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Abstract

Model comparisons in the behavioral sciences often aim at selecting the model that best describes 

the structure in the population. Model selection is usually based on fit indices such as AIC or BIC, 

and inference is done based on the selected best-fitting model. This practice does not account for 

the possibility that due to sampling variability, a different model might be selected as the preferred 

model in a new sample from the same population. A previous study illustrated a bootstrap 

approach to gauge this model selection uncertainty using two empirical examples. The current 

study consists of a series of simulations to assess the utility of the proposed bootstrap approach in 

multi-group and mixture model comparisons. These simulations show that bootstrap selection 

rates can provide additional information over and above simply relying on the size of AIC and BIC 

differences in a given sample.

Introduction

Model selection can have different goals. Examples are selection of a model that optimally 

predicts an outcome in new data, selection of a regression model that includes the most 

important predictors (i.e., variable selection), or selection of a model that adequately 

describes the interrelations of the variables of interest. This study focuses on the latter, more 

specifically on model selection in the area of latent variable (mixture) model comparisons. 

Model selection in empirical studies in this area often relies on one or more fit indices of 
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choice together with suggested cutoff-criteria for these indices to select a single best-fitting 

model. The best-fitting model is then used for inference regarding model structure and 

parameter estimates. This practice has been criticized for not taking into account the 

uncertainty of model selection: in a different sample drawn from the same population, a 

different model might be selected due to sampling fluctuation (Burnham & Anderson, 2002; 

Efron, 2014; Preacher & Merkle, 2012). Inference regarding parameter estimates and model 

implied structural relations should therefore be made in the context of model selection 

uncertainty.

However, model selection uncertainty is not directly quantifiable if only a single sample is 

available. To improve on the practice of focusing on a single best-fitting model a previous 

study proposed to use a bootstrap approach to gauge model selection uncertainty (Lubke & 

Campbell, 2016). Two empirical examples illustrated that conducting model comparisons in 

bootstrap samples drawn with replacement from the original sample can serve to compute 

bootstrap model selection rates, which in turn can caution against focusing on a single best-

fitting model. The current study aims at assessing the performance of this bootstrap 

approach with simulated data. In particular, we want to establish whether bootstrap selection 

rates can add information on model uncertainty over and above the information coming from 

selection criteria AIC (Akaike Information Criterion) or BIC (Bayesian Information 

Criterion) of competing, potentially non-nested models.

Linhart and Zucchini (1986; see also Cudeck & Henly, 1991; Preacher, Zhang, Kim, & 

Mels, 2013) provide a useful framework for investigating model selection uncertainty and 

the potential utility of bootstrapping model comparisons. The framework is illustrated in 

Figure 1 (based on Figure 1 of Cudeck & Henly, 1991), which shows the population 

covariance matrix Σ0, sample covariance matrices S1, S2, …, Sp, computed in repeated 

samples from the population, the model-implied covariance matrix Σk(θ) at the population 

level for model k, and the estimated model implied covariance matrix Σk(θk̂). Different 

discrepancies between pairs of these matrices can be defined. First, the difference between 

the population covariance matrix Σ0 and the model-implied covariance matrix Σk(θ) of an 

approximating model Mk is called the “discrepancy due to approximation”. This discrepancy 

is a constant, as it involves the difference between two covariance matrices that are fixed, 

and depends only on the level of misspecification of Mk. Second, the difference between the 

model-implied covariance matrix Σk(θ) and its estimated counterpart is termed, “discrepancy 

due to estimation”. This discrepancy is a random variable because it depends on model 

estimation in a sample. For a given finite sample size, it increases with the number of 

estimated parameters, and decreases with increasing sample size. Third, the “sample 

discrepancy” is the difference between an observed sample covariance matrix Si and the 

estimated model implied matrix Σk(θ̂k). This discrepancy is the observed counterpart of the 

discrepancy due to approximation. It is the only quantity that is directly calculable in a 

single sample, and is the basis of model evaluation in an empirical study. Fourth, the overall 

discrepancy is the difference between Σ0 and Σk(θ̂k). For the purpose of this paper, it is 

useful to add the discrepancy between the population covariance matrix and the sample 

covariance matrix (see Figure 1), which we call PS-discrepancy. As N approximates the 

population size, the PS-discrepancy vanishes as a result of the sample becoming more and 

more representative of the target population.
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Although Cudeck and Henly (1991) describe the different discrepancies in the context of 

covariance structure analysis, the framework is useful more generally (see Linhart & 

Zucchini, 1986). It can be used to connect the concepts of model selection uncertainty and 

power to discriminate between alternative models, and it provides a relevant background to 

assess the performance of different fit indices and the necessary sample size to select an 

appropriate model.

Model selection uncertainty refers to the situation where different models are selected as the 

best-fitting model when fitting a set of k models to multiple, equal sized samples from the 

population (S1, … Sp in Figure 1). Model selection uncertainty is not directly estimable if 

only a single sample is available. It can be quantified in a simulation by computing model 

selection rates across multiple samples generated under a population model. Model selection 

uncertainty is likely to increase with increasing PS-discrepancy, especially if the fitted 

models imply relatively similar structures. Since the PS-discrepancy decreases with 

increasing sample size, model selection uncertainty is expected to decrease as well. In the 

extreme case that the sample contains the entire the population, model selection uncertainty 

is zero, with the effect that the best-fitting model is the model with the smallest discrepancy 

due to approximation. Model selection is usually done based on one or more selection 

criteria. Note that different model selection criteria have different objectives, and employ 

different model parsimony penalties. Consequently, different fit criteria can result in 

different model selection rates. Note also that although the best model would be the model 

with the smallest discrepancy due to approximation, in a model selection based on fit criteria 

the best model is not necessarily the same as the best-fitting model because of the parsimony 

penalties. For a given choice of fit index, model selection and the power to discriminate 

between different models depends on the discrepancies due to approximation of the models 

as well as the discrepancies due to estimation. As with the PS-discrepancy, the discrepancy 

due to estimation for a given model decreases with increasing sample size, with the effect 

that the discrepancy due to approximation becomes more important in determining the 

power to discriminate between models.

The comparison of latent variable models in the behavioral sciences is most commonly 

aimed at finding the model that is most appropriate to describe the structure in the 

population. In practice, usually only a single sample (i.e., only an empirical distribution) is 

available, making it impossible to directly assess discrepancies of approximation of the 

candidate models or model selection uncertainty. A previous paper illustrated a resampling 

approach aimed at quantifying selection uncertainty using two empirical data sets (Lubke & 

Campbell, 2016). Generally, resampling observed sample values with replacement (“naïve 

bootstrapping”) from a representative sample can be used to obtain the distribution of a 

statistic of interest (Efron, 1979). Naïve bootstrapping, however, does not necessarily always 

work well.

Bollen and Stine (1992) illustrate the inadequacy of naïve bootstrapping when the procedure 

is used to obtain the critical value in a one-sided null-hypothesis test of the mean of a 

squared normally distributed variable with known variance 1. They show that, in this 

example, neither the expected value nor the variance of the chi-square distributed test 

statistic computed across bootstrap samples equals the expected value or variance under the 
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null hypothesis, and therefore the bootstrapped distribution does not provide a correct 

critical value for statistical testing. The key problem is that any given sample will likely 

deviate from the (in this case hypothetical) population where the null hypothesis is true, that 

is, the empirical distribution does not have mean zero. The Monte Carlo distribution derived 

by naïve bootstrapping will consequently also not center at zero. In addition, Bollen and 

Stine (1992) show that the variance of the bootstrapped test statistic is also inflated due to 

the PS-discrepancy.

Similarly, consider drawing a sample from a multivariate normal distribution followed by 

computing the sample covariance matrix for that particular sample, Si, and fitting model A 

to Si. As stated above, a sample covariance matrix computed in a finite sample drawn from 

the population deviates from the population covariance matrix Σ0. Resampling from the 

empirical distribution with replacement provides the Monte Carlo distribution of the sample 

covariance matrix Si, and fitting model A to each bootstrap sample covariance matrix results 

in the bootstrap estimate of the sample discrepancy Si− ΣA(θ̂A). This estimate depends on a 

single observed Si, which deviates from Σ0 by the PS-discrepancy. The bootstrap estimate is 

expected to center around Si, and therefore to differ from the true model selection 

uncertainty in repeated samples from the population because multiple Si, i=1, … p center 

around Σ0. In other words, the difference is due to the fact that naïve bootstrapping reuses in-

sample data, whereas model selection uncertainty is defined for out-of-sample data. 

However, to the extent that a sample is representative of the structure in the population this 

difference is expected to be small.

Bollen and Stine (1992) and others (Yuan, Hayashi, & Yanagihara, 2007) have proposed 

improved bootstrap methods in order to test the fit of a given model. Instead of naïvely 

resampling from the empirical distribution, the central idea behind these methods is to 

resample not directly from the observed sample data, but from modified data or a modified 

covariance matrix. The modifications can, for instance, be based on available theory 

concerning the data, and generally aim at a better representation of the desired population. 

The proposed resampling schemes are suitable to assess the performance of a given model 

relative to the population of interest but are not suitable for the comparison of non-nested 

models. Furthermore, the methods are designed for covariance structure models rather than 

the raw data analyses that are necessary when fitting and comparing mixture models.

Model selection in mixture model comparisons is especially challenging due to the fact that 

a higher level of within class model complexity can be counterbalanced by fewer classes (or 

vice versa) to achieve a similar fit. As a consequence of the interdependency of the number 

of classes and the within class parameterization it is common in practice to compare a very 

large number of mixture models. Information regarding the replicability of results over and 

above currently used fit criteria would be beneficial in this field.

The question then arises to what extent naïve bootstrapping can be useful to gauge model 

selection uncertainty, that is, to assess whether more than one model would be selected with 

considerable non-zero probability in repeated samples from the population. Resampling 

from observed sample data with replacement followed by model comparisons in each 

bootstrap sample provides the bootstrap estimate of model selection rates using the 
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information provided by a single sample drawn from a population. Based on the discussion 

above, these bootstrap selection rates are not expected to provide unbiased estimates of the 

model selection rates that would be observed in repeated samples from the population due to 

the bias introduced by the PS-discrepancy. However, comparing a set of different models in 

bootstrap samples drawn from a representative sample should to some extent reflect the true 

degree of model selection uncertainty. Therefore bootstrap selection rates should provide 

useful information about the confidence one should assign to the best-fitting model.

In a series of simulations, we focus on the situation that BIC or AIC differences between the 

two best-fitting models provide “strong” or “very strong evidence” in favor of the best-fitting 

model according to suggested guidelines (Burnham & Anderson, 2004; Kass & Raftery, 

1995). We consider these scenarios because researchers might be particularly tempted to 

base inference only on the best-fitting model when AIC or BIC differences between the two 

best fitting models are large. The first part of the simulation study concerns the comparison 

of 2-group factor models, and the second part concerns 1- and 2-class mixture models. The 

aim of both parts is to investigate whether bootstrap selection rates are indicative of model 

selection uncertainty and to what extent they can provide useful information over and above 

suggested guidelines regarding AIC or BIC differences between the top two models.

Methods

Data Generation and Fitted Models

Data-generating processes are commonly more complex than the structure specified in the 

models that are fitted to sample data. In this study, data are generated under a 2-group, 3-

factor model for ten observed variables (see Figure 2), which has 83 parameters, and is more 

complex than any of the fitted models. Data were generated for total sample sizes of N=200, 

350, 700, and 1500 with equal-sized groups. The Mahalanobis distance (MD) between the 

two groups in the population was 1.792. The average MD in samples of N=350 was 1.875 

with a standard deviation of 0.123. These values were similar for N=700, averaging at 1.939 

with a standard deviation of 0.09. Note that the model implied MD's of the fitted models can 

differ from these values.

We compare the fit of different 2-group (or 2-class) 2-factor models to the simulated data. 

The 2-group models are part of the set of 2-factor models used in the analysis of the 

Holzinger-Swineford (Holzinger & Swineford, 1939) data presented in Lubke and Campbell 

(2016). Model 1 was a bi-factor model (54 parameters), model 2 was a 2-factor model with 

correlated factors with group (or class) specific loadings (62 parameters), and model 3 had 

the same factor structure as model 2 but loading invariance across groups or classes was 

imposed (also 54 parameters, see Figure 2). Note that models 1 and 3 had the same number 

of parameters but differed with respect to the model implied mean and covariance structure. 

The set of mixture models included two single class models, namely the bi-factor model (34 

parameters) and the model with two correlated factors (31 parameters). Note that when 

fitting single class models model 3 was identical to model 2. In addition, we fit the 2-class 

versions of models 1 through 3 (55 parameters for the 2-class versions of models 1 and 3, 

and 64 parameters for model 2). While the two-group models utilize the correct grouping 

variable, the 2-class mixture models were fitted to the same data without this information.
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Model fit criteria AIC and BIC

The fitted models are not all nested, and were therefore compared using the AIC as well as 

the BIC. For the mixture models, we provide results concerning the sample-size adjusted 

BIC, which represents a compromise between AIC and BIC in terms of the parsimony 

penalty. While the main focus of this paper is not on the comparison of fit criteria, it is clear 

that the choice of criterion has a direct effect on model selection. AIC and BIC have been 

derived within different philosophies but, more importantly, they have different objectives 

regarding model selection.

The objective of the AIC can be described as the selection of the model that minimizes the 

overall discrepancy for a given sample size by finding a compromise between the 

discrepancy due to approximation and the discrepancy due to estimation. The latter (for a 

given N) is a monotonically increasing function of p (Bozdogan, 1987; Burnham & 

Anderson, 2004). The AIC is based on the Kullback-Leibler divergence I which quantifies 

the distance between two distributions as the difference between their expected log 

likelihoods (Kullback & Leibler, 1951). Denote the distribution in the population as f(y|θ*) 

with true parameter vector θ*, and an approximating distribution implied by a model Mk as 

f(y|θk), then I(θ*; θk) = E[log] f(y|θ*)− E[log f(y|θk)], where the expectation is with respect 

to the true population distribution. Note that this measure is a quantification of the 

discrepancy due to approximation. The first term depends on the true population parameters, 

and the second term depends on the parameter vector θk of Mk. The AIC is a sample based 

estimator of 2E[I(θ*; θk)], where estimates of θk are obtained by maximum likelihood (see 

Bozdogan, 1987, or Burnham & Anderson, 2004, for an accessible description of the 

derivation of AIC). Writing the average overall discrepancy, as quantified by 2nE[I(θ*; θ̂k)], 

as the sum of the expected approximation error and the expected estimation error, one can 

show that the latter equals the df of the approximating model. The first term depends on the 

true and approximating model; however, when comparing different models, the interest is in 

finding the model that minimizes 2nE[I(θ*; θ̂k)], so the constant term pertaining to the 

population can be omitted, leading to the formula AIC = −2 log L (θ̂k) +2p.

Importantly, AIC represents a tradeoff between bias due to using an approximating model 

and variance due to estimation. The optimal tradeoff depends on sample size because with 

increasing sample size, the AIC for a given model is increasingly dominated by the 

maximized log likelihood. This can result in the selection of increasingly complex models as 

sample size increases. That is, AIC is not asymptotically consistent (for examples, see 

Linhart & Zucchini, 1986).

The objective of BIC is to select the model with the highest posterior probability. It is 

derived as an approximation of the Bayes factor. Suppose r=1, …, k,…, R models are 

considered. Using Bayes' theorem, the posterior probability of Mk equals 

where mr is the likelihood of the model times the prior of the parameters integrated over the 

parameter space (see for instance Wasserman, 2000). Assuming that each model has the 

same prior selection probability, a Bayes factor for two models Mi and Mj is simply mi/mj. 

Bayes factors are easy to interpret in terms of how likely Mi is relative to Mj. Bayes factors 

depend on the choice of priors for the parameters. That is, different priors result in different 
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Bayes factors. In addition, their calculation can be cumbersome, especially in case of highly 

parameterized models, due to the necessity to solve multiple integrals. Instead, Kass and 

Wasserman (1995) showed that mk can be approximated by m̂k, where log m̂k = log L (θ̂k) 

−p/2*log N. The approximation is “fairly accurate” (Wasserman, 2000) if the prior for the 

parameters is a specific type of non-informative prior. Multiplying log mk by −2 gives BIC= 

−2 log L (θ̂k) +p*log N.

BIC is asymptotically consistent, which means that BIC-based selection converges to the 

model with the highest posterior probability in the long run, given sufficient sample size. If 

sample size is not sufficient, however, selection using BIC will result in adopting overly 

simple models.

Regarding the use of the AIC in empirical analyses, Burnham and Anderson (2004) state 

that empirical support for the second best fitting model is substantial if the AIC difference 

between the best and second best fitting models is between 0 and 2, is considerably less 

given differences between 4 and 7, and is essentially absent if differences are larger than 10. 

Kass and Raftery (1995) provide very similar guidelines for BIC differences based on 

Jeffrey's (1961) guidelines for the interpretation of Bayes factors, namely that a BIC 

difference between 0 and 2 is not worth more than a bare mention, that a difference between 

2 and 6 provides positive evidence against the second best fitting model, a difference 

between 6 and 10 provides strong, and a difference larger than 10 provides very strong 

evidence against the second best model.

Preliminary Analyses

To determine a priori which of the fitted models has the smallest discrepancy due to 

approximation, we fit the three 2-group models to the model-implied covariance matrices 

and mean vectors of the 2-group 3-factor population model that were computed with the true 

parameter values. Using the model-implied covariance and mean structure rather than 

generating data under a model eliminates sampling error. In this situation, if the fitted 

models are only mildly misspecified, the value of the chi-square test of model fit (i.e., the 

likelihood ratio test between the fitted and the saturated model) equals the non-centrality 

parameter (Satorra & Saris, 1985). Although the scale of the obtained chi-square test of 

model fit statistics depend on sample size, the ordering of the three fitted models with 

respect to this statistic does not, and therefore provides the correct order of the discrepancies 

due to the approximation of the models. The 2-factor model without loading invariance 

(Model 2) had the smallest chi-square test of model fit, followed by models 3 and 1. The 

values for N=700 were 31.466, 0.995, and 25.443 for model 1 through 3, respectively.1 

Recall that the two-group model 2 is the most complex model with 62 estimated parameters, 

whereas models 1 and 3 both have 54 estimated parameters. The two more restricted models 

might be favored at smaller sample sizes due to parsimony penalties implemented in the AIC 

and BIC. Note that out of these two, model 3 should be selected more often because of its 

smaller discrepancy due to approximation. The selection rate of model 2 is expected to 

increase with increasing sample size because model selection in a given sample (estimation 

1Note that the discrepancy due to approximation is not necessarily decreasing with model complexity if models are not nested. For 
instance, a misspecified 4-factor latent path model with 72 parameters had a much larger chi-squared test of model fit.
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method and fit index being equal) depends on the discrepancy due to approximation as well 

as the discrepancy due to estimation. The latter is expected to decrease with increasing 

sample size, and therefore the relative impact of the discrepancy of approximation becomes 

more important, favoring the selection of model 2.

Bootstrap Method

Part 1 of the simulation concerns the comparison of the three 2-group models, and consisted 

of drawing 1000 samples from the population (for each of the 4 sample sizes) followed by 

fitting the three models to each sample. We obtained (1) the AIC and BIC differences 

between the best and second best-fitting model in each sample, and (2) the AIC and BIC-

based model selection rates across samples to quantify model selection uncertainty. Next, 

B=2000 bootstrap samples were drawn from each of these samples (called “population 

sample” to clarify the distinction with “bootstrap sample”) and the models were compared in 

each bootstrap sample (i.e., a total of 8,000,000 model comparisons). In each set of 2,000 

bootstrap samples, the bootstrap model selection rates for the three models were computed 

based on the AIC as well as based on BIC. This setup permits relating the AIC or BIC 

difference between the best and second best fitting models in a population sample to the 

bootstrap selection rates in that same population sample. This in turn permits assessing the 

additional value of naïve bootstrapping over and above rules-of-thumb regarding the size of 

the AIC or BIC differences advocated by, for instance, Burnham and Anderson (2004) and 

Kass and Raftery (1995).

In the second part of the simulation, five mixture models were fitted as single class and 2-

class versions of the two-group models. The single class models did not account for the 

presence of the groups present in the data. The simulation involving the comparison of 

mixture models was more limited in size due to the computational burden of estimating 

mixture models. The five mixture models were fitted to 100 of the population samples with 

sample sizes N=350 and N=700, respectively. The number of bootstrap samples drawn from 

each population sample was set to 100 as well, resulting in a total of 20,000 comparisons of 

the five models. AIC, BIC, and saBIC differences between the best and second best fitting 

models were recorded for each sample from the population and were compared to the 

bootstrap selection rates, similar to the process described above for the two-group models.

Results

The results for the 2-group analyses are presented first, followed by the mixture results. Both 

sections have two main parts: (a) the results pertaining to model selection in repeated 

samples from the population, which provide the basic information about model selection 

uncertainty under the different conditions, and (b) the results concerning model comparisons 

in the bootstrap samples drawn from each of the repeated samples from the population.

In the analyses of the bootstrap comparisons, the focus is on whether bootstrap selection 

rates are smaller than unity for the best-fitting model especially when the AIC or BIC 

differences in the population were larger than 8 while model selection uncertainty is evident 

in repeated samples from the population. Large AIC or BIC differences are considered as 

strong or very strong evidence in favor of the best fitting models. Relying on these cutoffs 
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would not be advised if there is evidence of model selection uncertainty. Therefore the 

interest of the simulations is to investigate whether bootstrap selection rates can protect 

against undue confidence under those conditions.

Part 1a: Two group models fitted to repeated samples from the population

Table 1 shows the model selection rates for models 1 through 3 for sample sizes N=200, 

N=350, N=700, and N=1500 using either the lowest AIC or lowest BIC as a criterion to 

determine the best fitting model. As can be seen, both AIC and BIC lead to non-zero 

selection rates for the more constrained models 1 and 3 at smaller sample sizes. At N=1500, 

the model with the smallest discrepancy due to approximation (model 2) is selected in all 

samples, independent of the selection criterion. These results are in line with the expectation 

that model selection uncertainty decreases with increasing sample size.

Using the AIC as a criterion results in higher selection rates of model 2 already at smaller 

sample sizes compared to BIC. This result highlights the fact that although asymptotically 

BIC-based model selection results in selecting the model with the highest posterior 

probability, it can lead to adopting overly constrained models if sample size is too small. 

Specifically, for sample sizes N=200 and N=350, using BIC as a criterion almost always 

resulted in selecting models 1 and 3 rather than the more appropriate model 2. Model 3 was 

selected more often than model 1 at these sample sizes, in line with the different 

discrepancies due to approximation of these two equally parsimonious models.

Comparing results in smaller samples to the results in larger sample sizes, it is obvious that 

the AIC and BIC differences between the top 2 models generally increase with sample size. 

This is expected, and shows the higher power to discriminate between models in larger 

samples. As can be seen in Table 2 and Table 3, for N=200, in 168 of the 1,000 samples the 

AIC difference was smaller or equal to 2, whereas for the BIC it was 364 of the 1,000 

samples. For N=350, 100 samples had AIC differences smaller than or equal to 2, and 397 

samples had BIC differences smaller than or equal to 2 (see Table 2 and Table 3, column 

#samp). But even with N=200 or N=350, there were multiple samples in which the model 

comparisons resulted in larger AIC or BIC differences. For N=200, 371 samples had AIC 

differences larger than 10, and 73 samples had BIC differences larger than 10. In those 

cases, AIC-based selection was almost always in favor of the more appropriate, but also 

more highly parameterized, model 2 (369 out of 371, note though the high probability of 

selecting model 2 overall). Comparisons in samples that showed larger BIC differences were 

in favor of model 3, which is closer to the true data generating mechanism than model 1 (67 

out of 73, note that model 2 was not often selected in general at that sample size). With 

sample size at N=700, BIC-based selection resulted in more samples in which model 2 was 

selected overall. Importantly, there were also more samples with BIC differences larger than 

10 and larger than 15 favoring model 2 (276 out of 1000 resulted in selection of model 2) 

than samples with these larger differences favoring models 1 or 3 (28 out of 1000).

To summarize the results concerning model selection uncertainty in repeated samples from 

the population, smaller samples have, as expected, higher selection uncertainty. AIC-based 

selection resulted in less selection uncertainty than BIC (model 2 was selected 80% of the 

time using AIC with N=200, increasing to 0.995 with N=700 where as the BIC selection rate 
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for any model and sample size remained below 0.7). Using BIC as a criterion model 

selection shifted from models 1 and 3 towards the selection of model 2 as sample size 

increased. In addition to higher levels of uncertainty when sample size is small, there was 

also a larger proportion of samples from the population resulting in small AIC or BIC 

differences. In other words, there is a higher probability of having lower power to 

discriminate between models. Higher probability does not mean certainty, and in some of the 

smaller samples the AIC or BIC differences were, in fact, substantial. In an empirical setting 

this would be interpreted as strong or very strong evidence in favor of the best model. Given 

the observed model selection in our simulated data, focusing on the single best fitting model 

would not be adequate in this case. In the next part we investigate whether under these 

conditions bootstrap selection rates can guard against undue confidence in the best model.

Part 1b: Bootstrap selection rates of 2-group models in relation to AIC and BIC differences 
in the corresponding population samples

Throughout this section, results for N=1500 are not shown due to the absence of model 

selection uncertainty (see Table 1) for this sample size. As expected bootstrap selection rates 

computed over all P=1000 × B=2000 bootstrap samples did not provide unbiased estimates 

of the model selection rates presented in Table 1. The bootstrap selection rates depended on 

which model was the best-fitting model in the sample drawn from the population, and, as 

might be expected, on the AIC or BIC differences between the first and second best-fitting 

models in the sample.

To provide some more detail, Table 2 shows the median bootstrap selection rates for best-

fitting models for sample sizes N=200, 350, and 700, conditional on which model was 

selected as the best fitting model in the sample generated under the population model. The 

median bootstrap rates were computed as follows. For each sample size, the P=1000 

population samples were first grouped according to which model was the best fitting model 

based on either AIC or BIC for each sample size. The median bootstrap selection rate was 

then determined for each group. The bootstrap selection rates need to be evaluated in the 

light of the model selection rates presented in Table 1. For instance, at N = 200 the median 

BIC bootstrap rate for model 2 was .674, but model 2 was only selected 2.9% of the time at 

that sample size. This means that the few times model 2 was selected according to BIC, it 

had a relatively high median bootstrap selection rate at the given sample size. AIC-based 

selection favored model 2 for all sample sizes with a low level of uncertainty. BIC-based 

selection had a higher level of uncertainty, favoring model 1 and 3 at the smaller sample 

sizes, and model 2 at N=700.

Interestingly, for all sample sizes and for both the AIC and BIC-based selection, the 

bootstrap selection rates were generally higher for model 2 conditional on its selection than 

were the bootstrap selection rates for models 1 or 3 given their selection in the population 

sample. Generally, AIC-based bootstrap selection rates followed the pattern of model 

selection rates in the population, with higher rates for the best-fitting model when sample 

size is larger. BIC bootstrap selection rates remained generally lower than AIC rates. This is 

in line with the higher model selection uncertainty when using BIC in this simulation.
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Figures 3 and 4 are plots of the AIC and BIC differences between the two best fitting models 

fitted to a given sample (x-axis) against the bootstrap selection rates for the best-fitting 

model in that same sample (y-axis). The panels correspond to sample sizes 200, 350, and 

700. As can be seen in Figure 3, AIC-based bootstrap selection rates for the suboptimal 

models 1 and 3 remain below 0.80 for N=200, and decrease as sample size increases. 

Importantly, in the samples in which the AIC difference in the population sample was larger 

than 10 favoring models 1 or 3, the bootstrap selection rates were below 0.8. In samples with 

large AIC differences favoring model 2 the bootstrap selection rates were high, and 

overestimated the model selection rates for for this model presented in Table 2. Especially 

for the smaller sample sizes of N=200 and N=350, BIC-based selection was mostly in favor 

of models 1 or 3. For all sample sizes, bootstrap selection rates for samples with large BIC 

differences did not exceed 0.95 unless BIC differences were larger than 20. This shows that 

in a given sample the BIC difference between the two top models can (incorrectly) inspire 

great confidence in the best fitting model (e.g., a BIC difference as large as 20), however, the 

bootstrap rates provide evidence that other models can also appropriately describe the 

structure in such a sample.

The results plotted in Figures 3 and 4 are quantified in Tables 3 (AIC) and 4 (BIC) to 

provide a more direct connection to the suggested guidelines concerning AIC and BIC 

differences. The tables are built as follows. First, the P population samples are grouped 

according to the best-fitting model using either the AIC or BIC. Then AIC or BIC 

differences between the best and second best fitting are binned for each best fitting model, 

and minimum and maximum bootstrap selection rates for all three models are computed 

within each bin. For instance, Table 3 shows in the first row that there were 53 population 

samples favoring model 1 with AIC differences between 0 and 2, and the bootstrap selection 

rates of model 1 computed across the B=2,000 bootstrap samples drawn from those 53 

population samples were between 0.138 and 0.518.

To evaluate the additional benefit of bootstrapping model selection rates over and above 

suggested guidelines concerning AIC and BIC differences, we focus on the maximum 

bootstrap selection rates. The main question is whether bootstrap selection rates can protect 

against unwarranted confidence in case AIC or BIC differences in a given population sample 

are large. The rationale to focus on the maximum bootstrap selection rates rather than, say, 

the median rates, is that bootstrap selection rates are only useful as a protection against 

undue confidence if the rates are below unity in all samples from the population.

As can be seen in Table 3, AIC-based model selection only rarely resulted in selecting 

suboptimal models 1 or 3 with an AIC difference between 8 and 10 (six samples) or above 

10 (2 samples), and for these cases, the bootstrap selection rates had a maximum of 0.783. 

Considering BIC-based selection in sample of size N=200, there were 54 samples with BIC 

differences between 8 and 10 and 72 samples with BIC differences above 10 favoring either 

model 1 or 3. The maximum bootstrap selection rate were 0.947 and 0.948, respectively, in 

these two brackets. For N=350, models 1 or 3 were favored in 47 samples with a BIC 

difference between 8 and 10, and in 42 samples with a BIC difference larger than 10. The 

bootstrap selection rates did not differ substantially from N=200, with maxima equal to 

0.944 and 0.935, respectively. For N=700, the results shifted in the expected direction, with 

Lubke et al. Page 11

Struct Equ Modeling. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fewer population samples leading to suboptimal model selection with BIC difference 

between 8 and 10 (27 samples) or above 10 (28 samples). The maximum bootstrap selection 

rates are also lower, 0.891, and 0.940, respectively.

In sum, BIC differences lead more often than AIC to decisions in favor of suboptimal 

models 1 and 3 with large BIC differences, especially when sample size was 200 or 350. The 

bootstrap selection rates never exceeded 0.95 in those cases, and were mostly considerably 

smaller (see Table 2 for median rates). AIC-based bootstrap selection rates of models 1 and 

3 were below 0.8. For model 2 the maximum bootstrap rates were between 0.96 and 0.98 

independent of sample size when AIC differences were between 10 and 12.

Part 2a: Mixture models fitted to repeated samples from the population

Mixture modeling has the additional burden of estimating the most likely grouping of 

subjects into classes while also estimating the mean and covariance structures within each 

class. Note that the factor covariance matrix of the bi-factor model is fixed to be an identity 

matrix within each class, whereas this matrix is fully estimated in the two models with 

correlated factors. Estimation of class-specific factor covariance matrices in addition to 

estimating class specific loadings can be challenging, especially in smaller samples, and can 

result in non-convergence. Bootstrap results can also be informative with respect to model 

stability in the form of bootstrap convergence rates. Therefore, convergence is reported in 

addition to model selection. Proper convergence was defined the same as in our previous 

paper (Lubke & Campbell, 2016), namely, in terms of absence of errors such as an ill-

conditioned Fisher Information matrix or non-positive definite first order derivative matrix. 

In addition, proper convergences depended on the likelihood being replicated.

In the mixture part of the simulation, Pmix=100 population samples were analyzed for 

N=350 and N=700. In samples with N=350, the single class models had, as expected, no 

convergence problems, whereas the individual convergence rates for the 2-class versions of 

models 1, 2, 3 were 0.64, 0.45, and 0.50, respectively. The pattern of non-convergence is in 

line with the difficulty to estimate the latent factor variances and covariance compared to 

having these parameters fixed. In only 23 out of 100 population samples we observed proper 

convergence of all fitted models simultaneously. For N=700, the convergence rates were 

almost perfect with only the 2 class version of model 1 resulting in 3 out of 100 non-

convergences, meaning that in 97 out of 100 population samples all models converged 

properly.

Model selection rates based on AIC, BIC, and sample-size adjusted BIC are given in Table 5 

for both sample sizes. The selection rates should be viewed in the light of model complexity. 

The single class models 1 and 2 had 34 and 31 estimated parameters where as the two class 

versions of model 1 through 3 had 55, 63, and 55 estimated parameters, respectively. Note 

that for N=350, selection rates computed for samples in which all models converged differed 

considerably from the selection rates computed across all samples but only compare the 

converged models.

Notably, BIC-based model selection was in favor of the most parsimonious model (i.e., 

single class model 2) in all comparisons carried out in the population samples, both for 
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N=350 and N=700. There is therefore no model selection uncertainty in BIC-based 

selection. However, BIC-based selection does not detect the group differences present in the 

population. The single class model 2 is substantially more parsimonious compared to its 2-

class versions (with and without measurement invariant loadings). AIC-based selection is 

higher for the most appropriate (but also most complex) 2-class model 2, namely 0.36 for all 

comparisons of N=350, and 0.696 for the 23 comparisons in samples where all models 

converged. For N=700, the AIC selection rates are 0.9 and 0.928. The sample-size adjusted 

BIC provides an intermediate solution.

The BIC differences between the best and second-best fitting models in samples of N=350 

were larger than 10 in all but 9 out of 100 samples, thus providing “very strong evidence 

against the second best model” (Kass & Rafery, 1995). The smallest BIC difference was 

6.669, the largest difference was 17.547, with a median of 14.246. For N=700, the minimum 

BIC difference was 4.802, the maximum difference was 19.593, with a median of 16.92. 

Only 5 samples had BIC differences below 10. For AIC, these numbers were considerably 

larger, reflecting that a larger number of samples provided less evidence in favor of the 

selected model. For N=350, 81 out of 100 comparisons had BIC differences below 10, and 

for N=700 this was 47 out of 100.

Part 2b: Bootstrap selection rates of mixture models in relation to AIC, saBIC, and BIC 
differences in the corresponding population samples

The mixture model results are presented similar to the 2-group results. First, results in the 

population samples are grouped according to the best-fitting model, and are binned 

according to fit index differences between best and second best model. Note that bin cut 

points are selected with the aim of having multiple samples within bin, while also including 

the separation between differences smaller and larger than 10. For each bin, minimum and 

maximum bootstrap selection rates are presented for each model (see Tables 6-8 for the AIC, 

saBIC, and BIC).

Given the much smaller size of this part of the simulation compared to the two-group part 

(100 bootstrap samples drawn from each of 100 population samples), the rates within each 

bin should be evaluated more tentatively. In general, similar to the 2-group results, AIC 

differences in model comparisons carried out in population samples were generally larger in 

samples in which the 2-class model 2 was selected. The same was true for saBIC. Bootstrap 

selection rates for the 2-class model 2 were also higher compared to the other models. AIC 

bootstrap selection rates for the other 4 models remained below 0.52 for N=350, and below 

0.50 for N=700 when those less appropriate models were favored in the corresponding 

population sample.

In 19 out of 100 samples of size N=350, the AIC difference was larger than 10. The 

bootstrap selection rates remained below 0.50 (see Table 6, AIC-based selection rates for 

N=350), thus providing evidence for the model selection uncertainty that was observed in 

repeated sample from the population (maximum selection rate was 0.696, see Table 5). With 

larger samples, the AIC-based selection rates in repeated samples from the population were 

larger (i.e., 0.928 for the 2-class model 2), and corresponding bootstrap rates were also 

higher (i.e., maximally 0.8 for this model). As can be seen in Table 7, the saBIC provides an 
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intermediate solution between AIC and BIC-based selection, tending more towards the AIC-

based results.

The results for BIC are limited due to the absence of model selection uncertainty in both 

sample size settings of this simulation. BIC-based selection was always in favor of the most 

parsimonious model, 1-class model 2, and, consistent with this finding, bootstrap selection 

rates were high (see Table 8). These results are in line with the conclusion drawn from the 2-

group analyses, namely, that BIC can result in the selection of overly constrained models 

when sample size is small. It is surprising that even when N=700, none of the other models 

were selected in any of the samples even though the MD between the 2 groups was 1.939 on 

average in the N=350 data generated under the population model. The only difference with 

other simulation studies covering BIC-based mixture model selection in similar mixture 

models is that here the data generating model is not included in the set of fitted models, and 

all fitted models are less complex models than the model that generated the data.

Discussion

This simulation study aimed at assessing the utility of obtaining bootstrap model selection 

rates in order to gauge model selection uncertainty. We considered the situation where model 

comparisons in a given sample result in large AIC or BIC differences between the two top 

models, which in an empirical study would be regarded as strong evidence in favor of the 

model with the lowest criterion value. However, large AIC or BIC differences can occur 

while there is considerable model selection uncertainty in repeated samples from the 

population. In this case confidence in the best-fitting model should be reduced because other 

models can be selected in different samples from the same population. We focused on this 

scenario because researchers might be especially tempted to base inference only on the best-

fitting model when AIC or BIC differences are large, and disregard the effects of model 

selection uncertainty on inference (Preacher & Merkle, 2012; Rousseliere & Rousseliere, 

2016; Song & Lee, 2002). We investigated whether bootstrap selection rates can be 

indicative of model selection uncertainty and therefore serve as a protection against undue 

confidence.

Several general results concerning model selection uncertainty were as expected, namely, 

that model selection uncertainty decreased with sample size while power to discriminate 

between competing models increased. In addition, model selection uncertainty depended on 

the fit index, with AIC resulting in the selection of more complex models at smaller sample 

sizes compared to BIC.

More interestingly, regarding the question whether bootstrap selection rates are useful over 

and above the information provided by the fit indices, our results showed that bootstrap 

selection rates were generally well below unity. This means that even if a model comparison 

in the sample from the population resulted in AIC or BIC differences between 8 and 10 or 

larger than 10 in favor of a given model, other models were selected in multiple bootstrap 

samples drawn from the original sample. In practice, such a finding can protect against 

focusing only on the single best-fitting model. The utility of bootstrap selection rates was 

especially evident in the mixture part of the simulation. In the mixture analyses, there was 
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evidence of considerable model selection uncertainty for both N=350 and N=700 when 

using AIC or the sample size adjusted BIC. The bootstrap selection rates did not exceed 0.80 

even if differences in the original sample were larger than 20, suggesting that other models 

can represent the population structure, showing that bootstrap selection rates can guard 

against undue confidence in the top model. In that case, not only the best-fitting model 

should be considered for inference. These results mirror the empirical results presented in 

our first paper on this topic (Lubke & Campbell, 2016). In Lubke and Campbell (2016), we 

found that the largest bootstrap selection rates for any of the fitted models did not exceed 

0.258 in the Holzinger-Swineford analysis when the BIC difference between the two best-

fitting models was 16.20. In the growth mixture analysis of the NLSY data, the highest 

bootstrap selection rate was 0.478 when the BIC difference was 12.04. This showed that 

bootstrap selection rates can caution against an interpretation of the results that focuses only 

on the best fitting model even when the observed AIC or BIC difference in the sample is 

large.

In mixture analyses, the proposed bootstrap approach is also useful to compute model 

convergence rates, which provide useful information regarding model instability. Rather than 

having to base the interpretation of a model comparison on the models that converged 

properly, bootstrapping provides convergence rates together with information concerning the 

potential causes of non-convergence in the bootstrap samples. We found that models that did 

not properly converge in the original sample can have substantial non-zero convergence rates 

in the bootstrap samples as well as, vice versa, that models that converged in the original 

sample had less than perfect bootstrap convergence rates. In addition to the information 

regarding model stability, results (e.g., parameter estimates, fit indices) of properly 

converged models in bootstrap samples can be useful in the general discussion of a given 

empirical analysis.

Regarding the differences in performance between the AIC and BIC in this simulation, it is 

important to note that our study was not designed to compare these two indices. It is known 

that AIC is not asymptotically consistent, and can lead to the selection of overly complex 

models when sample size increases (Linhart & Zucchini, 1986). The BIC, on the other hand, 

is known to be consistent but not efficient, potentially leading to the selection of overly 

simple models in smaller samples (Vrieze, 2012). The result in this study that AIC-based 

selection resulted in adopting the model with the smallest discrepancy due to approximation 

more often than BIC. Especially in smaller samples, this can be simply be due to the fact 

that the most complex fitted model was also the model with the smallest approximation 

discrepancy. AIC-based model selection in this study could therefore by design not result in 

the selection of a model that is too complex. The results of this study did confirm the 

tendency of BIC to select overly simple models in cases where the sample size is small.

It was surprising, however, that even for N=700, none of the BIC-based mixture model 

comparisons were in favor of one of the 2-class models. Compared to other mixture model 

simulation studies, the performance of BIC in our simulation was clearly inferior. This 

outcome could be due to the fact that the true model was not included in the set of fitted 

models, and that all fitted models were simplified approximations of the true structure (i.e., 

had considerably fewer parameters). In most simulations, the set of fitted models include the 
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true model, that is, the data generating mechanism has the same complexity as one (or more) 

of the fitted models, and less as well as more complex models are fitted to the data. Under 

those conditions, given sufficient sample size, BIC will select the model with the highest 

posterior probability (i.e., the data generating model) while AIC has the tendency to select 

increasingly complex models with increasing sample size (Henson, Reise, & Kim, 2007; Li, 

Cohen, Kim, & Cho, 2009; Lubke & Neale, 2006, 2008; Lubke & Tueller, 2010; Nylund, 

Asparouhov, & Muthén, 2007; Vrieze, 2012; Yang & Yang, 2007). If all fitted models are 

less complex than the data generating mechanism, BIC-based selection is expected to favor 

the model with the smallest approximation discrepancy given sufficient sample size, but 

AIC-based selection might result in favoring this model already at smaller sample sizes. In 

other words, using the AIC might lead to selecting models that are more informative with 

respect to the more complex population structure than the BIC under those conditions. 

Clearly, more simulation work is needed to investigate the setting that the population model 

is not included in the set of fitted models, and that discrepancies due to approximation are 

large. Such simulations would mirror more closely empirical studies in the behavioral 

sciences, and would be helpful to update recommendations regarding necessary sample sizes 

as well as guide the choice of a fit index for model selection at a given sample size in this 

more realistic situation. In addition, not all of the currently available simulation studies 

comparing the performance of different fit indices necessarily include scenarios in which the 

investigated indices based on their respective objectives are expected to perform well and 

scenarios where performance is expected to deteriorate. More generally, the choice of 

information criterion in an empirical analysis should take into account their different 

objectives rather than exclusively relying on currently available simulation results.

Quantifying model selection uncertainty based on a single sample is a challenging task due 

to the fact that the structure in a sample deviates by an unknown degree from the true 

structure in the population, which, in turn, depends on sample size. To add to this challenge, 

model selection is contingent on the choice of selection criterion as well as other factors 

such as the number of fitted models and their level of complexity and similarity. Several 

interesting alternatives to model selection based on fit indices have been proposed, 

especially within the Bayesian framework. Particularly Bayesian nonparametric models 

(Hjort, Holmes, Müller, & Walker, 2010) seem to be promising. In the Bayesian 

nonparametric approach, instead of pre-specifying and fitting various models with different 

model implied structures and levels of complexity, only one model is fitted to the data. In 

this approach model complexity itself is an unknown quantity that is inferred by 

conditioning on the data. Applied to factor models, Bayesian non-parametric modeling in 

conjunction with the Indian Buffet Process prior (Griffiths & Ghahramani, 2005) can be 

used to infer the number of factors needed in a factor model. Similarly, the number of 

mixture components in a mixture analysis can be inferred using the Chinese Restaurant 

process prior (Gershman & Blei, 2012). It would be interesting to investigate in more detail 

the advantages and disadvantages of different approaches to model selection especially in 

the context of mixture models. In the meantime, the current study hopefully underlines the 

fact that model selection based on fit indices is probabilistic, and that results of model 

comparisons should be interpreted in the light of selection uncertainty.
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Figure 1. 
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Figure 2. 
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Table 1
Overall model selection rates for the 3 fitted 2-group models in P=1000 samples drawn 
from the population

N=200 N=350 N=700 N=1500

AIC

model 1 0.089 0.055 0.005 0

model 2 0.794 0.905 0.995 1

model 3 0.117 0.04 0 0

BIC

model 1 0.306 0.359 0.156 0

model 2 0.029 0.065 0.511 1

model 3 0.665 0.576 0.333 0

Note: Model 1-3 were compared using either AIC or BIC to determine the best-fitting model. Model selection rates are computed as the proportion 
of selecting a given model in P=1000 model comparisons.
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Table 8
Minimum and maximum bootstrap selection model selection rates of the 1-class model 2 
in relation to BIC differences observed for this model in samples drawn from the 
population

ΔBIC 1-class model 2

min max #samp

N=350

0-10 0.61 0.85 9

10-13 0.69 0.95 23

13-15 0.70 0.99 27

15-17 0.75 1.00 36

17-17.6 0.92 0.99 5

N=700

0-10 0.59 0.83 5

10-15 0.58 0.98 25

15-17 0.58 0.99 23

17-18 0.62 1.00 17

18-19.6 0.44 0.99 30

Note: The 1-class model 2 was the only model selected using BIC as a criterion.
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