
Emerging Themes of Regulation at the Golgi

Stefanie L. Makowski#, Thuy T.T. Tran#, and Seth J. Field
Department of Medicine, Division of Endocrinology and Metabolism, University of California, San 
Diego, CA 92093-0707, USA

# These authors contributed equally to this work.

Abstract

The Golgi is generally recognized for its central role in the secretory pathway to orchestrate 

protein post-translational modification and trafficking of proteins and lipids to their final 

destination. Despite the common view of the Golgi as an inert sorting organelle, emerging data 

demonstrate that important signaling events occur at the Golgi, including those that regulate the 

trafficking function of the Golgi. The phosphatidylinositol-4-phosphate/GOLPH3/MYO18A/F-

actin complex serves as a hub for signals that regulate Golgi trafficking function. Furthermore, the 

Golgi is increasingly appreciated for its important role in cell growth and in driving oncogenic 

transformation, as illuminated by the discovery that GOLPH3 and MYO18A are cancer drivers.

Introduction

Recent studies paint a multidimensional picture of the Golgi, revealing dynamic regulatory 

signaling pathways that act at, on, or emanate from the Golgi. This review highlights a few 

examples of signaling pathways that function at the Golgi, some of which regulate Golgi 

trafficking function. We also examine some recent data that implicate the Golgi as a 

regulator of cell proliferation capable of driving oncogenic transformation.

SREBP, an example of regulation that occurs at the Golgi

Several years ago, Brown and Goldstein elucidated the importance of endoplasmic reticulum 

(ER)-to-Golgi transport in regulating the activity of sterol regulatory element-binding 

proteins (SREBPs) [1]. They showed that low cholesterol levels act through a protein called 

SCAP, resulting in trafficking of SREBP from the ER to the Golgi. Once at the Golgi, two 

site-specific proteases cleave SREBP, liberating a transcription factor which activates 

cholesterol biosynthetic genes [2-6]. Thus, the Golgi is critically important for SREBP 

pathway activation.

Recent studies have identified additional layers of regulation in the SREBP pathway. High 

glucose levels promote N-glycosylation of SCAP, resulting in trafficking and activation of 
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SREBP, thus linking glucose levels to lipogenesis [7]. In addition, oncogenic PI-3-kinase 

and K-RAS, through a poorly understood mechanism involving mTORC1, drive SREBP 

activation to promote lipid synthesis [8].

SREBPs provide an example of proteins whose function depends on regulated trafficking 

from the ER to the Golgi, but they do not directly affect ER or Golgi function.

Growth factor signaling controls Golgi secretory function

Similar to the SREBPs, SAC1 is a protein whose trafficking from the ER to the Golgi is 

regulated. However, in contrast to the SREBPs, regulation of SAC1 ER-Golgi localization 

has important consequences on Golgi trafficking [9]. As discussed further below, 

phosphatidylinositol-4-phosphate (PtdIns(4)P) plays an important role at the Golgi in 

enabling Golgi-to-plasma membrane (PM) trafficking. SAC1 dephosphorylates PtdIns(4)P 

to produce phosphatidylinositol. In growth factor-deprived cells, SAC1 oligomerizes and 

traffics from the ER to the Golgi, depleting Golgi PtdIns(4)P, thus interfering with secretory 

trafficking [9]. Since SAC1 is exported from the ER into COPII vesicles at similar levels in 

starved and non-starved cells, growth factor-dependent ERGolgi trafficking of SAC1 is 

likely regulated at the level of Golgi retrieval [10]. Stimulation with growth factors such as 

FGF and PDGF activates the p38/MAPK pathway, triggering dissociation of SAC1 

oligomers and COPI-mediated retrograde trafficking of SAC1 to the ER. This leads to a rise 

in PtdIns(4)P at the Golgi, which drives increased trafficking from the Golgi to the PM.

SAC1 trafficking between the ER and Golgi impacts secretory function by regulating 

PtdIns(4)P levels at the Golgi. The importance of PtdIns(4)P in Golgi function is mediated 

by PtdIns(4)P effectors, which bind PtdIns(4)P and serve essential roles in Golgi trafficking.

PtdIns(4)P and its effectors at the Golgi

Known to play a critical role at the Golgi, PtdIns(4)P is highly enriched at the cytosolic face 

of the trans-Golgi, where it recruits cytosolic proteins that bind to PtdIns(4)P [11,12]. From 

yeast to humans, PtdIns(4)P is required for Golgi-to-PM trafficking [13-16]. Several proteins 

have been identified that bind to PtdIns(4)P and function at the Golgi. Here we discuss a few 

of these proteins, and refer to other recent reviews for a more comprehensive list of 

PtdIns(4)P effectors [17,18].

Many PtdIns(4)P binding proteins function in non-vesicular lipid transport [19,20]. While 

some of these bind PtdIns(4)P at the PM (beyond the scope of this review), several bind 

PtdIns(4)P at the Golgi. Both ceramide transfer protein (CERT) and oxysterol binding 

protein (OSBP) contain a pleckstrin homology (PH) domain that binds to PtdIns(4)P, 

contributing to their trans-Golgi localization [20,21]. They also contain an FFAT (Phe-Phe 

within an Acidic Tract) motif that binds to VAP proteins at the ER [22-24]. CERT transports 

ceramide from the ER to the trans-Golgi, where ceramide serves as a precursor for 

sphingomyelin synthesis [20,23]. Similarly, OSBP transports cholesterol from the ER to the 

trans-Golgi [25,26].
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FAPP2 is another non-vesicular lipid transporter. Its N-terminal PH domain binds 

specifically to both PtdIns(4)P and the Golgi protein ARF, resulting in tight localization to 

the trans-Golgi [12,21,27]. FAPP2 transports glucosylceramide from the cis-Golgi to the 

trans-Golgi to promote globotriaosylceramide synthesis [28-30].

It is striking that multiple PtdIns(4)P-binding proteins function as non-vesicular lipid 

transporters. Given the highly asymmetric distribution of lipids at the cis- versus the trans-

Golgi, these PtdIns(4)P-binding lipid transporters appear important for creating the distinct 

lipid phase that characterizes the trans-Golgi [31,32].

GOLPH3 is a PtdIns(4)P effector that is critical for Golgi-to-PM trafficking

Found by proteomic studies of the Golgi [33,34], GOLPH3 (earlier referred to as GMx33 or 

GPP34) was identified as a PtdIns(4)P effector through unbiased screening for 

phosphoinositide-binding proteins [35]. GOLPH3 binds to PtdIns(4)P via its unique GPP34 

domain, driving localization to the trans-Golgi that is conserved from yeast (where the 

ortholog is VPS74) to humans [35,36]. GOLPH3 tightly interacts with an unconventional 

myosin, MYO18A, linking the Golgi to the F-actin cytoskeleton [35,37,38]. Changes in the 

morphology of the Golgi upon perturbation of any component of the PtdIns(4)P/GOLPH3/

MYO18A/F-actin complex indicate that this linkage serves to apply a stretching force to the 

Golgi, rendering the trans cisternae flat and stretching the Golgi ribbon around the nucleus, 

as observed by electron and fluorescence microscopy [35,37]. Measurement of PtdIns(4)P-

positive, cargo-positive vesicles exiting the Golgi demonstrates that the GOLPH3 complex is 

critical for vesicle exit from the Golgi for forward trafficking to the PM [35]. Indeed, 

measurement of overall or cargo-specific secretory trafficking indicates that the GOLPH3 

complex is required for secretion [35,37,39]. The evidence suggests that the tensile force 

applied to the Golgi membrane by the GOLPH3 complex participates in the process of 

vesicle budding for forward trafficking [35,37,39,40].

The consequences of reducing Golgi PtdIns(4)P by SAC1, namely, compaction of the Golgi 

ribbon and inhibition of trafficking, are completely recapitulated by knockdown of GOLPH3 

or MYO18A or depolymerization of F-actin [9,35,41]. This implies that the PtdIns(4)P 

effector, GOLPH3, and its downstream effectors, MYO18A and F-actin, are the major 

determinants of the Golgi response to PtdIns(4)P.

Other examples of regulation of the Golgi via GOLPH3

Surprisingly little is known about regulation of Golgi trafficking. Growth factor regulation of 

the Golgi by SAC1 is the first such example. Considering the importance of the GOLPH3 

complex in Golgi function, one might predict that the GOLPH3 complex would be a hub for 

regulation of the Golgi. Interestingly, GOLPH3 is a phosphoprotein with multiple alternative 

phosphorylation sites [34,42,43]. To begin to identify regulation of the GOLPH3 complex, 

we mapped phosphorylation sites in GOLPH3 and discovered phosphorylation of Thr 143 

[43]. The realization that this site is phosphorylated by the DNA-damage-activated kinase, 

DNA-PK, led to the discovery of the Golgi response to DNA damage, which results in Golgi 

fragmentation and impaired trafficking. The Golgi DNA damage response is a consequence 
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of phosphorylation of GOLPH3 on Thr 143 by DNA-PK, resulting in increased interaction 

of GOLPH3 with MYO18A [43,44].

The existence of GOLPH3L, a paralog of GOLPH3 and an endogenous dominant-negative 

inhibitor of the GOLPH3 complex, further supports the notion that the GOLPH3 complex 

represents a central point for regulating Golgi function [37,40]. Only found in vertebrates, 

GOLPH3L is restricted to highly secretory tissues, such as salivary gland, small intestine, 

and skin. Like GOLPH3, GOLPH3L binds PtdIns(4)P and localizes to the Golgi. However, 

GOLPH3L inhibits the GOLPH3 complex because it cannot bind MYO18A [37]. Indeed, 

overexpression and knockdown of GOLPH3L show opposing effects on Golgi morphology 

compared to similar perturbation of GOLPH3. The evidence indicates that GOLPH3L acts 

to suppress excessive secretion in highly secretory cells in order to achieve optimal rates of 

trafficking.

RAS signaling at the Golgi

RAS signaling is widely recognized for its contribution to cell growth, and as a common 

target for driver mutations in cancer [45-48]. RAS family small GTPases (N-RAS, H-RAS, 

K-RAS4A, and K-RAS4B) are activated downstream of receptor tyrosine kinases (RTKs) 

[49,50]. Activated RAS then signals to activate both the RAF/MEK/ERK and PI-3-kinase/

PtdIns(3,4,5)P3/AKT signaling pathways, which serve to drive cell proliferation, motility, 

and survival [46,51-53]. While it is clear that RAS is predominantly at the PM, a significant 

proportion of H-RAS and N-RAS reside at the Golgi [54-56].

A number of groups have produced evidence that Golgi-localized Ras might actively signal. 

For example, RAS activity reporters detect activity at the Golgi [57-60]. RasGRP1, a RAS 

GTP exchange factor, is recruited to the Golgi upon activation of phospholipase C-γ1 

[60-62]. Furthermore, RAS that is tethered to the Golgi is capable of driving signaling and 

oncogenic transformation [59,63,64]. Recent studies have begun to characterize detailed 

differences between RAS signaling at the PM versus at the Golgi [59,64].

While it is increasingly apparent that Golgi-localized RAS has unique signaling functions, 

there is no evidence that RAS plays a role in regulating Golgi function. It appears that RAS, 

like SREBP, uses the Golgi as a signaling platform but does not significantly alter the 

trafficking activity of the Golgi.

Trafficking proteins that function as oncogenes: GOLPH3 and MYO18A

Surprisingly, both GOLPH3 and MYO18A have been identified as oncogenic drivers of 

human cancers. GOLPH3 is the first oncogene discovered to regulate secretory function at 

the Golgi. Unbiased, genome-wide copy number analysis of human cancer identified 

frequent amplification of GOLPH3 in several solid tumor types, including lung, ovarian, 

breast, pancreatic, prostate, melanoma and colon carcinoma [65]. GOLPH3 causes 

transformation in classical co-transformation cell culture assays and promotes tumor growth 

in xenograft mouse models, validating GOLPH3 as a true oncogene. More than thirty 

additional studies confirm GOLPH3's ability to drive transformation, detect overexpression 
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of GOLPH3 in a wide variety of cancers, and correlate high levels of expression with poor 

patient outcomes (recently reviewed in [44]).

More recently, computational analysis of The Cancer Genome Atlas (TCGA) data identified 

17 drivers of breast cancer in humans [66], many of which are expected, such as ERBB2, 

MYC, and CCND1. Interestingly, MYO18A is one of the genes identified as a driver of 

breast cancer. TCGA further reports amplification of the MYO18A gene at a high frequency 

in several cancers, including neuroendocrine prostate, breast, pancreatic, uterine, and bladder 

cancer [67-73].

The GOLPH3 complex drives cancer through multiple mechanisms

Altogether, the identification of GOLPH3 and MYO18A as drivers of cancer suggests that 

the GOLPH3 complex that functions in Golgi-to-PM trafficking is capable of driving cancer. 

A diverse array of cargoes depend on Golgi-to-PM trafficking for their function. Thus, one 

might predict that perturbations in Golgi function would have pleiotropic effects on cell 

function. Indeed, a few mechanisms have already been identified that explain how the 

GOLPH3 complex can drive oncogenic transformation.

One way that GOLPH3 likely drives cancer is through its ability to modulate signaling 

downstream of mTORC1 and mTORC2. GOLPH3 knockdown results in impaired 

phosphorylation of p70S6K (at Thr 389) and AKT (at Ser 473) [65]. Likewise, 

overexpression of GOLPH3 stimulates enhanced phosphorylation of both of these proteins at 

these sites. Consistent with increased activation of AKT, overexpression of GOLPH3 also 

leads to enhanced phosphorylation of the AKT substrate FOXO1, thus downregulating its 

transcriptional activity and promoting cell proliferation in breast cancer [74]. While these 

consequences of overexpression of GOLPH3 are well documented, the mechanism is in need 

of further investigation. Nevertheless, it is clear that enhanced signaling through AKT and 

p70S6K is capable of driving cancer [75,76].

A second way that the GOLPH3 complex drives cancer involves its role in the Golgi DNA 

damage response. As described previously, the GOLPH3 complex plays an important role in 

the cellular response to DNA damage [43]. The interaction between GOLPH3 and MYO18A 

is enhanced in response to DNA damage, a consequence of DNA-PK phosphorylation of 

GOLPH3 on Thr 143. Furthermore, this pathway is required for normal cellular survival 

following DNA damage. Interference with the GOLPH3 complex results in increased 

apoptotic cell death following DNA damage. Likewise, overexpression of GOLPH3 

promotes survival following DNA damage, which depends on GOLPH3 localization to the 

Golgi and its phosphorylation by DNA-PK. Survival in the face of DNA damage is 

important in cancer progression [77,78]. Additionally, the data demonstrate that enhanced 

GOLPH3 complex function at the Golgi prevents cancer cell killing by DNA damaging 

chemotherapeutic agents [43,44].

A third role for the GOLPH3 complex in cancer involves driving cell migration. Several 

studies have demonstrated that an increase in Golgi PtdIns(4)P levels or overexpression of 

GOLPH3 each drives increased cell migration, a process which underlies some of the 
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deadliest features of cancer, namely invasion and metastasis [79-81]. Recent work by Xing 

et al. sheds light on the mechanism, demonstrating that the PtdIns(4)P/GOLPH3/

MYO18A/F-actin complex drives cell migration by linking the Golgi to the actin 

cytoskeleton to promote Golgi reorientation toward the wound edge and Golgi-to-PM 

trafficking toward the leading edge [81].

Recently, another protein, PITPNC1, was shown to drive oncogenic transformation via 

GOLPH3 [82]. PITPNC1 drives enhanced secretion of factors that promote tumor 

angiogenesis, invasion, and metastasis. PITPNC1 regulates GOLPH3 localization to the 

Golgi and its oncogenic effects are eliminated upon knockdown of GOLPH3 [82].

Altogether, these data indicate that the GOLPH3 complex drives cancer through regulation 

of Golgi function. Since GOLPH3 represents the first oncogene that acts through Golgi 

secretory trafficking, its further study is likely to provide insight into novel mechanisms of 

oncogenesis. Furthermore, genetic experiments in culture and xenograft mouse models 

suggest that the GOLPH3 complex may be a good target for inhibitors with therapeutic 

potential against cancer [40,44,65].

Conclusion

The oversimplified picture of the Golgi as a constitutive organelle divorced from the rest of 

the cell is misguided. Rather, the Golgi hosts incoming and outgoing signaling pathways that 

broadly influence cell function. Furthermore, Golgi secretory trafficking itself is under the 

control of signals that converge to regulate the GOLPH3 complex. The role of the GOLPH3 

complex in cancer highlights the significance of Golgi secretory function in cell physiology 

and human disease.
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Highlights

• The Golgi hosts signaling events independent of its secretory function.

• Golgi PtdIns(4)P effectors regulate vesicular and non-vesicular Golgi 

transport.

• Signals converge on the GOLPH3 complex to regulate Golgi secretory 

function.

• Oncogenic GOLPH3 and MYO18A implicate Golgi secretory function in 

cancer.
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Figure. 
Summary of some of the regulatory events that occur at the Golgi, as described in the main 

text.

[1] When cholesterol levels are low, SREBP is transported by COPII vesicles from the ER to 

the Golgi. This allows SREBP to be cleaved by Golgi-specific proteases, releasing an N-

terminal fragment that enters the nucleus to activate the transcription of genes involved in 

cholesterol uptake and synthesis.

[2a] In the absence of growth factors, oligomerized SAC1 is transported by COPII vesicles 

and 14-3-3 from the ER to the Golgi, where it dephosphorylates PtdIns(4)P (PI4P) to 

produce PtdIns (PI), resulting in reduced secretory trafficking.

[2b] Growth factor signaling activates the p38/MAPK pathway, which stimulates 

dissociation of SAC1 oligomers and COPI-mediated trafficking of SAC1 from the Golgi to 

the ER. This increases PtdIns(4)P levels at the Golgi, which drives increased anterograde 

trafficking.

[3] FAPP2, which localizes to the trans-Golgi through binding to both PtdIns(4)P and ARF, 

transports glucosylceramide (GlucCer) from the cis- to trans-Golgi to facilitate 

globotriaosylceramide production.

[4] CERT binds to PtdIns(4)P at the Golgi and VAP at the ER, transporting ceramide (Cer) 

from the ER to the trans-Golgi at ER-Golgi contact sites.

[5] OSBP binding to PtdIns(4)P at the Golgi and VAP at the ER allows transport of 

cholesterol (Chol) from the ER to the trans-Golgi at ER-Golgi contact sites.

[6] While RAS signaling is typically thought to occur at the PM, a growing body of 

literature reports RAS localization to the Golgi, where it may trigger signaling that promotes 

cell growth.

[7a] The GOLPH3 complex, involving PtdIns(4)P/GOLPH3/MYO18A/F-actin, links the 

Golgi to the actin cytoskeleton and applies a tensile force to the Golgi membrane which aids 

in vesicle budding for forward trafficking to the PM.
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[7b] DNA damage triggers DNA-PK activation, which phosphorylates GOLPH3 at Thr 143 

and enhances its interaction with MYO18A, resulting in Golgi vesiculation and 

fragmentation. The resulting change in trafficking is required for normal cell survival 

following DNA damage.

[7c] GOLPH3L asserts a dominant-negative effect on the GOLPH3 complex. GOLPH3L 

binds to PtdIns(4)P but is unable to bind to MYO18A.
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