Skip to main content
. 2017 Jun 23;7:4125. doi: 10.1038/s41598-017-04501-2

Table 3.

Classification results of machine-learning models with data fusion combining optimal wavelengths and texture features. a

Classifier Parameter Calibration set accuracy (%) Prediction set accuracy (%)
Healthy 2 DPI 4 DPI 6 DPI Overall Healthy 2 DPI 4 DPI 6 DPI Overall
PLS-DA 2 93.33 100.00 45.00 65.00 81.67 90.00 90.00 80.00 50.00 81.67
RF 62 100.00 100.00 100.00 100.00 100.00 93.33 90.00 90.00 100.00 93.33
SVM (1.00, 1.00) 100.00 80.00 80.00 100.00 93.33 93.33 80.00 70.00 100.00 88.33
LS-SVM (33.52, 9.88) 100.00 100.00 100.00 100.00 100.00 100.00 90.00 90.00 100.00 96.67
ELM 60 100.00 100.00 100.00 100.00 100.00 96.67 90.00 70.00 90.00 90.00
BPNN 6 98.33 100.00 95.00 100.00 98.33 96.67 90.00 90.00 100.00 95.00

aParameters and abbreviations as in Table 1.