Skip to main content
. Author manuscript; available in PMC: 2017 Jun 23.
Published in final edited form as: IEEE Trans Signal Process. 2016 Mar 7;64(12):3077–3092. doi: 10.1109/TSP.2016.2539143

Algorithm 1.

MCMC inference of parametric dictionary learning variables

Require: Data xn, hyperparameters ℋn
1: for n = 1, …, N do
2:   for m = 1, …, M do
3:     Sample atom indices zn1(m),znL(m) or zn(m)
4:     Find Dn(m)={k1,,kL} s.t. znlkl(m)=1
5:     Sample atom coefficients sn1(m),,snL(m)
6:     Sample noise vector εn(m)
7:     Sample dictionary parameters θnk(m),kDn(m)
8:     Sample dictionary priors gn1(m),,gnK(m),Gn(m)
9:     Sample atom selection probability priors πn(m)
10:     Sample noise variance γεn(m)
11:     Sample θ˜n(m) for generating θnk(m),kDn(m)
12:     Compute Dn(m)=[ϕ(θn1(m))ϕ(θnK(m))]
13:   end for
14: end for