = 0.742, n = 5348, using estimates from [3]; r = 0.618, n = 3728, using estimates from [4]).

Our yield predictions are less strongly correlated with measured protein abundances (r = 0.478,

n = 4686, data from Peptide Atlas 2013). This weaker correlation is unsurprising as our predic-

tions of yield omit many important determinants of protein abundance including transcript

abundance and protein stability. Results of simulations at other reinitiation levels are included

in S3 Fig (fixed transcript lifetime) and S4 Fig (experimentally measured transcript lifetimes).

Discussion

We have shown that a fixed transcriptome-wide level of ribosome reinitiation can generate

both length-dependent translation and a powerful transcript-specific role for codon usage, but

only when reinitiation is extremely efficient. The level of reinitiation in live cells is unknown,

but multiple studies have established that reinitiation is much more frequent than de novo ini-

tiation in cell-free systems. Furthermore, if reinitiation benefits the cell, we would expect it to

evolve to become highly efficient. Maintaining a large pool of ribosomes consumes a substan-

tial part of a cell’s energy budget and selection will favor mechanisms that allow ribosomes to

be used efficiently [47]. If, as reported by Nelson & Winkler [30] and Kopeina et al [31], reini-

tiation of post-termination ribosomes is faster than de novo initiation from the free ribosome

pool, then efficient reinitiation reduces the amount of "dead time" ribosomes spend in the pool

waiting to be recruited [34,48]. Each ribosome in a cell is therefore able to complete more

rounds of translation in a given time interval under high levels of reinitiation compared to low

levels of reinitiation. Reinitiation levels should be very closely associated with fitness: the trans-

lation initiation rate is thought to be the principal determinant of the rate of cell division

[49,50]. Consequently, if reinitiation does occur in living cells, it is hard to imagine why it

would not work very efficiently. Direct measurement of the level of reinitiation in vivo may

soon be possible thanks to recent technological advancements enabling selective labeling of

ribosomes [51] and the visualization of translation on individual mRNAs [52,53].

A single fixed level of reinitiation is not necessary to explain length-dependent translation;

efficient reinitiation is only required on short transcripts (S5 Fig). Studies in living cells have

shown that some transcripts are more likely to be associated with translation factors required

to form the closed-loop complex than others [54]. If the closed-loop complex is required for

efficient reinitiation, then reinitiation levels likely vary between transcripts. More specifically,

shorter transcripts likely experience higher levels of reinitiation since they are both more likely

to be enriched with closed-loop factors [15,55], form more stable closed-loop complexes [56],

and may exhibit shorter end-to-end distances allowing increased levels of reinitiation by pas-

sive diffusion [57]. Additionally, cellular depletion of both the closed loop factor eIF4G and

the translational regulator Asc1/RACK1 has also been shown to have a greater effect on the

translation of short transcripts than on long transcripts [13,15]. Using length-dependent reini-

tiation levels in our simulations allows the empirical relationship between CDS length and

ribosome density, effective initiation rate, and protein yield to be captured at an average reini-

tiation level orders of magnitude smaller (~90%; S5 Fig) than does a fixed reinitiation level

(99.9%; S5 Fig).
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Beyond acting on global mechanisms, natural selection also operates to maximize the pro-

tein yield of transcripts encoded by individual genes (translational efficiency [44]). Selection

for increased translational efficiency can not only increase the abundance of a given protein in

a cell, but can also maintain protein levels while minimizing the cost of transcription, which

has been shown to be an important determinant of fitness in yeast [58]. The strength of selec-

tion depends on the magnitude of the effect of a given mutation on translational efficiency;

mutations with larger effects are subject to stronger selection. We have shown that the magni-

tude of the effect on translational efficiency of altering a given parameter by an equal amount

can vary with the length of the altered transcript species. Thus, the strength of selection on

mutations that affect a given parameter can be length-dependent [44]. For instance, doubling

the reinitiation rate of a single transcript species results in a bigger increase in translational

efficiency for shorter transcripts (Fig 3). Mutations affecting the reinitiation rate of short tran-

scripts are therefore more likely to be selected than are those than occur on long transcripts,

potentially contributing to higher levels of reinitiation on shorter transcripts as discussed

above (S5 Fig). In contrast, doubling the de novo initiation rate does not result in higher trans-

lational efficiency on shorter transcripts and, under reinitiation, can actually have smaller

effects on shorter transcripts due to increased initiation interference (Fig 3). Selection for

increased translational efficiency on individual transcript species is therefore not predicted to

result in higher de novo initiation rates on shorter transcripts. Instead, selection under reinitia-

tion will be more effective at reducing initiation interference on shorter transcripts.

At high levels of reinitiation, we have shown that a single slow step in translation causes a

greater reduction in the translational efficiency of short transcripts than that of long transcripts

(Fig 5). Eliminating slow steps has larger effects on the translation of short transcripts com-

pared to long transcripts and therefore selection to eliminate slow steps will be most effective

in genes encoding short transcripts. Length-dependent selection against slow steps under rein-

itiation therefore offers an explanation for the negative correlation between codon adaptation

and CDS length observed across eukaryotes ([4, 44, 59–63] but see also [64]). Translational

efficiency is particularly sensitive to slow sites near the start codon (Fig 5, see also [21]): slow

clearance of the initiation site delays reinitiation (promoting ribosome loss) and blocks de
novo initiation resulting in lower ribosome densities on affected transcripts. Multiple mecha-

nisms can determine how slowly ribosomes vacate the initiation site including the presence of

one or more slow codons [21] or the presence of stable 5’ secondary structures in the transcript

[65]. As both features reduce yield to a greater extent on short transcripts compared to long

transcripts (Fig 5), selection should be more efficient at eliminating them on shorter tran-

scripts, consistent with the negative correlations between CDS length and both 5’ mRNA fold-

ing energy and 5’ codon adaptation [59]. Thus, length-dependent translation generated by

high levels of reinitiation will generate length-dependent selection against slow steps [44],

which will in turn reinforce patterns of length-dependent translation.

Reinitiation provides a simple mechanistic explanation for empirically observed patterns of

length-dependent translation including negative correlations between CDS length and ribo-

some density, effective initiation rate, protein yield, transcript codon adaptation, 5’ codon

adaptation, 5’ folding energy, and association with closed-loop factors. Under reinitiation,

these patterns are expected to emerge through selection for efficient ribosome usage, maximiz-

ing protein yield, and translational efficiency on individual transcript species. This is in sharp

contrast to linear models in which, at low ribosome availability, length-dependence arises

through direct selection for higher de novo initiation rates on shorter transcripts [3,4]. Our

model is consistent with the emerging view that translation is controlled not only by initiation,

but also by elongation and termination/reinitiation [21,22,66]. This conceptual shift makes

clear that manipulating any these stages can have profound consequences on translation, and
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presents factors associated with elongation, release, and recycling as new targets for therapeu-

tic intervention (cf. [67]).

Supporting information

S1 Fig. The steady state is a poor approximation of translation at high reinitiation levels

for transcripts with finite lifetimes. (A) Time to approach the steady state ribosome density

at different reinitiation levels for transcripts of different lengths. Simulations were run for 3x105

s using the parameter values described for our general model. De novo initiation rates were

adjusted at each reinitiation level so that a 400-codon transcript carried an average of 6 ribo-

somes at the steady state. The steady state ribosome density was calculated as the average density

over the final 104 s of 1000 iterations (if this value showed no directional change over time). The

first passage time represents the earliest time point that the average density of 1000 iterations

equaled or exceeded the steady state density. Long transcripts (4000 codons) failed to reach the

steady state during the 3x105 s run time at reinitiation levels above 99.6%. Data points at higher

reinitiation levels were therefore excluded. (B) Steady state translation rate (yield s-1) relative

to the average translation rate (yield s-1) on equivalent transcripts with a finite 3000 s lifetime.

Deviations from a ratio of 1 represent the magnitude of the misestimation of the translation rate

caused by assuming a perpetual steady state on transcripts with finite lifetimes. De novo initia-

tion rates were adjusted at each reinitiation level such that the average 400 codon-transcript car-

ried 6 ribosomes either at the steady state or on average over its 3000 s lifetime. Consequently,

all 400 codon transcripts have the same average ribosome density allowing fair comparison. At

high reinitiation levels, the steady state approximation overestimates ribosome density on long

transcripts and underestimates ribosome density on short transcripts.

(TIF)

S2 Fig. Full model predictions of ribosome density, effective initiation rate, and protein

yield at different reinitiation levels. We simulated translation for a wide range of transcript

lifetimes and de novo initiation rates. For any given combination of transcript lifetime and de
novo initiation rate, we simulated translation for transcripts with different CDS lengths and

then calculated the slope of ribosome density, effective initiation rate, and protein yield over

CDS length. Slopes are indicated in different colours (see colour bar), reflecting the degree of

length-dependence. The white line in each panel shows the de novo initiation rate required at

each lifetime such that a 400-codon long transcript carries 6 ribosomes. Our model predicts

that high levels of reinitiation can cause length-dependent translation across a wide range of

transcript lifetimes and de novo initiation rates. At high levels of reinitiation, length-depen-

dence is strongest for short transcript lifetimes and low de novo initiation rates; since ribo-

somes are unlikely to leave the transcript, at long lifetimes or high de novo initiation rates, all

transcripts eventually become saturated with ribosomes. As a result, the number of ribosomes

per transcript becomes proportional to CDS length (since longer transcripts can carry more

ribosomes) and ribosome density, the effective initiation rate, and protein yield become similar

for all CDS lengths. As the reinitiation level falls, the effective initiation rate becomes domi-

nated by the de novo initiation rate, which is the same for all CDS lengths, and ribosome den-

sity, the effective initiation rate, and protein yield all become independent of CDS length. In a

linear model of translation (0% reinitiation), negative slopes for density and yield are only seen

for extremely short transcript lifetimes simply because the first initiating ribosome fails to

reach the stop codon on long transcripts before the maximum lifetime is reached. This effect

disappears when transcript lifetimes exceed the time required for the first ribosome to reach

the stop codon of the longest transcript (~400 seconds).

(TIF)
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S3 Fig. Simulating translation in the budding yeast S. cerevisiaeat different reinitiation levels.

Predicted ribosome density, effective initiation rate, and protein yield for all 5888 budding yeast

transcripts simulated at different reinitiation levels using codon-specific decoding rates from [45].

The left y-axis scale applies to ribosome density (left) and effective initiation rates (center); the

right y-axis scale applies to protein yield (right). Slopes are indicated in the top-right corner. As in

Fig 6, all transcripts had a fixed lifetime of 1553 seconds. De novo initiation rates were adjusted at

each reinitiation level so that a 400-codon long transcript with a fixed decoding rate of 10s-1 car-

ried an average of 6 ribosomes. Pearson correlation coefficients between simulated results and

empirical measures for each reinitiation level are: (i) ribosome density (n = 5542): 100% = 0.935,

99.9% = 0.932, 99% = 0.908, 95% = 0.784, 90% = 0.619, 80% = 0.377, 50% = 0.083; (ii) effective

initiation rate (n = 5348): 100% = 0.742, 99.9% = 0.742, 99% = 0.729, 95% = 0.671, 90% = 0.591,

80% = 0.468, 50% = 0.289; (iii) protein yield (n = 4933): 100% = 0.480, 99.9% = 0.478, 99% =

0.475, 95% = 0.458, 90% = 0.449, 80% = 0.442, 50% = 0.438. Empirical data sources as in Fig 2.

(TIF)

S4 Fig. Simulating translation in the budding yeast S. cerevisiaeat different reinitiation

levels using empirical estimates of transcript lifetime. The simulations shown in S3 Fig were

repeated using empirical estimates of transcript lifetimes. Transcript lifetimes were calculated

using relative abundances from [68] (measured using single-molecule sequencing digital gene

expression which eliminates the length-bias associated with RNA-Seq), a total of 36,000 tran-

scripts per cell [69], and nascent transcription rates from [39]. For each transcript, absolute

abundance was divided by the transcription rate to obtain the average lifetime. Transcripts

with average lifetimes below 400s were excluded to prevent bias towards increased length-

dependence (see S2 Fig). Pearson correlation coefficients between simulated results and

empirical measures for each reinitiation level are: (i) ribosome density (n = 3829): 100% =

0.767, 99.9% = 0.771, 99% = 0.773, 95% = 0.741, 90% = 0.673, 80% = 0.512, 50% = 0.151,

0% = -0.072; (ii) effective initiation rate (n = 3752): 100% = 0.668, 99.9% = 0.668, 99% = 0.668,

95% = 0.654, 90% = 0.627, 80% = 0.567, 50% = 0.394, 0% = 0.182; (iii) protein yield (n = 3451):

100% = 0.615, 99.9% = 0.620, 99% = 0.609, 95% = 0.578, 90% = 0.561, 80% = 0.546, 50% =

0.535, 0% = 0.527. Empirical data sources as in Fig 2.

(TIF)

S5 Fig. Length-dependent translation only requires high levels of reinitiation on short

transcripts. Decreasing reinitiation levels with transcript length (open circles) produces very

similar relationships between CDS length and ribosome density, effective initiation rate, and

protein yield as does a fixed reinitiation level of 99.9% (purple circles). Slopes of each relation-

ship are shown in the upper right corner of each panel. Length-dependent reinitiation levels

capture length dependent translation at much lower reinitiation levels than that required using

a fixed reinitiation level. We have arbitrarily chosen to decrease the reinitiation level as a func-

tion of CDS length according to the formula 100%�(1- CDS length/4000). The de novo initia-

tion rate was set such that a 400-codon transcript carried an average of 6 ribosomes (99.9%

reinitiation = 0.00458s-1, length-dependent reinitiation = 0.02285s-1).

(TIF)

S1 Table. S. cerevisiae codon-specific elongation rates from [45].

(DOCX)

S1 Text. Parameter estimates and justification.

(DOCX)

Ribosome reinitiation on circular transcripts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005592 June 9, 2017 15 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005592.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005592.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005592.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005592.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005592.s007
https://doi.org/10.1371/journal.pcbi.1005592


Author Contributions

Conceptualization: DWR MAB AT DG.

Data curation: DWR MAB.

Formal analysis: MAB AT DWR.

Funding acquisition: AT DG.

Investigation: DWR MAB.

Methodology: DWR MAB AT.

Project administration: DWR MAB AT DG.

Resources: AT DG.

Software: MAB AT.

Supervision: AT DG.

Validation: DWR MAB.

Visualization: DWR MAB AT DG.

Writing – original draft: DWR MAB.

Writing – review & editing: DWR MAB AT DG.

References
1. Lackner DH, Bähler J. Translational control of gene expression: from transcripts to transcriptomes. Int Rev

Cell Mol Biol. 2008; 271: 199–251. https://doi.org/10.1016/S1937-6448(08)01205-7 PMID: 19081544

2. Kuersten S, Radek A, Vogel C, Penalva LOF. Translation regulation gets its ’omics’ moment. Wiley

Interdiscip Rev RNA. 2013; 4: 617–630. https://doi.org/10.1002/wrna.1173 PMID: 23677826

3. Ciandrini L, Stansfield I, Romano MC. Ribosome traffic on mRNAs maps to gene ontology: genome-

wide quantification of translation initiation rates and polysome size regulation. PLoS Comp Biol. 2013;

9: e1002866. https://doi.org/10.1371/journal.pcbi.1002866

4. Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB. Rate-limiting steps in yeast protein translation. Cell.

2013; 153: 1589–1601. https://doi.org/10.1016/j.cell.2013.05.049 PMID: 23791185

5. Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP. Improved ribosome-footprint

and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep.

2016; 14: 1787–1799. http://dx.doi.org/10.1016/j.celrep.2016.01.043

6. Arava Y, Wang Y, Storey JD, Brown PO, Herschlag D. Genome-wide analysis of mRNA translation pro-

files in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2003; 100: 3889–3894. https://doi.org/10.

1073/pnas.0635171100 PMID: 12660367

7. MacKay VL, Li X, Flory MR, Turcott E, Law GL, Serikawa KA, et al. Gene expression analyzed by high-

resolution state array analysis and quantitative proteomics. Mol Cell Proteomics. 2004; 3: 478–489.

https://doi.org/10.1074/mcp.M300129-MCP200 PMID: 14766929

8. Arava Y, Boas FE, Brown PO, Herschlag D. Dissecting eukaryotic translation and its control by ribo-

some density mapping. Nucl Acids Res. 2005; 33: 2421–2432. https://doi.org/10.1093/nar/gki331

PMID: 15860778

9. Lackner DH, Beilharz TH, Marguerat S, Mata J, Watt S, Schubert F, et al. A network of multiple regula-

tory layers shapes gene expression in fission yeast. Mol Cell. 2007; 26: 145–155. https://doi.org/10.

1016/j.molcel.2007.03.002 PMID: 17434133

10. Qin X, Ahn S, Speed TP, Rubin GM. Global analyses of mRNA translational control during early Dro-

sophila embryogenesis. Genome Biol. 2007; 8: R63. https://doi.org/10.1186/gb-2007-8-4-r63 PMID:

17448252

11. Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, et al. Concordant reg-

ulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol.

2009; 7: e1000238. https://doi.org/10.1371/journal.pbio.1000238 PMID: 19901979

Ribosome reinitiation on circular transcripts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005592 June 9, 2017 16 / 19

https://doi.org/10.1016/S1937-6448(08)01205-7
http://www.ncbi.nlm.nih.gov/pubmed/19081544
https://doi.org/10.1002/wrna.1173
http://www.ncbi.nlm.nih.gov/pubmed/23677826
https://doi.org/10.1371/journal.pcbi.1002866
https://doi.org/10.1016/j.cell.2013.05.049
http://www.ncbi.nlm.nih.gov/pubmed/23791185
http://dx.doi.org/10.1016/j.celrep.2016.01.043
https://doi.org/10.1073/pnas.0635171100
https://doi.org/10.1073/pnas.0635171100
http://www.ncbi.nlm.nih.gov/pubmed/12660367
https://doi.org/10.1074/mcp.M300129-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/14766929
https://doi.org/10.1093/nar/gki331
http://www.ncbi.nlm.nih.gov/pubmed/15860778
https://doi.org/10.1016/j.molcel.2007.03.002
https://doi.org/10.1016/j.molcel.2007.03.002
http://www.ncbi.nlm.nih.gov/pubmed/17434133
https://doi.org/10.1186/gb-2007-8-4-r63
http://www.ncbi.nlm.nih.gov/pubmed/17448252
https://doi.org/10.1371/journal.pbio.1000238
http://www.ncbi.nlm.nih.gov/pubmed/19901979
https://doi.org/10.1371/journal.pcbi.1005592


12. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of transla-

tion with nucleotide resolution using ribosome profiling. Science. 2009; 324: 218–223. https://doi.org/

10.1126/science.1168978 PMID: 19213877

13. Park EH, Zhang F, Warringer J, Sunnerhagen P, Hinnebusch AG. Depletion of eIF4G from yeast cells

narrows the range of translational efficiencies genome-wide. BMC Genomics. 2011; 12: 68. https://doi.

org/10.1186/1471-2164-12-68 PMID: 21269496

14. Lauria F, Tebaldi T, Lunelli L, Struffi P, Gatto P, Pugliese A, et al. RiboAbacus: a model trained on polyri-

bosome images predicts ribosome density and translational efficiency from mammalian transcriptomes.

Nucl Acids Res. 2015; 43: e153. https://doi.org/10.1093/nar/gkv781 PMID: 26240374

15. Thompson MK, Rojas-Duran MF, Gangaramani P, Gilbert WV. The ribosomal protein Asc1/RACK1 is

required for efficient translation of short mRNAs. eLife 2016; 5: e11154. https://doi.org/10.7554/eLife.

11154 PMID: 27117520

16. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of pro-

tein expression in yeast. Nature. 2003; 425: 737–741. https://doi.org/10.1038/nature02046 PMID:

14562106

17. Gunaratne J, Schmidt A, Quandt A, Neo SP, Saraç OS, Gracia T, et al. Extensive mass spectrometry-
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