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Abstract

The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently altered 

pathways in human cancer and has a critical role in driving tumor initiation and progression. 

Although PI3K and its lipid product phosphatidylinositol-3,4,5-trisphosphate (PIP3) have been 

shown to activate multiple downstream signaling proteins, the vast majority of studies have 

focused on the protein kinase AKT as the dominant effector of PI3K signaling. However, recent 

studies have demonstrated many contexts under which other PIP3-dependent signaling proteins 

critically contribute to cancer progression, illustrating the importance of understanding AKT-

independent signaling downstream of PI3K. Here, we highlight three PI3K-dependent, but AKT-

independent, signaling branches that have recently been shown to have important roles in 

promoting phenotypes associated with malignancy. First, the PDK1 -mTORC2-SGK axis can 

substitute for AKT in survival, migration, and growth signaling and has emerged as a major 

mechanism of resistance to PI3K and AKT inhibitors. Second, Rac signaling mediates the 

reorganization of the actin cytoskeleton to regulate cancer cell migration, invasion, and 

metabolism. Finally, the TEC family kinase BTK has a critical role in B cell function and 

malignancy and represents a recent example of an effective therapeutic target in cancer. These 

mechanisms highlight how understanding PI3K-dependent, but AKT-independent, signaling 

mechanisms that drive cancer progression will be crucial for the development of novel and more 

effective approaches for targeting the PI3K pathway for therapeutic benefit in cancer.

Introduction

Phosphoinositide 3-kinase (PI3K) signaling plays a central role in cellular physiology, 

coordinating insulin signaling during organismal growth and mediating critical cellular 

processes such as glucose homeostasis, protein synthesis, cell proliferation, and survival. 

This pathway has been an intense area of investigation, particularly in light of cancer 

genetics studies that have revealed it to be one of the most frequently altered pathways in 

human malignancies that controls most hallmarks of cancer, including cell proliferation, 

survival, genomic instability, and metabolism [1]. Consequently, PI3K signaling has 
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emerged as an attractive target for cancer therapy, and many drugs that inhibit various 

pathway components are currently in clinical trials [2, 3].

Class I PI3K transduces upstream signals from receptor tyrosine kinases (RTKs) and G 

protein-coupled receptors (GPCRs) by phosphorylating the 3′-hydroxyl group of the inositol 

ring of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) to generate 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) [4, 5]. PIP3 serves as a critical lipid second 

messenger that recruits cytosolic proteins containing pleckstrin homology (PH) domains to 

the plasma membrane to promote either their activation or co-localization with other effector 

proteins [6–8]. It should be noted that only a small subset of PH domains in the human 

genome are thought to bind PIP3 with high affinity and specificity (10–20% out of ~290 PH 

domains have been shown to robustly bind phosphoinositides, with some of these robustly 

binding PI-3,4-P2 or PI-4,5-P2 but not PIP3) [9, 10]. Of the PH domain-containing proteins 

that do bind PIP3, the serine/threonine AGC-family protein kinase AKT has received the 

greatest attention, especially for its multi-faceted roles in promoting glucose metabolism and 

cancer [11, 12]. However, recent advances have demonstrated critical mechanisms by which 

other proteins with PIP3-binding PH domains contribute to cancer progression. 

Understanding the role of AKT-independent signaling downstream of PI3K is important 

because: a) AKT is not always hyperactivated in the context of mutations in PI3K pathway 

components such as PIK3CA and PTEN that elevate PIP3 levels in cancer; b) many critical 

cellular processes are driven by PI3K-dependent but AKT-independent signaling to promote 

malignant phenotypes, and; c) mechanisms of resistance to PI3K pathway inhibitors can 

involve the activation of PI3K-dependent signaling proteins that can substitute for AKT 

signaling. To illustrate this, in this review we highlight three AKT-independent signaling 

branches downstream of PI3K that have recently been shown to have critical roles in 

promoting cancer progression: the PDK1-mTORC2-SGK axis, Rac signaling, and the TEC 

family kinases.

Substituting for AKT signaling: The PDK1-mTORC2-SGK axis

PDK1 (3-phosphoinositide-dependent protein kinase 1) and the multi-protein complex 

mTORC2 (mechanistic target of rapamycin complex 2) are PI3K-dependent, PH domain-

containing kinases that coordinately activate several growth factor-sensitive AGC kinases, 

including AKT (also known as protein kinase B), SGKs (serum and glucocorticoid-regulated 

kinase), and certain PKCs (protein kinase C), by phosphorylating their activation loops and 

hydrophobic motifs (HM), respectively [13]. PDK1 is a constitutively active kinase with two 

major regulatory domains: a C-terminal PH domain that binds PIP3, and a “PIF-binding 

pocket” within its catalytic domain that docks on the phosphorylated HM of AGC kinases, a 

region also known as the PDK1-interacting fragment (PIF) [14–17]. The PH domain allows 

PDK1 to co-localize with AKT at the plasma membrane and phosphorylate its activation 

loop upon PI3K activation. SGKs and PKCs, however, lack PH domains, and the PDK1 PH 

domain is not required for their phosphorylation; rather, PDK1 docks on the phosphorylated 

HM of these kinases through its PIF-binding pocket in order to phosphorylate their 

activation loops (atypical PKC isoforms contain acidic residues in their HMs that mimic 

constitutive phosphorylation) [18]. Two other growth factor-sensitive AGC kinases, S6K and 

RSK, are also activated by PDK1 in this manner but their HMs are not mTORC2 substrates 
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and any dependence on PI3K is indirect. Therefore, at least for SGKs and some PKCs, 

activation loop phosphorylation by PDK1 is primed by phosphorylation of the HM by 

mTORC2, which is a multi-protein complex consisting of mTOR, Rictor, mSin1, mLST8, 

Protor1/2, and Deptor [19]. mTORC2 activity can be stimulated by PI3K activation and PIP3 

[20], though the precise underlying mechanisms has long remained elusive. However, the 

mSin1 subunit of mTORC2 has been reported to contain a putative PH domain [21], and a 

recent study proposes that autoinhibition of mTOR kinase activity by the mSin1 PH domain 

is disrupted when mSin1-PH binds PIP3, resulting in mTORC2 activation downstream of 

PI3K [22••].

The roles of PDK1 and mTORC2 in cancer are frequently linked to their activation of AKT, 

but recent evidence has demonstrated that other downstream AGC kinases also contribute to 

cancer malignancy. This is highlighted by the finding that reduced anchorage-independent 

growth and increased apoptosis caused by PDK1 silencing cannot necessarily be rescued by 

the expression of constitutively active AKT [23]. Recent studies have identified the SGKs, 

which consist of three isoforms SGK1, SGK2, and SGK3, as critical mediators of AKT-

independent signaling downstream of PDK1 and mTORC2 in cancer (Figure 1). The SGK 

isoforms share high sequence similarity, and isoform-specific functions remain an open 

question. SGK knockout mice have revealed little about their physiological functions: 

SGK1-null mice have sodium balance intolerances, SGK3 knockout mice have defective 

hair follicle development, and SGK2 knockout mice have not been studied [24, 25]. Since 

SGKs and AKT share highly similar substrate specificities and have overlapping substrates 

[26–28], SGKs can substitute for AKT signaling in survival, migration, and growth signaling 

(Figure 1). For instance, a subset of PIK3CA mutant breast cancer cell lines that exhibit 

minimal AKT activation were found to rely on the PDK1-mTORC2-mediated activation of 

SGK3, and not AKT, for anchorage-independent growth [29]. Interestingly, although the 

SGKs lack PH domains, SGK3 possesses a phox homology (PX) domain that binds 

phosphatidylinositol-3-phosphate (PI-3-P), which is predominantly produced at the 

endosome by the Class III PI3K hVps34 [30]. In addition to activation at the endosome, 

SGK3 can also be activated at the plasma membrane by PI3K-dependent PI-3-P production 

through the sequential dephosphorylation of PIP3 to PI-3,4-P2 and PI-3-P by the lipid 

phosphatases SHIP1/2 (SH2 domain-containing inositol phosphatase) and INPP4B (Inositol 

polyphosphate 4-phosphatase type II), respectively (Figure 1) [31–34••]. In PIK3CA mutant 

breast cancer cells, SGK3 activation correlates with elevated expression of INPP4B, which 

positively regulates SGK3 activity to promote cell proliferation, anchorage-independent 

growth, cell migration, and tumor growth in vivo [35••].

Activation of SGK signaling has also recently emerged as an important mechanism of 

resistance to PI3K and AKT inhibitors. For example, treatment of breast cancer cells with 

PI3K or AKT inhibitors results in increased expression and activation of SGK3, which under 

these conditions depends on hVps34 for activation by PDK1 and mTORC2. SGK3 

subsequently substitutes for AKT by phosphorylating TSC2 and inhibiting the TSC complex 

to activate the kinase complex mTORC1 [36••, 37]. Similarly, elevated SGK1 expression 

and activation by PDK1/mTORC2 is also observed in breast cancer cell lines resistant to 

PI3K/AKT inhibitors. In this setting, SGK1 maintains signaling downstream of AKT by 

phosphorylating TSC2 to activate mTORC1 while also phosphorylating and inhibiting the 
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transcription factor FOXO3 [38, 39••]. As mTORC1 and FOXO are major coordinators of 

anabolic metabolism and growth, their regulation by SGK can allow cells to overcome 

PI3K/AKT inhibition [40]. These results suggest that inhibitors of PDK1 or SGKs, listed in 

Table 1, may synergize with PI3K/AKT inhibitors to induce more robust antitumoral 

responses.

Taken together, these studies demonstrate that AKT-independent signaling initiated by 

PDK1 and mTORC2 downstream of PI3K contributes significantly to cancer progression. 

Understanding the specific contexts under which the PDK1-mTORC2-SGK axis provides an 

alternative mechanism for PI3K signaling to drive tumorigenesis will be critical for the 

development of more effective strategies for targeting the PI3K pathway for cancer 

treatment.

Actin cytoskeleton remodeling: Rac signaling

One of the most important PI3K-dependent cellular processes that primarily occurs 

independently of AKT is remodeling of the actin cytoskeleton. A major effector of this 

process is the Rac proteins (RAC1, 2, and 3), which are a subfamily of the Rho family of 

small GTPases (Figure 2) [41]. Like all G proteins, Rac alternates between its inactive GDP-

bound and active GTP-bound states, which are promoted by GTPase-activating proteins 

(GAPs) and guanine-nucleotide exchange factors (GEFs), respectively. PI3K functions as an 

upstream activator of Rac by stimulating PIP3-sensitive Rac-GEFs, which include PREX1, 

PREX2, Vav1, Sos1, and SWAP-70 (Figure 2). These Rac-GEFs each contain a PH domain 

that interacts with PIP3, which subsequently relieves the inhibition of the GEF catalytic 

guanine-nucleotide exchange domain [42]. Upon activation, Rac-GTP then regulates 

cytoskeleton reorganization by binding and activating relevant target proteins, most notably 

p21-activated kinase (PAK) and WAVE [43–46].

While many studies have demonstrated that AKT regulates cancer cell invasion and 

migration [47, 48], Rac signaling also promotes this phenotype independently of AKT by 

remodeling the actin cytoskeleton [49, 50]. Recent studies have focused on the Rac-GEFs 

PREX1 and PREX2, which have been implicated in multiple cancers. For example, PREX1 

is up-regulated in breast cancer, metastatic prostate cancer, and melanoma, and it activates 

RAC1 to promote cell migration and invasion through the formation of lamellipodia. PREX1 

overexpression is sufficient to increase the metastatic potential of non-metastatic prostate 

cancer cells in vivo, and Prex1−/− mice are resistant to metastasis in an Nras/INK4a-driven 

mouse melanoma model [51–53]. Likewise, PREX2 is up-regulated in many cancers and is 

also frequently mutated, especially in melanoma [54–56]. These oncogenic PREX2 

mutations increase its Rac-GEF activity, which contributes to NRAS-driven melanoma 

development and promotes breast cancer cell migration [57••, 58••]. Interestingly, PREX2 is 

not only activated by PIP3, but also directly binds to PTEN and inhibits its lipid phosphatase 

activity to amplify PI3K signaling [59]. As a potential mechanism to prevent a feed-forward 

circuit in which PREX2-induced PI3K signaling results in unrestrained PIP3-mediated 

PREX2 activation, PREX2 is reciprocally inhibited by PTEN independently of its lipid 

phosphatase activity and PIP3 [58••]. Remarkably, oncogenic PREX2 mutants are able to 

escape PTEN-mediated inhibition, allowing them to both amplify PI3K signaling and 
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activate Rac to promote tumor growth and cell invasion to drive cancer progression [57••, 

58••].

Rac signaling has also recently been shown to contribute to PI3K-dependent regulation of 

cellular metabolism, which has typically been thought to be predominantly controlled by 

AKT [60–62]. A recent study reported that PI3K acutely stimulates glycolysis independently 

of AKT by regulating aldolase A in a Rac1-dependent manner. In quiescent cells, aldolase A 

is bound to the actin cytoskeleton, which inhibits its enzymatic activity. Upon growth factor-

induced PI3K activation, activation of Rac and its effectors PAK and WAVE leads to actin 

cytoskeleton reorganization that releases aldolase A, and thus increases its activity [63••]. 

Interestingly, another study demonstrated that inhibition of PI3K, but not AKT, selectively 

inhibits the non-oxidative branch of the pentose phosphate pathway (non-oxPPP), resulting 

in decreased ribose 5-phosphate and nucleotide production [64•]. Since glyceraldehyde 3-

phosphate, a product of aldolase A, serves as an entry point into the non-oxPPP, PI3K/Rac-

mediated aldolase A activation may promote the PI3K-dependent, but AKT-independent, 

stimulation of the non-oxPPP to contribute to nucleotide synthesis. Given recent interest in 

therapeutically exploiting cancer-associated metabolic vulnerabilities, a deeper 

understanding of how PI3K-Rac signaling regulates glycolysis and other metabolic 

pathways may reveal novel strategies for targeting the PI3K pathway for cancer therapy.

These studies highlight the importance of Rac signaling in modulating cellular processes 

associated with actin cytoskeleton remodeling to promote cancer malignancy. Importantly, 

Rac also controls other processes independently of cytoskeleton reorganization such as 

proliferation and survival, which are not discussed in this review [41]. Therefore, developing 

inhibitors of Rac (Table 1) and exploring their potential as therapeutic options for cancer 

treatment is an active area of investigation [65].

Activation of non-receptor tyrosine kinase signaling: TEC family kinases

Of the 90 tyrosine kinases in the human genome, 58 are membrane-spanning receptor 

tyrosine kinases (RTKs), while the remaining 32 lack transmembrane domains and are 

classified as nonreceptor tyrosine kinases (NRTKs). NRTKs function within the 

nucleocytoplasm to trigger signaling cascades downstream of cell surface receptors and tend 

to play an especially important role in propagating signals downstream of receptors that do 

not contain intrinsic enzymatic domains [66]. For instance, in immune cells members of the 

SRC and TEC subfamilies of NRTKs mediate critical signaling events downstream of the T 

cell receptor (TCR), B cell receptor (BCR), Toll-like receptors (TLRs), and integrins [67]. 

Like RTKs, NRTKs can activate PI3K by phosphorylating its regulatory subunit or creating 

phospho-tyrosine docking sites on adaptors and receptors that recruit and activate PI3K. 

However, members of one NRTK subgroup, the TEC family, conversely rely on PI3K for 

their activation, distinguishing them from other NRTKs [68].

The five-member TEC kinase family includes: TEC (tyrosine kinase expressed in 

hepatocellular carcinoma), BMX (bone marrow tyrosine kinase gene on chromosome X; 

also known as ETK), BTK (bruton’s tyrosine kinase), ITK (interleukin-2-inducible T-cell 

kinase; also known as EMT or TSK), and TXK (also known as RLK). These share a 
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common domain architecture including a C-terminal tyrosine kinase domain, SH2 and SH3 

protein-binding domains, and, with the exception of TXK, an N-terminal PH domain that 

binds PIP3 [68]. The binding of PI3K-produced PIP3 results in the accumulation of TEC, 

BMX, BTK, and ITK at the plasma membrane where they are phosphorylated and activated 

by other NRTKs (as described for BTK in more detail below). Although PI3K may 

simultaneously activate AKT in the same cell, TEC kinase activation is AKT-independent. 

Hence, PI3K activity can dynamically promote membrane localization and activation of 

TEC kinases in contrast to, for instance, SRC family members which constitutively associate 

with membranes via their myristoyl and palmitoyl lipid modifications. Although the TEC 

kinases are expressed in multiple organ systems and preclinical studies have implicated them 

in multiple cancers including breast, colorectal, prostate, and glioblastoma, their role in the 

immune system has received the greatest attention [67, 68]. Here we highlight the role of the 

TEC family member BTK and its regulation by the delta isoform of PI3K in B lymphocyte 

(B cell) function and malignancy.

The B cell receptor (BCR) plays a pivotal role in both the development and activation of B 

cells. In naïve B cells, antigen binding to the BCR induces clustering of BCRs and 

associated CD79A/CD79B heterodimers that triggers tyrosine kinase signaling by NRTKs 

(Figure 3). BCR-associated LYN, a SRC family member that tethers to the membrane via 

dual lipid modifications, phosphorylates tyrosine motifs on the CD79A/CD79B heterodimer. 

The NRTK SYK then binds tyrosine-phosphorylated CD79A/CD79B, is activated, and 

subsequently phosphorylates a tyrosine motif on the co-receptor CD19 to which Class I 

PI3K binds via its SH2 domain-containing regulatory subunit. Production of PIP3 from 

PI-4,5-P2 by PI3K recruits BTK (via its PH domain) to the plasma membrane, where it can 

undergo activating phosphorylation by LYN and SYK. PI3K-dependent AKT activation also 

occurs in this context and regulates certain B-cell functions, but does not directly regulate 

BTK and is not discussed further here [69]. Through its SH2 domain, BTK participates in a 

signaling complex nucleated by a scaffolding protein BLNK (B cell linker; also known as 

SLP65) that is phosphorylated on multiple tyrosines by other NRTKs. PLCγ and the Rho 

family GEF Vav1 also dock on tyrosine-phosphorylated BLNK via their SH2 domains. 

Phosphorylation and activation of PLCγ by BTK triggers calcium mobilization and PKC 

signaling that ultimately turns on Ras signaling along with NF-κB and NFAT transcriptional 

programs. BTK-dependent activation of Vav1 turns on the Rho family small GTPases Cdc42 

and Rac, which control actin remodeling. Together, these and other signals cooperate to 

govern the survival, differentiation, proliferation, and migration responses that underlie B 

cell development and activation [70].

In humans, inactivating mutations in BTK are the molecular basis for the immunodeficiency 

disorder X-linked agammaglobulinemia which is characterized by severe defects in B cell 

development and function [71, 72]. BTK knockout mice or mice treated with small molecule 

inhibitors of BTK have similar B cell deficiencies, illustrating the critical role played by 

BTK in B cell biology [73–75]. Aberrant BCR signaling can promote B cell transformation, 

and due to the tissue-specific importance of BTK and PI3Kδ in B cells, there has been an 

intense effort to therapeutically target these for the treatment of B cell malignancies [70]. It 

is worth noting that the role of BTK is more specific to B cells compared with PI3Kδ, which 

is broadly important in leukocytes. A first generation irreversible BTK inhibitor Imbruvica 
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(Ibrutinib) is FDA-approved for treatment of chronic lymphocytic leukemia (CLL), mantle 

cell lymphoma (MCL), and Waldenström macroglobulinemia (Table 1) [75, 76]. As 

Imbruvica inhibits multiple Tec kinases that are important in other immune cell types, more 

potent and selective second generation BTK inhibitors, such as Acalabrutinib, have been 

developed and are now showing promise in Phase I and II clinical trials (Table 1) [77••, 78]. 

A PI3Kδ inhibitor, Zydelig (Idelalisib), has also been FDA-approved for the treatment of 

relapsed CLL, follicular B cell non-Hodgkin lymphoma (FL) and small lymphocytic 

lymphoma (SLL), again underscoring the critical role played by PI3K in B cells [79, 80]. 

Interestingly, there is some evidence that these inhibitors may also prove useful in treating 

solid tumors. In a mouse model of pancreas ductal adenocarcinoma (PDAC), inhibitors of 

BTK and, in this case, PI3Kγ, were shown to alter lymphocyte-macrophage cross-talk that 

ultimately promoted immunosuppression of the tumor [81••]. Therefore, PI3K-dependent 

BTK signaling is a key example of an AKT-independent branch of the PI3K network that 

has emerged as an effective therapeutic target in cancer. The clinical results achieved with 

BTK and PI3Kδ inhibitors represent one of the recent success stories for rationally 

developed, precision medicine.

Summary and outlook

As one of the most frequently altered pathways in human cancer, PI3K signaling has clearly 

emerged as a highly attractive drug target for the treatment of human cancers. Given the 

predominant focus on studying AKT as the primary effector downstream of PI3K, much of 

the effort in targeting this pathway has centered around the development of drugs that 

effectively inhibit PI3K/AKT signaling. However, as this review has illustrated, it is 

becoming increasingly clear that other PI3K-dependent but AKT-independent signaling 

branches are just as important, if not more important, in promoting cancer initiation and 

progression. Indeed, a growing recognition of this idea has led to the development of drugs 

that target these other pathways downstream of PI3K (Table 1). Given that PI3K and AKT 

inhibitors currently in the clinic have shown limited efficacy with dose-limiting toxicities, 

these drugs may provide opportunities to rationalize new therapeutic combinations that may 

target the PI3K pathway more effectively. It is also important to note that the three pathways 

highlighted in this review constitute only a subset of the PH domain-containing proteins that 

are regulated by PIP3 (or other phosphoinositides derived from PI3K-produced PIP3). 

Therefore, we believe that there is still much to learn about how these various PI3K-

dependent signaling proteins contribute to cancer malignancy, and that this knowledge will 

greatly strengthen our ability to develop novel and more effective strategies for targeting the 

PI3K pathway for the treatment of human cancers.
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Figure 1. The PDK1-mTORC2-SGK signaling axis
SGK3 is activated at either the plasma membrane or the endosome, where its PX domain 

binds to PI-3-P. PI-3-P is produced both at the plasma membrane through the sequential 

dephosphorylation of PIP3 by SHIP1/2 and INPP4B and at the endosome by the Class III 

PI3K hVps34. After PI-3-P binding, SGK3 is first phosphorylated on the hydrophobic motif 

(HM) by mTORC2. PDK1 then binds to the phosphorylated HM through its PIF-binding 

pocket and phosphorylates SGK3 on its activation loop. SGK1 is not regulated by PI-3-P 

because it lacks a PX domain, but it is phosphorylated by mTORC2 and PDK1 in the same 

manner as SGK3. Upon full activation, SGK1/3 phosphorylates its substrates with an 

optimal consensus motif of R-X-R-X-X-S/T to regulate cellular processes including cell 

growth, proliferation, migration, invasion, and resistance to PI3K and AKT inhibitors.
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Figure 2. PI3K-Rac signaling regulates actin cytoskeleton reorganization
Upon binding to PIP3 via their PH domains, PIP3-sensitive Rac-GEFs catalyze the exchange 

of GDP for GTP on Rac. Rac activation is negatively regulated by Rac-GAPs, which 

facilitate GTP hydrolysis by Rac. When Rac-GTP is activated, it regulates cytoskeleton 

reorganization by binding and activating relevant target proteins, most notably PAK and 

WAVE. Remodeling of the actin cytoskeleton modulates cellular processes such as cell 

migration, invasion, and metabolism.
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Figure 3. PI3K and BTK Signaling in Response to BCR activation in B cells
Antigen engagement of the BCR receptor induces clustering of the BCR, associated CD79A/

CD79B heterodimers, and the non-receptor tyrosine kinase (NRTK) LYN which is tethered 

to the membrane by dual lipid modifications. LYN phosphorylates tyrosine motifs on 

CD79A/CD79B and the co-receptor CD19 to which the NRTK SYK and PI3K dock 

respectively and become activated. PIP3 produced by PI3K recruits BTK to the membrane 

where it is phosphorylated and activated by SYK and LYN. BTK also forms a complex with 

the adaptor protein BLNK, the Rho family GEF Vav, and the phospholipase PLCγ. 

Following its BTK-dependent activation, Vav promotes GTP loading and activation of 

Cdc42 and Rac which then trigger actin cytoskeleton remodeling through a variety of 

effectors. Simultaneously, BTK phosphorylates and activates PLCγ which cleaves PI-4,5-P2 
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to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG is bound by PKCβ 
which triggers IKK signaling and NFkB-dependent transcription plus activation of Ras-Raf-

MEK-ERK signaling. IP3 stimulates calcium (Ca2+) mobilization which results in NFAT-

dependent transcription. These signaling events cooperate to control survival, proliferation, 

and adhesion signals that underlie B cell development and activation.
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Table 1

Selected list of inhibitors of AKT-independent PI3K signaling

Inhibitor Target Refs

PDK1/mTORC2-SGK signaling

GSK2334470 PDK1 [82, 83]

Torin 1 mTOR kinase [84]

PP242 mTOR kinase [85]

AZD8055 mTOR kinase [86]

AZD2014 mTOR kinase [87]

MLN0128 (formerly INK128) mTOR kinase [88]

VPS34-IN1 hVps34 [34]

SAR405 hVps34 [89•]

GSK650394 SGK1/2/3 [90]

14h SGK1/3 [36, 91•]

SI113 SGK1 [92–95•]

EMD638683 SGK1/2/3 [96]

PI3K/Rac signaling

NSC23766 Rac [97, 98]

EHop-16 Rac [99, 100•]

EHT 1864 Rac [101–103]

BTK and PI3Kδ inhibitors

Ibrutinib (PCI-32765) BTK (1st gen) [75, 76, 104, 105]

Acalabrutinib (ACP-196) BTK (2nd gen) [77, 78]

ONO/GS-4059 BTK (2nd gen) [78, 106]

BGB-3111 BTK (2nd gen) [78, 107]

CC-292 BTK (2nd gen) [108, 109]

Idelalisib (GS-1101; CAL-101) PI3Kδ [79, 80]

AMG-319 PI3Kδ [80, 110]

TGR-1202 PI3Kδ [80, 111]

INCB050465 PI3Kδ [80]
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