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Analyzing neural dynamics underlying complex behavior is a major
challenge in systems neurobiology. To meet this challenge through
computational neuroscience, we have constructed a brain-based
device (Darwin X) that interacts with a real environment, and
whose behavior is guided by a simulated nervous system incor-
porating detailed aspects of the anatomy and physiology of the
hippocampus and its surrounding regions. Darwin X integrates
cues from its environment to solve a spatial memory task. Place-
specific units, similar to place cells in the rodent, emerged by
integrating visual and self-movement cues during exploration
without prior assumptions in the model about environmental
inputs. Because synthetic neural modeling using brain-based de-
vices allows recording from all elements of the simulated nervous
system during behavior, we were able to identify different func-
tional hippocampal pathways. We did this by tracing back from
reference neuronal units in the CA1 region of the simulated
hippocampus to all of the synaptically connected units that were
coactive during a particular exploratory behavior. Our analysis
identified a number of different functional pathways within the
simulated hippocampus that incorporate either the perforant path
or the trisynaptic loop. Place fields, which were activated by the
trisynaptic circuit, tended to be more selective and informative.
However, place units that were activated by the perforant path
were prevalent in the model and were crucial for generating
appropriate exploratory behavior. Thus, in the model, different
functional pathways influence place field activity and, hence,
behavior during navigation.
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Analyzing the complexities of neural dynamics underlying
behavior is a difficult task for systems neurobiologists. A

number of factors contribute to this complexity: the variability
of behavior, the multilevel nature and nonlinearity of neural
interactions, and the large number of neurons in different
functioning brain regions. These factors challenge the design of
experimental approaches as well as the construction of compu-
tational models. For this reason, we have constructed brain-
based devices (BBDs) whose behavior in a real world environ-
ment is guided by a simulated nervous system based on features
of vertebrate neuroanatomy and neurophysiology. The power of
this approach is that it allows simultaneous recording of the state
and interactions of all components of the simulated nervous
system at all levels during a behavioral task in the real world.
Here, we describe a functional analysis of neural patterns in
Darwin X, a BBD incorporating aspects of the detailed anatomy
and physiology of the hippocampus and its surrounding regions
(1). Over the last 12 years, we have successfully constructed
BBDs to test theories of the nervous system having to do with
perceptual categorization, primary and secondary conditioning,
visual binding, and texture discrimination (2–6).

Darwin X can integrate cues from its environment and
provide flexible navigation solutions to spatial memory tasks.
The responses of simulated neuronal units in the hippocampal
areas during its exploratory behavior are comparable to those of
neurons in the rodent hippocampus. By simultaneously sampling
from the BBD’s neural regions during a navigation task, we are

able to identify different functional hippocampal pathways and
assess their influence on behavior. We introduce an analysis that
traces back from any reference neuronal unit to identify all of the
other neuronal units that were anatomically and functionally
related to the activity of that reference unit. This analysis leads
us to predictions about the influence of the perforant path and
the trisynaptic loop on place cell activity and behavior during
navigation that can be tested in living animals.

Materials and Methods
Task and Training. Spatial memory in Darwin X was assessed in a
dry variant of the Morris water maze task (7) in which the BBD
is rewarded by finding a hidden platform. Successful perfor-
mance of this task is reflected by the BBD navigating to the
hidden platform from any starting position by using only visual
landmarks and self-movement cues. Darwin X was allowed to
explore an enclosure in which there were visual landmarks on the
walls and a circular ‘‘hidden platform’’ of reflective black paper
(see Fig. 1). The platform could not be detected by the visual
system of Darwin X, but was detectable at close range by an IR
sensor on the front of the device.

Darwin X began a trial from one of four starting locations (see
Fig. 1A) and explored the enclosure until it encountered the
hidden platform or until a time limit of 1,000 s was reached. A
training block was defined as a set of four trials from each of four
starting locations. Four blocks (16 trials) were completed by the
device during training. Training was repeated with nine different
Darwin X ‘‘subjects.’’ Each subject consisted of the same phys-
ical device, but each possessed a unique simulated nervous
system differing at the level of synaptic connections. These
differences among subjects were a consequence of random
initialization of both the microscopic details of connectivity
between individual neuronal units and the initial connection
strengths between those units. The overall connectivity among
neuronal units remained similar among different subjects: con-
nectivity was constrained by the synaptic pathways, arborization
patterns, and ranges of initial connection strengths (see Fig. 2
and Supporting Text and Tables 2 and 3, which are published as
supporting information on the PNAS web site).

Physical Instantiation. The physical device portion of Darwin X
consists of a wheeled mobile base equipped with a charge-
coupled device camera for vision, odometry for self-movement
cues, IR transceivers for obstacle avoidance, and a front
mounted, downward pointing IR transceiver to detect the hidden
platform (see Fig. 1B). Light-emitting diodes on top of Darwin
X, detectable by two cameras placed over the enclosure, were
used to track Darwin X’s position.

Darwin X was equipped with a set of innate behavioral
responses for exploration, obstacle avoidance, and platform
detection. Its default behavior was to proceed forward for �10
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s, rotate to its left, then to its right, and then choose a new
heading based on activity in the motor area region of its
simulated nervous system (see MHDG in Fig. 2). If Darwin X
detected a large obstacle such as a wall with its IR sensors, it
would initiate an obstacle avoidance response. If it detected the
hidden platform with the downward facing IR sensor, Darwin X
would stop on the platform and look to its left, then to its right
before ending a successful trial.

Simulated Nervous System. Darwin X’s behavior is guided by a
simulated nervous system modeled on the anatomy and physi-

ology of the vertebrate nervous system but, obviously, with far
fewer neurons and a much less complex architecture. The neural
simulation was run on a BEOWULF cluster containing 12 1.4-GHz
Pentium IV computers running the Linux operating system. All
sensory input from the device and motor commands to the
device were communicated through wireless links between the
device and one of cluster’s workstations.

The simulated nervous system consists of a number of areas
labeled according to the analogous neocortical, hippocampal,
and subcortical brain regions. Each area contains neuronal units
that can be either excitatory or inhibitory, each of which
represents a local population of neurons (8). To distinguish
modeled areas from corresponding regions in the mammalian
nervous system, the simulated areas are indicated in italics (e.g.,
IT for ‘‘inferotemporal’’). A complete description of the specific
parameters relating to the simulated nervous system is given in
ref. 1 and is included in Supporting Text and Tables 2 and 3.

Fig. 2 shows a high-level diagram of the simulated nervous
system including the various neural areas and the overall ar-
rangement of synaptic connections. In the present experiments,
the simulated nervous system contained 50 neural areas, 90,000
neuronal units, and �1.4 million synaptic connections. It in-
cluded a visual system, a head direction system, a hippocampal
formation, a basal forebrain, a value or reward system, and an
action selection system.

A neuronal unit in Darwin X is simulated by a mean firing rate
model, in which the activity of each unit corresponds to the
average activity of a group of �100 real neurons during a time
period of �200 ms. Synaptic connections between neural units,
both within and between neuronal areas, are set to be either
voltage-independent or -dependent, and either plastic or non-
plastic (see Fig. 2 and Supporting Text). Voltage-independent
connections provide synaptic input regardless of postsynaptic
state. Voltage-dependent connections represent the contribu-
tion of receptor types (e.g., NMDA receptors) that require
postsynaptic depolarization to be activated (9, 10). Synaptic
strengths are subject to modification based on the Bienenstock–
Cooper–Munro (BCM) learning rule (11), where synapses be-
tween neuronal units with strongly correlated firing phases are
potentiated and synapses between neuronal units with weakly
correlated phases are depressed. Plastic synaptic connections are
either value-independent or value-dependent (e.g., CA1 3 S,
CA1 3 MHDG in Fig. 2 and Supporting Text), where the magni-
tude of potentiation or depression of connection strengths is
based on a neural implementation of a temporal difference
learning rule (12, 13).

During each simulation cycle in Darwin X, sensory input is

Fig. 1. Layout of the enclosure used for the hidden platform task. (A) Schematic of the environment. Enclosure is 16 feet � 14 feet with black walls and flooring.
Pieces of differently colored paper of varying widths were hung on each of the walls. A hidden circular platform, 24 inches in diameter and made of reflective
black paper, was placed in the center of a quadrant in the enclosure. Each trial began in one of four starting locations (see numbers 1–4 in the diagram). (B)
Snapshot of Darwin X in its environment.

Fig. 2. Schematic of the regional and functional neuroanatomy of Darwin X.
Gray ellipses denote different neural areas. Arrows denote projections from
one area to another. (A) Diagram of cortical-hippocampal connectivity. Input
to the neural simulation comes from a charge-coupled device camera, wheel
odometry, and IR sensors for wall and platform detection. The simulation
contains neural areas analogous to visual cortex (V1, V2�4), the inferotem-
poral cortex (IT), parietal cortex (Pr), head direction units (HD), anterior
thalamic nuclei (ATN), motor areas for egocentric heading (MHDG), a value
system (S), and positive and negative reward areas (R�, R-). The hippocampus
is connected with the three major sensor input streams (IT, Pr, ATN), the motor
system (MHDG), and the value system (S). The hippocampus receives rhythmic
inhibition from a simulated basal forebrain region (BF). (B) Diagram of con-
nectivity within the hippocampal region. The modeled hippocampus contains
areas analogous to entorhinal cortex (ECIN, ECOUT), dentate gyrus (DG), and the
CA3 and CA1 subfields. These areas contain interneurons that implement
feedback inhibition (e.g., CA33 CA3FB3 CA3) and feed-forward inhibition
(e.g., DG3 CA3FF 3 CA3). See supporting information for details.
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processed, the states of all neuronal units are computed, the
connection strengths of all plastic connections are determined,
and motor output is generated. In our experiments, execution of
each simulation cycle required �200 ms of real time. During
each simulation cycle, all neuronal activities were saved on a
hard disk, and Darwin X’s position was recorded.

The visual system was modeled on the primate occipitotem-
poral pathway and an occipitoparietal pathway. The occipito-
temporal pathway (V1�color 3 V2�4�color 3 IT) contained
neuronal units in successive areas having progressively larger
receptive fields until, in inferotemporal cortex (IT), receptive
fields covered nearly the entire visual field (14). The occipitopa-
rietal pathway (V1�width 3 V2�4�width 3 PR) contained neu-
ronal units that responded to the size and position of objects
(15). A head direction system was modeled after areas of the
rodent nervous system (e.g., anterior thalamic nuclei) that
respond selectively to an animal’s heading (16, 17). Odometer
information obtained from Darwin X’s wheels was used to
estimate current heading.

Hippocampal Anatomy. The architecture of the simulated hip-
pocampal formation (1) was based on mammalian neuroanat-
omy. The input streams into the hippocampus are from the
associative thalamocortical areas in the simulation (see Fig. 2
and Supporting Text). The relative numbers of neuronal units in
each area, and the intrinsic and extrinsic connectivity of the
hippocampus were modeled based on known anatomical mea-
surements (18–20). The perforant path projects from entorhinal
cortex mainly to the dentate gyrus but also to the CA3 and CA1
subfields. Mossy fibers, Schaffer collaterals, and divergent pro-
jections from the hippocampus back to thalamocortical areas
were also modeled in the neural simulation. Moreover, the
prevalent recurrent connectivity found in the hippocampal for-
mation was included in the model. A simplified model of the
basal forebrain provided an extrinsic rhythm, whose function was
to gate input into the hippocampus and keep activity levels
stable.

Activity in the simulated value system (S in Fig. 2) signals the
occurrence of salient sensory events. This activity contributes to
the modulation of value-dependent connection strengths in
synaptic pathways (CA13 S and CA13MHDG). The projection
from the simulated CA1 area to the value and goal decision areas
is consistent with the known connectivity between CA1 and
nucleus accumbens and frontal areas (21, 22). Initially, S is
activated only by the hidden platform IR detector (see R� 3 S
in and Fig. 2), causing potentiation of value dependent connec-
tions, or by obstacle avoidance IR detectors (see R�3 S in Fig.
2), causing depression of value-dependent connections. After
experience, the value system could be activated directly by CA1
activity. For implementation details, see Supporting Text.

Backtracing of Functional Pathways. We have developed a method
that traces functional pathways by choosing a particular refer-
ence neuronal unit at a specific time and recursively examining
all neuronal units that caused the observed activity in this
reference unit. We call this iterative method a backtrace. In this
study, we chose reference neuronal units in the CA1 region
whose activity affected motor output units, which caused the
device to choose a new heading. Specifically, a reference CA1
neuronal unit had to fit the following criteria: (i) It had to be
active at the time of a heading choice. (ii) It had to have strong
synaptic input to the MHdg unit that was determining the new
heading. This criterion was met by choosing the five strongest
CA1 units at the time of heading choice, as reflected by their
synaptic weight multiplied by presynaptic activity. (iii) The given
CA1 unit had to meet the above criteria in at least 3 of the last
12 of the 16 training trials. (iv) If a given CA1 unit was identified
multiple times in one trial, the trial in which this unit had the

largest synaptic influence was used. In a single Darwin X subject,
we found 16 CA1 reference units that satisfied these criteria;
these units were active during as few as four and as many as nine
new heading choices.

Starting with a CA1 reference unit, the backtrace proceeds by
first identifying a list of other neuronal units that are physically
connected to the reference CA1 unit and are active during the
previous time step (200 ms). The procedure is then repeated with
this new list of neuronal units. We iterated this process until we
identified neuronal units six time steps back from the time step
at which the reference CA1 unit was chosen. We used this
method to generate 91 backtrace networks that contained 56–
478 neuronal units by the sixth time step back from the starting
point.

To analyze which neuronal units from different neural areas
directly influenced the activity of the reference CA1 neuronal
unit, the number and types of pathways were identified in the
backtrace network at two time steps back. Specifically, for each
network, a 10-element vector was constructed, where each vector
element denoted a pathway (i.e., ATN 3 EC, IT 3 EC, PR 3
EC, EC3 EC, EC3 DG, EC3 CA3, EC3 CA1, DG3 CA3,
CA33 CA3, and CA33 CA1; see Fig. 2 for abbreviations). The
value of each vector element corresponded to the frequency of
occurrence of each of the pathways present in the network; that
is, for a given backtrace network, the number and type of
connections were counted (see Fig. 5 A1 and B1). To classify
different functional pathways, the Manhattan distances (MAT-
LAB, Mathworks, Natick, MA) between the 91 vectors corre-
sponding to the backtraces were calculated and a hierarchical
cluster tree was created by grouping vectors that were close
together.

Results
Behavior and Place Field Formation in the Hidden Platform Task. In
general, after the second block (trials 9–16), Darwin X traversed
directly to the hidden platform from multiple starting points. Fig.
3A shows representative trajectories from a subject early during
training trials (Fig. 3A1) and later in the training (Fig. 3A2).
Darwin X subjects showed significant improvement in the
hidden platform task, as measured by the time to find the hidden
platform, as training progressed (Fig. 3B). A video of the
performance may be seen in Movie 1, which is published as
supporting information on the PNAS web site.

Many of the neuronal units in the hippocampal areas of the
simulation showed responses typical of place cells (23) where
the neuronal unit was active exclusively in a specific region of the
environment. These place units emerged by integrating visual
and self-movement cues during exploration without incorporat-
ing prior assumptions about the environmental inputs into the
model. Fig. 4 shows examples of place units in CA1, one of which
was activated by the perforant path and the other of which was
activated by the trisynaptic path. We characterized the spatial
responses of the simulated hippocampal neuronal units by
calculating the information, sparsity, and selectivity metrics that
have been used to analyze hippocampal place fields in animals
(24). The spatial information is derived by considering a cell as
a communication channel whose input is the rat’s location (see
ref. 24): If the neuronal unit is active across half of an environ-
ment, then the occurrence of the unit’s activity conveys one
binary bit of information. Sparsity measures the fraction of the
explored environment in which the neuronal unit was active.
Selectivity is equal to the maximum firing rate divided by the
mean firing rate of the unit. The more tightly concentrated the
unit’s activity, the higher the selectivity. The means and standard
deviations of the reference CA1 units’ information, selectivity,
and sparsity were 0.65 � 0.41, 4.50 � 3.32, and 0.57 � 0.17,
respectively, and were comparable to those measures reported
during rat foraging (24).

Krichmar et al. PNAS � February 8, 2005 � vol. 102 � no. 6 � 2113

N
EU

RO
SC

IE
N

CE



Identifying Functional Pathways by Backtracing. Two sample back-
trace networks, which were typical examples of the two broad
classes of functional connectivity identified by the backtracing
algorithm, are shown in Fig. 5. This methodology allows us to
identify functional pathways that cause a given unit to be active,
and in turn generate behavior. Fig. 5A shows a backtrace where
the reference CA1 unit was predominately driven by the trisyn-
aptic loop (dentate gyrus and CA3). Fig. 5B shows a backtrace
where the reference CA1 unit was predominately driven by the
simulated entorhinal cortex. Typically, relatively few neuronal
units caused the CA1 unit to fire at two time steps back (see Fig.
5 A1 and B1). However, by six time steps back, the networks
included large numbers of neuronal units and synaptic connec-
tions (see Fig. 5 A2 and B2).

A cluster analysis, as described in Materials and Methods, was
performed on the 91 backtraces at two time steps back from the
starting point, by calculating path frequency vectors for each
backtrace. This analysis identified seven different functional
connectivity classes based on the different connectivity patterns
(see Fig. 6). These classes were labeled according to the com-
ponents of the vectors that were grouped by the cluster analysis.

In general, the backtraces fell into either a perforant path
category where CA1 was driven by the entorhinal cortex or a
trisynaptic loop category where CA1 was driven by CA3. Only 3
of the 91 backtraces had both perforant and trisynaptic pathways
driving CA1. The network shown in Fig. 5A falls in the ‘‘trisyn-
aptic loop’’ category of Fig. 6 as a result of the strong CA3 and
DG activity that drives the reference CA1 unit. Its corresponding
place field activity is depicted in Fig. 4A. The network shown in
Fig. 5B falls in the ‘‘perforant path with high EC interaction’’
category of Fig. 6 because of the direct connections from ECIN
to CA1 and the recurrent ECIN to ECOUT interactions that can be
observed in the figure. Its corresponding place field activity is
depicted in Fig. 4B.

The functional pathways were strongly correlated with place
unit metrics (see Table 1). Neuronal units that were high in
spatial information and selectivity with low sparsity tended to be
supported by the trisynaptic pathway, whereas neuronal units
having lower spatial information and less selectivity tended to be
supported by the perforant pathway.

Comparing across multiple steps of the backtraces, we found
that when the traces started from the same reference unit at two
time steps back, the units in these networks were similar (57%
of the neuronal units were shared across traces). At six time steps
back, the units were more varied (32% of the neuronal units were
in common). However, there was very little overlap of units in
those backtrace networks in which the reference units were
different but the backtrace corresponded to the same place in the
environment. These results suggest that different inputs and
elements can cause very specific and repeatable responses in
downstream neuronal units such as the reference units examined
here. In this respect, Darwin X is an example of a degenerate
system: structurally different circuits and dynamics can yield
similar neural and organism behavior (25, 26).

Discussion
The BBD methodology used in this study permitted direct
investigation of the connectivity driving simulated hippocampal
activity in the context of navigation. In contrast to other
computational models of the hippocampus, Darwin X was
embedded in the environment (27–33). No assumptions were
made concerning the form of environmental inputs to the model
or the behavioral actions required to solve a spatial memory task.
Importantly, no underlying functions were used to bias neuronal
unit activity toward spatial tuning. Moreover, unlike robotic
systems (34–38), in which abstract features of the hippocampus

Fig. 3. Behavioral performance in the hidden platform task. (A) Trajectories
of a subject during the training paradigm. The green circle denotes the
location of the platform during training trials. Red and blue squares denote
starting locations. Red and blue lines indicate trajectories during individual
trials. (A1) Early trials. (A2) Late trials. (B) Box plot of the search times over the
course of the experiment for the nine subjects. Each subject ran 16 trials in
which a block consisted of four trials, each with a different starting location.
The middle line of each box is the median search time, the lower line is the 25th
percentile, and the upper line is the 75th percentile. The lines extending from
the box show the extent of the sample except for outliers. Outliers, which are
data points �1.5 times the upper quartile, are denoted by a ‘‘�’’. Search times
were significantly shorter for blocks 3 and 4 than block 1 (P � 0.01; Wilcoxon
signed-rank test).

Fig. 4. Representative place units recorded in simulated CA1. Each outline
represents Darwin X’s enclosure, and each pixel represents one square foot in
the enclosure. The gray scale represents the activity of a given CA1 neuronal
unit and is normalized from quiescent (white) to maximal (black) firing rate.
The circle denotes the location of the hidden platform. Above each chart are
the spatial metrics for the neuronal units: spatial information (inf), sparsity
(spa), and selectivity (sel). (A) CA1 neuronal unit activated by trisynaptic loop.
(B) CA1 neuronal unit activated by perforant path.
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were used to drive spatially modulated discharge, Darwin X
implements many elements of the macro- and microanatomy
characteristic of hippocampal–hippocampal and hippocampal–
cortical connections.

Spatially modulated activity of the simulated hippocampal
CA1 region proved sufficient to drive purposeful behavior in the
context of the spatial memory task. Neuronal units of the
hippocampal simulation exhibited spatial modulation (see Fig. 4)
comparable to that observed in the rodent (23, 24). As in the
rodent, such activity was produced through an integration of
visual and self-motion information across time (39).

Full knowledge of the anatomical connectivity and neuronal
unit activity patterns in combination with the substantial neu-
roanatomical detail of the simulation (see Supporting Text)
permitted us to dissect distinct processes by which network
activity resulted in behavior leading to the hidden target. The
primary driving forces for activation of CA1 neuronal units were
found to correspond to direct perforant inputs or trisynaptic
inputs. In the vast majority of cases, one or the other, but not
both, of these two pathways drove CA1 activity (see Fig. 6). It was

notable that the spatial metrics of CA1 activity driven by these
two main pathways differed. CA1 neuronal units driven primarily
by trisynaptic inputs exhibited higher spatial information and
selectivity and lower sparsity than CA1 neuronal units driven by
direct perforant inputs (Table 1). Each of these pathways was
capable of producing appropriate behavioral choices.

The functional segregation of direct perforant and trisynaptic
pathways to CA1 neuronal unit activation found in the simulated
hippocampus may be of heuristic value in understanding the
physiology of the mammalian hippocampus. For instance, this
finding suggests the possibility that the input strengths of ento-
rhinal and CA3 neurons onto individual CA1 neurons are
bimodally distributed. Evidence for this might be found by in
vitro experiments in tissue slices measuring the responses of
single CA1 neurons to entorhinal and CA3 stimulation. In a
similar vein, paired entorhinal–CA1 and CA3–CA1 recordings in
behaving animals could reveal distinct CA1 neuron populations
whose activity shows greater temporal association with either
entorhinal or CA3 unit activities depending on the task.

A second possibility suggested by our simulation is that the
entorhinal cortical inputs to CA1 may be sufficient to produce
place-specific discharge as well as associations between the

Fig. 5. Representative backtrace networks. Each circle in the network represents a neuronal unit whose area is denoted by its color. For abbreviations, see Fig.
2. The lines between vertices denote a connection between neuronal units and the gray scale reflects the level of synaptic influence on a unit with white being
a weaker link and black being the strongest. The layout of circles is generated by an energy minimization technique (Pajek Network Analysis Package;
http:��vlado.fmf.uni-lj.si�pub�networks�pajek), which results in neuronal units that are strongly functionally connected to be bunched together. (A) Networks
where the CA1 reference unit was mainly driven by CA3 and dentate gyrus. (A1) Two time steps back. (A2) Six time steps back. (B) Networks where the CA1
reference unit was mainly driven by entorhinal cortex. (B1) Two time steps back. (B2) Six time steps back.

Fig. 6. Dendrogram generated from the cluster analysis on the 91 backtrace
networks. As shown on the right, seven broad classes of functional connec-
tivity were identified. The thickness of the lines corresponds to the number of
networks within each class (actual numbers are shown in parentheses).

Table 1. Correlation between functional paths and place
field metrics

Path
occurrence

Place field metrics

Information Selectivity Sparsity

ATN 3 EC �0.232
IT 3 EC
PR 3 EC �0.257 0.239
EC 3 EC
EC 3 CA3 0.332* 0.431* �0.308*
EC 3 CA1 �0.285* �0.295* 0.232
DG 3 CA3 0.339* 0.359* �0.327*
CA3 3 CA3
CA3 3 CA1 0.332* 0.295* �0.314*

Only significant correllations are shown (P � 0.05). Highly significant
correllations (P � 0.01) are denoted by an asterisk. See Fig. 2 for abbreviations.
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position of animal in space and the appropriate action it needs
to execute to reach a goal (40). In this respect, it is notable that
some entorhinal neurons in the rat exhibit robust spatial mod-
ulation that is also sensitive to the context of preceding or
subsequent actions (41, 42). Taken together, these observations
imply that associations between spatial positions and correct
actions might be spared after lesions restricted to the dentate
gyrus and CA3 of the rodent.

Finally, the backtracing methodology demonstrated that, at
only a few time steps back, the neuronal units producing direct
activation of any individual CA1 reference neuronal unit re-
mained fairly constant. However, the patterns of activity ob-

tained from steps further back in time varied much more. Thus,
the simulation exhibited degeneracy in the sense that many
different patterns of activity could converge to produce activa-
tion of CA1 neurons leading to correct behavioral choices. The
extent to which this occurs in behaving animals remains to be
determined.
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