Skip to main content
. 2017 Apr 18;116(10):1329–1339. doi: 10.1038/bjc.2017.97

Table 2. Results of univariate (A, B) and multivariate analysis (C) using three classification models: logistic regression analysis, naive Bayes classifier, and k-NN.

A            
Significant univariate feature Classifier/Model %Sn %Sp AUC P-value Statistical power (n2)
  Logistic regression 60.0 60.0 0.726    
Hb-homogeneity Naive Bayes 82.0 82.0 0.799 0.030 71.8 (14)
  k-NN 61.5 67.5 0.577    
  Logistic regression 70.0 70.0 0.756    
HbO2-correlation Naive Bayes 80.0 81.0 0.778 0.024 78.9 (11)
  k-NN 66.5 74.5 0.602    
  Logistic regression 60.0 60.0 0.657    
HbT-homogeneity Naive Bayes 84.0 85.0 0.813 0.047 79.9 (11)
  k-NN 74.0 47.0 0.552    
  Logistic regression 60.0 63.0 0.670    
St-contrast Naive Bayes 79.5 82.0 0.779 0.044 73.5 (13)
  k-NN 70.5 64.5 0.582    
  Logistic regression 70.0 63.0 0.715    
StO2-contrast Naive Bayes 83.0 85.5 0.803 0.044 85.6 (enough)
  k-NN 70.0 66.5 0.610    
B        
Univariate features Classifier/Model %Sn %Sp %Acc
HbO2-correlation Logistic regression 70.0 70.0 70.0
HbO2-homogeneity Naive Bayes 86.5 89.0 87.8
HbO2-contrast k-NN 81.0 73.0 77.0
C        
Multivariate features Classifier/Model %Sn %Sp %Acc
HbO2-correlation+Hb-homogeneity Logistic regression 80.0 78.0 79.5
Hb-contrast+HbO2-homogeneity Naive Bayes 78.0 81.0 79.5
Hb-correlation+HbO2-contrast k-NN 79.5 76.0 77.8

Abbreviations: %Acc=accuracy; AUC=area under curve; Hb=deoxy-haemoglobin; HbO2=oxy-haemoglobin; HbT=total haemoglobin; k-NN=k-nearest neighbour; Sn=sensitivity; Sp=specificity; St=oxygen desaturation; StO2=tumour oxygen saturation.

Bold values indicate best classifiers. The last column in Table 2A reports the percentage of the statistical power. The numbers inside parentheses in this column indicate the number of non-responders (n2) required in this study to achieve a statistical power of minimum 80% in case that the number of responders (n1) is fixed at 27.