Skip to main content
. 2017 Jun 23;7:4125. doi: 10.1038/s41598-017-04501-2

Table 1.

Overall and individual class classification accuracies of machine-learning classifiers with effective wavelengths. a

Classifier Parameter Calibration set accuracy (%) Prediction set accuracy (%)
Healthy 2 DPI 4 DPI 6 DPI Overall Healthy 2 DPI 4 DPI 6 DPI Overall
SPA-PLS-DA 6 95.00 95.00 50.00 75.00 84.17 80.00 90.00 50.00 70.00 75.00
SPA-RF 71 100.00 100.00 100.00 100.00 100.00 80.00 90.00 90.00 90.00 85.00
SPA-SVM (0.01, 48.50) 100.00 100.00 95.00 95.00 98.33 86.67 90.00 80.00 90.00 86.67
SPA-LS-SVM (33.87, 2.39) 100.00 100.00 100.00 100.00 100.00 90.00 80.00 90.00 90.00 88.30
SPA-ELM 44 100.00 100.00 100.00 100.00 100.00 96.67 100.00 100.00 100.00 98.33
SPA-BPNN 5 100.00 100.00 100.00 100.00 100.00 93.33 100.00 100.00 100.00 96.67

aParameter: number of LVs for partial least squares-discrimination analysis (PLS-DA), number of forest trees for random forest (RF), (C, g) for support vector machine (SVM), (γ, σ2) for least squares support vector machine (LS-SVM), number of nods for extreme learning machine (ELM), and number of neurons in the hidden layer for back propagation neural network (BPNN).