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Spatiotemporal dynamics of 
grassland aboveground biomass on 
the Qinghai-Tibet Plateau based on 
validated MODIS NDVI
Shiliang Liu, Fangyan Cheng, Shikui Dong, Haidi Zhao, Xiaoyun Hou & Xue Wu

Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland 
environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging 
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used 
to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In 
our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, 
and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate 
MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000–2012 
were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, 
with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow 
showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated 
using a combined analysis of the slope values and the Hurst exponent. The results showed high 
sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe 
and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain 
in degradation, with most of them distributing in Tibet.

The Qinghai-Tibet Plateau (QTP) is the largest geographical unit with the highest elevation on earth where grass-
land ecosystems dominate over 50% of whole plateau area1. It is also an important ecological and environmental 
area for water reservation, climate regulation and biodiversity conservation in the world and especially in Asia2. 
As an ecosystem that is highly sensitive to climate change, the grassland ecosystems of the QTP have increasingly 
become a popular research object for studying the global carbon cycle3, 4. Consequently, the aboveground biomass 
(AGB) in grassland ecosystems, which partially represents primary production, acts as a significant indicator of 
vegetation activity. Moreover, examining the spatial pattern of AGB dynamics can make contributions towards 
better understanding the responses of the grassland ecosystem to climate change, ultimately informing ecological 
regulation as well as regional policy-making5–7.

Traditional measurement of AGB by clipping and laboratory chemical analyses is destructive and expensive, 
and is constrained in terms of both temporal scale and spatial reach8, 9. With the development of remote sensing 
technology, satellite data with various temporal and spatial resolution are now widely used to study vegetation 
activities10–13. For instance, the normalized difference vegetation index (NDVI) is a vegetation index derived 
from reflectance in red and near-infrared wavebands, and has been demonstrated to be strongly correlated 
with grassland AGB in numerous studies14–18. The Moderate Resolution Imaging Spectro-radiometer (MODIS) 
NDVI products, which have high temporal and spatial resolution, have been applied in scientific research19–21. 
Furthermore, measurement of AGB using MODIS-NDVI products would overcome the shortcomings of tradi-
tional measurement, offering increased effectiveness.

Recent studies reported that some of the MODIS products, including LAI and fPAR, were not consistent 
with those derived from field measurements22, 23. Therefore, validation of the MODIS products is necessary to 
utilize these satellite products effectively. Such validation requires appropriate ground-based validation tech-
niques or higher spatial resolution satellite data24, 25. Recently, portable spectrometers have been widely used 
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for field measurements and are applicable for validating MODIS-NDVI data24, 26. After measuring the reflected 
radiation from plant canopies, NDVI data can be obtained using field portable spectrometers and remote sensing 
techniques27, 28. Spectrometers have a considerable advantage because they are not affected by atmospheric signal 
attenuation, and they measure the reflected radiation in fine spatial detail29.

Dynamic trend analysis of vegetation includes both the prevalent directions of vegetation dynamics in 
time-series during the study period, as well as possible directions of vegetation dynamics after the study period30. 
Among the methods that have been developed to explore the spatiotemporal dynamics of vegetation, linear 
regression analysis is the most widely used. The Hurst index, which calculates estimates through the R/S (Rescaled 
Range) analysis method, is mostly used to predict vegetation trends31. The Hurst exponent base method is useful 
for long time-series systems, even multi underlying activities systems, and can be better suited than correlation 
models to simulate future vegetation change under uncertainties in future climate changes. Although numerous 
studies have explored the relationship between NDVI and AGB in QTP grasslands and analyzed change trends of 
AGB, few studies have systematically analyzed spatial and temporal dynamic patterns of AGB in the QTP grass-
lands. Moreover, few studies have predicted future dynamic trends of AGB, and to date, the Hurst exponent has 
not been used for grassland AGB trend prediction in the QTP.

In this study, we investigated AGB and grassland canopy reflectance data from 64 plots in alpine steppe and 
meadow grasslands across the QTP during the growing season of 2013. High spatial resolution NDVI derived 
from a field spectrometer was used for validating the MODIS-NDVI data. The spatial and temporal patterns of 
grassland AGB of the QTP during 2000–2012 were then examined based on the established relationship between 
NDVI and AGB. Moreover, we also estimated the consistency of AGB dynamics after the study period. It is 
expected that understanding the variation characteristics and patterns of AGB in the QTP grasslands will pro-
mote ecological protection and management.

Results
MODIS-NDVI calibration.  Plots 1–16 and 33–47 were in meadow grasslands, and plots 17–32 and 48–64 
were in steppe grasslands. The NDVI values varied substantially across the plots because of differences in grass-
land density, ages, and types. Also, the values for the meadow plots were greater than for the steppe plots (Fig. 1). 
The NDVI values of the meadow plots, derived either from the MODIS or the field-measured reflectance data, 
were all greater than 0.5, while those for the steppe plots were less than 0.5.

Although the MODIS-NDVI followed temporal patterns similar to the field-measured data, most of the NDVI 
calculated from field-measured canopy reflectance had smaller values compared with MODIS-NDVI at each 
sampling plot (Fig. 1). To calibrate the MODIS-NDVI data, four regression models (linear, exponential, log, 
and power functions) for each paired MODIS-NDVI and field-measured NDVI were estimated and compared 
(Fig. 2). The NDVI could be well simulated by these four regression models, and the best coefficient of determi-
nation (R2) and root mean square error (RMSE) were obtained while using linear regression, which indicated that 
the linear function performed best for calibrating MODIS-NDVI.

Regression models of AGB and NDVI.  The field-recorded AGB values of the meadow plots were relatively 
high, with an average AGB value of 706.7 kg/hm2, while, by comparison, the average AGB value of the steppe 
plots was 498.7 kg/hm2. The vegetation types, height, composition, and other properties are substantially different 
between the meadow and steppe, which could produce different AGB values even given the same NDVI values. 
The relationships between field-measured NDVI values and AGB were respectively explored for the meadow and 
steppe using the regression models (Fig. 3). Correlations between NDVI and AGB for the two grassland types 
were significant (p < 0.001) and met the assumptions for statistical analyses. For meadow grasslands, our analyses 
showed that a linear regression of yield as a function of AGB, expressed as NDVI, fits better than the exponential, 
log or power functions. The power function, with the R2 value of 0.63 and the RMSE of 146.498, was best suited 
for the estimation of the AGB in the steppe.

Figure 1.  Comparison of NDVI calculated from MODIS and field-measured canopy reflectance data.
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Spatiotemporal patterns of AGB.  Using models established between NDVI and AGB, the averaged spa-
tial distribution patterns of the grassland AGB in the QTP from 2000 to 2012 were estimated (Fig. 4a). The 
grassland AGB showed an increasing trend from northwest to southeast, and grasslands that had estimated AGB 
greater than 1000 kg/hm2 were mainly distributed in the eastern part of the QTP. Overall, more than 50% of the 
grassland estimated AGB was lower than 250 kg/hm2, and the average estimated AGB of meadow and steppe were 
423.7 and 227.7 kg/hm2, respectively.

The AGB of the grasslands in the QTP increased during the study period, with slope values estimated from the 
linear regression analysis of the annual average AGB to be 0.315 and 0.134 for the meadow and steppe, respec-
tively. This was also seen from the change trend analysis of AGB for all of the pixels (Fig. 4b). 70% of the grass-
lands experienced significant or non-significant increases in estimated AGB during the study period. Moreover, 
distinct spatial differentiation was observed in the change trends of estimated AGB. The grasslands that exhibited 
significant increases were mainly located in Qinghai Province, and the grasslands that exhibited significant or 
non-significant decreases were mainly located in Tibet.

Sustainability of the AGB dynamic trend.  Applying the R/S analysis to every pixel, the results showed 
that the regions with Hurst exponent greater than 0.5 accounted for 85.64% of the grasslands, which were primar-
ily distributed in Qinghai Province and northern Tibet (Fig. 5). This indicates that the AGB dynamic trends of 
the grasslands were positively sustainable in the QTP. The average Hurst exponent value was 0.68 for steppe, and 
0.66 for meadow, which meant that the steppe as a whole would have a higher sustainability level of AGB dynamic 
trends after the study period.

Coupled information of variation in trends and the sustainability of AGB combined analysis of slope 
and Hurst exponent (Fig. 5). The future AGB dynamic trends were uncertain when the grasslands showed 
anti-sustainability. The grasslands showing sustainability and improvement in AGB accounted for 60% of the 
total grassland, and those with sustainability and degradation accounted for 25%, which was mainly distributed 

Figure 2.  Regression models (linear, exponential, log, and power functions) of MODIS-NDVI and field-
measured NDVI.

Figure 3.  Regression models (linear, exponential, log, and power functions) of field recorded aboveground 
biomass and field-measured NDVI for the meadow and steppe.
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in Tibet. Furthermore, 63% of the meadow and 58% of the steppe would consistently experience an upward trend 
in AGB values, while only 21% and 28% of the meadow and steppe would respectively show a downward trend.

Discussion
Application of field-measured spectrometer.  Although remote sensing has been demonstrated to be 
an effective approach for characterizing AGB, few studies have examined the accuracy of the remote sensing data 
before using them. Some previous studies have explored the validation of MODIS products, including NDVI and 
GPP, using ground-measured spectra in Inner Mongolia and other regions of China26, 32, 33. However, few studies 
have focused on validating the MODIS-NDVI dataset in the QTP.

Ground measurements of grassland vegetation reflectance spectra are critical to evaluating uncertainties in 
MODIS-NDVI data that are derived from vegetation reflectance32. Lower quality MODIS-NDVI values were 
mainly due to the difficulties of “seeing” the surface because of frequent cloud cover34, and field-measured spectra 
overcome these difficulties. Moreover, the hyperspectral spectrometer used in this study has been demonstrated 
to be applicable for validating remote sensing data24, 35. In addition, the difference in scale between the field 
measurements and the remote sensing products will introduce some errors and biases into the validation19, 25, 26. 
To resolve this problem, we utilized a high-resolution MODIS-NDVI dataset and averaged the “point” measure-
ments to represent the surface level in each vegetation plot under investigation, and the plot was designed to be 
as large as possible.

Figure 4.  Spatial distribution of the mean aboveground biomass (a) and the change trend in estimated 
aboveground biomass (b) from 2000 to 2012 in the grasslands of the Qinghai-Tibet Plateau. The map was edited 
and generated with ArcGIS 10.2.2, http://www.esri.com/.

Figure 5.  Spatial distribution of the AGB dynamics in the future based on trends during the study period and 
the Hurst exponent. S: sustainability; Anti-s: anti-sustainability; sd: significant decrease; non-sd: non-significant 
decrease; si: significant increase; non-si: non-significant increase. The map was edited and generated with 
ArcGIS 10.2.2, http://www.esri.com/.

http://www.esri.com/
http://www.esri.com/
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In our study, the field-measured NDVI and MODIS-NDVI data followed similar temporal patterns, which, 
to some extent, indicates the feasibility of our method. MODIS-NDVI is higher than field-measured NDVI from 
our findings is consistent with recent reports. Such difference is mainly due to the distinction in the sensor and 
band setting between our field (Equation 1) and MODIS-NDVI36, 37. MODIS data adopts the first two bands to 
calculate NDVI, and the bandwidths for the first and second band are 0.620–0.670 and 0.841–0.876, respectively. 
By contrast, in our calculation the bands were set at 0.680 and 0.800 for the red and near-infrared band.

Furthermore, the regression models established between the field-measured NDVI and AGB values in the 
steppe and meadow provide a new method for investigating AGB in QTP grasslands. Based on these regression 
models, the estimated AGB could be obtained simply using a handheld hyperspectral spectrometer in the field.

Spatiotemporal patterns of AGB in the grasslands of QTP.  Using regression models of the relation-
ship between NDVI and AGB, spatiotemporal dynamics of AGB in QTP grasslands were investigated using val-
idated MODIS-NDVI data during 2000–2012. The overall mean estimated AGB for the studied grasslands was 
relatively low (423.7 and 227.7 kg/hm2 for meadow and steppe, respectively). These estimated AGB values were 
smaller than those of some previous studies38, which may be due to the higher NDVI values those studies used to 
calculate AGB. The results from this study suggest an obvious increasing trend in estimated AGB from northwest 
to southeast in QTP grasslands. This heterogeneous pattern is mostly correlated with the distribution of different 
grassland types, which might be the result of differences in climatic factors and soil properties.

Due to the different sampling strategies and the large estimated unit (10 km × 10 km) of AGB in this study, 
it is hard to directly compare our results with the field data in the past. Therefore, we chose the model of 
MODIS-NDVI and AGB constructed at the QTP in previous studies, and compared the predicted results deter-
mined by previous models alongside ours in order to evaluate the applicability of our models (Fig. 6). The spatial 
distribution of estimated AGB from different models was very similar, namely an increase in AGB from northwest 
to southeast. However, the value range of estimated AGB varied greatly among these models. The estimated AGB 
of Fang et al.39 and Feng et al.40 significantly overestimated the AGB of QTP grassland. In addition, Chu et al.41 
also overestimated the AGB, given that the estimated AGB from Chu’s model reached as high as 2,378 kg/hm2 
when the NDVI is 0.8. Our models are desirable in terms of the value range and spatial distribution, though there 
are still some shortcomings.

Figure 6.  Spatial distribution of the mean aboveground biomass from 2000 to 2012 in the grasslands of the 
Qinghai-Tibet Plateau by different MODIS NDVI-AGB models. (a) Estimated by models of this study, (b) by 
Fang et al.39, (c) by Feng et al.40, and (d) by Chu et al.41. The map was edited and generated with ArcGIS 10.2.2, 
http://www.esri.com/.

http://www.esri.com/
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As mentioned in Methods section, both differences in the relationships between NDVI and AGB on the 
sub-vegetation type and flowers contamination will increase the uncertainty of our models36, 42. We did not dis-
cuss the potential uncertainty of estimated aboveground biomass due to sub-vegetation type in this study, but 
this will be addressed in following studies. Therefore, our discussion focused only on the impact of flower con-
tamination. After removing severe flower-contaminated plots (coverage of large flower species above 20%), we 
rebuilt these NDVI and AGB models. Based on the rebuilt models, the effect of flower contamination is infinites-
imally small for steppe, but it also indicates that our results might slightly overestimate AGB of meadow (Fig. 7). 
Therefore, further studies need to expand field samples to further quantify the effect of flower contamination on 
AGB estimation.

Linear regression analysis suggests an increasing trend of AGB during the study period. Previous studies that 
explored trends of grassland dynamics in the QTP using NDVI time-series also showed that the grasslands expe-
rienced upward trends in recent years2, 43. The primary factors influencing grassland dynamics are anthropogenic 
activities and climate change, and the grassland improvement is likely to be driven by the interaction of climate 
warming and human pressures2, 44–46. Distinct spatial differentiation of the change trends in estimated AGB was 
observed in Fig. 4b. The grasslands that showed decreasing trends were mainly distributed in the Tibet region, 
while the grasslands that experienced upward trends were mainly in the Qinghai Province. The spatial differenti-
ation of the grassland AGB dynamics occurred as a result of the regional differences of climate change and human 
activities. For example, growing numbers of people and livestock in Tibet have caused grassland degradation, 
while a variety of ecological projects have been implemented in the Three-River Headwaters region of the Qinghai 
Province to restore and protect the grasslands44, 47, 48.

The combined analysis of the slope values and Hurst exponent has revealed the future tendency of AGB in the 
grasslands of QTP. As shown in Fig. 5, the Hurst exponent values for most of the grassland pixels were above 0.5, 
which indicated a high sustainability of AGB dynamic trends subsequent to the study period. More than half of 
the steppe and meadow grasslands would keep improving in AGB in the future. However, it is worth noting that 
25% of the grasslands, mostly in Tibet, will continue to degrade. Therefore, appropriate measures and policies 
should be taken to prevent continuing grassland degradation in Tibet.

Materials and Methods
Study area.  The Qinghai-Tibet Plateau (26°00′12″N–39°46′50″N, 73°18′52″E–104°46′59″E) is located in 
western China and covers the entirety of Tibet, Qinghai, and parts of Xinjiang, Gansu, Sichuan, and Yunnan 
Provinces in China (Fig. 8). It is the highest and largest plateau on earth, as the total area of the QTP is approx-
imately 2.61 × 106 km2 and the average elevation is over 4 km. The complex terrain and variable boundary con-
ditions of the QTP create unique weather and climatic characteristics, which are cold and arid in the winter, and 
warm and moist in the summer49, 50. Grasslands, mainly composed of meadows and steppes, are the dominant 
vegetation type across much of the QTP. With the climate varying from cold-dry in the northwest to warm-wet in 
the southeast, the grassland types vary from steppe in the northwest to meadow in the southeast (Fig. 8).

Experimental Design
A field survey was carried out in July and August in 2013 when the grasslands had peak biomass. According to 
vegetation map, topographic map, and road distribution maps of the QTP, we selected four sampling sites with 
the principle of reachability and typicality. In our field survey, we adopted a comprehensive sampling method to 
acquire more accurate values of AGB; in total, 576 small quadrats were included in these 64 plots (Fig. 8). This 
sampling method was recommended by Hankins et al.51 in 2005 for grassland survey rather than brief full cover-
age sampling. In fact, the distribution of our plots in every site was not very close—at least 1 km, approximately—
and we also considered the spatial variation of different grassland types. In addition, at each plot, we ensured 

Figure 7.  Comparison models based on all plots (original model) and selected plots (removed flower 
contaminated plots, modified model).
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that the landscape was homogeneous within the corresponding pixel of the MODIS-NDVI product. There are 
many “no man’s lands” distributed in the western region of the QTP, including Altun National Nature Reserve, 
Changtang Nature Reserve, Hoh Xil Nature Reserve, etc. These regions were inaccessible and had high elevation 
and limited trafficability of land surfaces. Besides, the operational condition of hyperspectral spectrometer is 
strict, requiring sunny and cloudless weather.

Eventually, thirty-one plots were recorded in Qumarleb County and Nagchu County, where the grassland 
type was meadow, and 33 plots were recorded in Quma River Township and Baingoin County, where the grass-
land type was steppe. Such sampling sites were also the representative sampling areas in some other studies. 
Conventionally, the dominant plant species in the QTP grasslands are sedges and grasses, including Poa crymo-
phila and Kobresia humilis in the meadow, and Stipa purpurea in the steppe. In our sampling sites, the identified 
dominant plant species conformed to these conventions. Moreover, sampling plots were randomly selected from 
the geographic map in each site. The sampling plots were enlarged in Fig. 8a.

At each field sampling plot, we randomly selected a circle with a 30 m radius, and the vegetation was sampled 
using the methods put forward by Hankins et al.51. Three transects with nine 1 m × 1 m quadrats were placed in 
each circle, and each quadrat was divided into a 10 × 10 grid with 100 intersecting points to investigate the vegeta-
tion types, heights, frequency, and coverage. We obtained vegetation biomass data using the clip-harvest method 
in the quarters of each quadrat52, and the total biomass was weighed after drying at 60 °C to a constant weight. At 
each sampling plot, the average biomass value of the nine quadrats was used to represent the grassland biomass.

Grassland canopy reflectance data were collected under clear sky conditions using a handheld, single-channel 
hyperspectral spectrometer (UniSpec-SC, PP Systems, Amesbury Mass, USA). One point was randomly selected 
in each quadrat to measure the canopy reflectance. The ground resolution for the canopy reflectance measure-
ment was approximately 0.39 m2, depending on the height of the probe. The spectral data were processed to 
reflectance in the 400–1,000 nm range using MultiSpec software with a spectral resolution of 1 nm35.

NDVI data.  The MODIS-NDVI dataset used in this study was acquired from the National Aeronautics and 
Space Administration (available at http://daac.gsfc.nasa.gov/). Data from 2000 to 2012 with a spatial resolution 
of 1 km × 1 km and a temporal resolution of 16 days were used for the dynamic change analysis. To obtain the 
NDVI values that represented the period with the greatest abundance of vegetation within a year, the maximum 
value composite method was used to compose the annual NDVI of each raster53, 54. The value of the maximum 
compiled annual NDVI also eliminated the negative influence of seasonal changes in vegetation cover in different 
areas55. The annual NDVI data from 2000 to 2012 with 1 km × 1 km spatial resolution was reset to 10 km × 10 km 
using an aggregate method in ArcGIS toolbox.

The MODIS-NDVI data from July to August in 2013, when the survey was conducted, were compared with 
the measured data. The spatial resolution of the MODIS-NDVI data was different from that used for the dynamic 
change analysis, which was 250 m × 250 m. The MODIS pixels at the locations of the sampling plots were extracted 
separately for analysis. The measured NDVI was calculated from the reflectance using the following formula:

=
−
+

NDVI R R
R R

( )
( ) (1)

800 680

800 680

Figure 8.  Location of the study area and distributions of the sampling sites. The words represent provinces 
in the Qinghai-Tibet Plateau. 1, 2, 3, and 4 represent sites of Baingoin County, Nagchu County, Quma River 
Township, and Qumarleb county, respectively. (a) Distributions of total 64 plots in four sites. (b) Distribution of 
9 quadrats in each plot. The map was edited and generated with ArcGIS 10.2.2, http://www.esri.com/.

http://daac.gsfc.nasa.gov/
http://www.esri.com/
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where R800 and R680 are the reflectances at 800 nm and 680 nm, respectively. The wavelength selection was based 
on previous studies that used 680 nm as the red waveband and 800 nm as the near infrared waveband to calculate 
a narrow-band NDVI24, 35, 56. The average NDVI values of the nine quadrats were used to represent the NDVI 
value at each plot.

Analysis of dynamics of aboveground biomass.  In this study, regression models constructed by 
MODIS-NDVI and corresponding field-measured NDVI was used to calibrate MODIS-NDVI data during the 
period 2000 to 2012. We also regressed plot-specific AGB against corresponding field-measured NDVI data and 
established the relationship between the AGB and the calibrated MODIS-NDVI to estimate AGB at each pixel. 
NDVI could saturate at high vegetation density (typically with LAI higher than 3.0 for grassland)57–59. That is, 
NDVI increases little at LAI higher than 3.0 regardless of the further increase of LAI or biomass37. In our study, 
we did not consider the saturation condition of LAI in the AGB calculation as a whole, as there were no plots with 
NDVI larger than 0.8 in our field survey. Also, considering the LAI for most areas of Qinghai-Tibet plateau is less 
than 3 even in the growing season60, the AGB calculation in general is reasonable.

The relationship between NDVI and AGB depends on the vegetation type or sub-vegetation type42. However, 
through the field survey and the analysis of all species in each plot, we found that the dominant species of most 
plots are mainly Gramineae and Cyperaceaem families. In total, we analyzed that the important values of spe-
cies belonging to these two families ranked first in 78% of the total plots. Besides, for some degraded alpine 
meadow, the NDVI could also be contaminated by flowers that are on the top of canopy36, affecting the relation-
ship between AGB and NDVI. However, most samples were dominated by Gramineae and Cyperaceae families, 
and only four plots showed coverage of large flower species (i.e., Polygonum viviparum, Potentilla chinensis) above 
30%. Therefore, flower contamination is not considered to explain our findings.

Linear regression analysis, which is simple and robust, is widely used for estimating vegetation change61. This 
method can simulate the vegetation change of each grid, thereby enabling the spatial characteristics of vegetation 
change to be determined55. In this method, time is the independent variable, and the AGB value of each pixel is 
the dependent variable; the slope of the linear regression of each pixel then is used to indicate the trend of AGB 
change across the period of interest30:

=
× ∑ × − ∑ ∑

× ∑ − ∑
= = =

= =

slope
n i AGB i AGB

n i i( ) (2)
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i i
n

i
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i

i
n

i
n

1 1 1

1
2

1
2

where n is the number of study years (13 in this study), i is the serial number of the year, and AGBi is the AGB for 
year i. A positive grid slope corresponds to an increasing trend in AGB change over the 13 years, and a negative 
value corresponds to a decreasing trend in AGB change. To evaluate AGB change qualitatively, the slope values 
of all of the grids were classified into four levels: significant decrease (slope < −10), non-significant decrease 
(−10 ≤ slope < 0), non-significant increase (0 ≤ slope < 10) and significant increase (slope ≥ 10).

The Hurst exponent represents the changing trend based on previous long and positive time-series. For exam-
ple, when the vegetation has a longer history of increasing AGB, the AGB status is more likely to be positively sus-
tainable. Theoretically, the Hurst exponent is not affected by the magnitude of fluctuations, but by the sequential 
ordering of the fluctuations62. Therefore, this approach based on the Hurst exponent is extremely useful when a 
wide range of underlying activities exist within a system over a measured length of time63. Therefore, the predic-
tion of Hurst exponent is based on the historical AGB conditions, and the prediction from Hurst exponent can 
well explain the trend of AGB under climate change and human activities. The Hurst exponent was calculated 
using the R/S analysis procedure: H is the Hurst exponent, which determines the randomness of the time series, 
and is obtained by fitting the equation log(R/S)τ = a + H × log(τ) by the least squares method. When the Hurst 
exponent is equal to 0.5, the time series is random and without sustainability. When the value is closer to 0.5, the 
time series is more strongly random. When the value is greater than 0.5, the change trend of the future time-series 
is consistent with that in the study period, and a larger value means more sustainability. On the other hand, when 
the value is less than 0.5, the time-series will experience an opposite trend in the future, and smaller values indi-
cate less sustainability over time.
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