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Abstract

Virtual screening consists of docking libraries of small molecules to a target protein followed by 

rank-ordering of the resulting structures using scoring functions. The ability of scoring methods to 

distinguish between actives and inactives depends on several factors that include the accuracy of 

the binding pose during the docking step and the quality of the three-dimensional structure of the 

target. Here, we build on our previous work to introduce a new scoring approach (SVMGen) that 

uses machine learning trained with features from statistical pair potentials obtained from three-

dimensional crystal structures. We use SVMGen and GlideScore to explore how enrichment or 

rank-ordering is affected by binding pose accuracy. To that end, we create a validation set that 

consists strictly of proteins whose crystal structure was solved in complex with their inhibitors. 

For the rank-ordering studies, we use crystal structures from PDBbind along with corresponding 

binding affinity data provided in the database. In addition to binding pose, we investigate the effect 

of using modeled structures for the target on the enrichment performance of SVMGen and 

GlideScore. To accomplish this, we generated homology models for protein kinases in DUD-E for 

which crystal structures are available to enable comparison of enrichment between modeled and 

crystal structure. We also generate homology models for kinases in SARfari for which there are 

many known small-molecule inhibitors but no known crystal structure. These models are used to 

assess the ability of SVMGen and GlideScore to distinguish between actives and decoys. We focus 

our work on protein kinases considering the wealth of structural and binding affinity data that 

exists for this family of proteins.
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INTRODUCTION

Structure-based virtual screening is commonly used to enrich chemical libraries to identify 

active compounds that can serve as tools in chemical biology or as leads for drug discovery.1 

A library of small molecules is first docked to a binding site on the structure of a protein 

followed by the re-scoring and rank-ordering of the resulting protein-compound structures in 

a process known as scoring. Several docking methods have been implemented in widely-

used computer programs such as AutoDock,2, 3 Glide,4, 5 and Gold.6 Algorithms and scoring 

methods to predict the binding mode of small molecules have matured significantly, but 

there is a need for better scoring methods to rank-order protein-compound structures.7 The 

performance of scoring methods is often target-specific. This has led to a constant need to 

develop better scoring methods. Several scoring approaches have been developed ranging 

from empirical,5, 8 force field,6, 9 and knowledge-based.10, 11 Increasingly, scoring methods 

are using machine learning techniques to improve database enrichment and rank-

ordering.12, 13

The performance of scoring approaches in enriching compound libraries is often explored 

using validation sets such as DUD-E,14 DEKOIS,15 and others.16, 17 These datasets provide 

a set of actives and matching decoys that are used to test the ability of scoring methods to 

distinguish actives from decoys. Both actives and decoys are docked to their corresponding 

target, and the resulting complexes are re-scored. Performance is evaluated using enrichment 

or receiver operating characteristic (ROC) plots. One limitation of these datasets is that there 

is generally no crystal structure of the active compounds bound to their corresponding 

targets. Molecular docking is used to predict the binding mode of active compounds. 

Considering that docking results in high-quality binding modes in only a fraction of binding 

sites, it is difficult to determine whether limitations in re-scoring methods are due to lack of 

accuracy in the binding mode, or inherent limitations in the re-scoring method. The lack of 

accuracy in docking can also impact the re-scoring of compounds during virtual screening. 

Ideally, a re-scoring method should favor compounds with correct binding poses.

Despite the exponentially-growing list of crystal structures, a majority of proteins of the 

human proteome have yet to be solved. For example, among the 518 kinases of the human 

kinome, less than half have been solved by crystallography. This poses a significant 

impediment to the rational design of selective small-molecule kinase inhibitors. Recent 

studies have shown that even FDA-approved drugs often have a large number of additional 

targets.18–20 These off-targets may be responsible for the failure of the majority of kinase 

inhibitors in the clinic, despite the often overwhelming evidence to support a role of their 

target in the disease of interest. To address this limitation, recent efforts have concentrated 

on building homology models for all unsolved kinases of the human kinome.21 A question 

of interest is how these modeled structures affect scoring and re-scoring performance during 
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virtual screening. Understanding how homology models affect rank-ordering could help to 

develop better ranking methods for these modeled structures. This will enable the use of all 

structures of a protein family during virtual screening, which could enhance our ability to 

identify selective kinase ATP-competitive inhibitors and reduce the failure of drugs in the 

clinic.

Recently, we introduced an innovative approach for re-scoring protein-compound structures. 

The method combines knowledge-based potentials with machine learning.22 We called the 

scoring method SVMSP to highlight the fact that information from the target of interest is 

used to derive the scoring function. The approach consisted of training Support Vector 

Machine (SVM) using knowledge-based potentials as features. These potentials were 

determined using three-dimensional co-crystal structures from the Protein Databank (PDB) 

for the positive set. This was, to the best of our knowledge, the first attempt to develop a re-

scoring method using machine learning trained on three-dimensional structures of proteins 

and small molecules. The negative set consisted of randomly-selected small molecules 

docked to the target of interest.12 Generally, SVMSP performed well in database 

enrichment, particularly among proteins for which a large number of structural data is 

available, such as protein kinases.13 Since SVMSP is target-specific, a scoring approach 

must be developed for every target. While this feature resulted in rank-ordering that was 

consistently high even among different protein families, a scoring method has to be 

developed separately for each target.

Here, we report a general scoring approach, namely Support Vector Machine General 

(SVMGen), a significant departure from previous work since it can be used in virtual 

screening to any binding site. We investigate how the accuracy of the binding pose of 

compounds affect the enrichment power and rank-ordering ability of SVMGen and 

GlideScore. To explore how sensitive the scoring methods are to the binding mode, we 

create a validation set that consists of proteins whose structure was solved with all the 

actives of the set. To investigate the effect of using homology models in enrichment, we 

create validation sets using SARfari, which is a repository that includes known kinase 

compounds with screening data. Throughout, SVMGen is compared to GlideScore, and both 

Vina and Glide are used for docking. We focus this work on protein kinases, which are ideal 

for developing and testing scoring methods considering the wealth of binding and inhibition 

data as well as the large number of structures that are available.

METHODS

Generation of Scoring Approach

SVMGen uses pairwise potentials of docked protein-ligand pairs for classification and rank-

ordering. The previously described knowledge-based potentials 12, 23 were derived from 

crystal structures of protein-ligand complexes using SYBYL atom types. Pairs between 

these atom types are used to generate the 76 features of the SVM model. Like the 

previously-described SVMSP model,22 SVMGen uses 763 kinase structures from the sc-

PDB database (v2012)24 for the positive training set. The main innovation in SVMGen is 

that the scoring approach is trained on potentials of 5000 randomly selected receptor-ligand 

pairs.22, 25 Unlike the previous SVMSP models, which featured a negative training set of 
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ligands docked to the pocket of interest, SVMGen uses a generalized approach, which can 

be applied to any pocket without regenerating the SVM model for each target. Features in 

the training set were normalized using LIBSVM26 onto a 0 to 1 scale. The generalized 

model was generated using the computer program SVMlight27 using a radial basis function 

kernel and a cost function of 1. Other parameters were set to default values.

Docking and Rescoring

Kinase structures were retrieved from the Protein Data Bank (PDB)28 and solvent molecules 

and bound ligands were removed. Selenomethonine residues were converted to methionine 

using the Protein Preparation Wizard29 workflow in Schrödinger (Schrödinger LLC, New 

York, NY, 2014). Missing sidechains and loops were added with the Prime30 module in 

Schrödinger. Disulfide bonds were added and each crystal structure was protonated using 

PROPKA31 at pH 7.0. The prepared structures were saved as Sybyl Mol2 files and PDB 

formatted-files for further analysis.

Structures were docked with AutoDock Vina3 and Glide.32 Gasteiger charges were added to 

the PDB structures using the MGLTools package.2 A 21 Å box centered on the ATP binding 

pocket or co-crystallized inhibitor was used for both docking methods. In addition, a 14 Å 

inner box was used for the Glide grids. All other parameters were set to default values. The 

GlideSP method was used for all Glide-related docking with the exception of the crystal 

structures and high-quality homology models for the DUD-E targets, which used 

GlideHTVS. The binding pose of protein-ligand complexes obtained either from co-

crystallized structures or from docked complexes were assessed using a combination of 

GlideScore33 and SVMGen. Structures re-scored using Glide were minimized in place from 

the original binding pose to allow for slight variations in the docking functions between the 

different approaches.

Co-crystallized Kinase Complexes

A set of well-characterized kinase-compound complexes was retrieved from both the 

PDBbind refined and general sets (v2014).34 Kinase structures were identified using 

Enzyme Commission (EC) codes and were limited to protein-tyrosine kinases (EC 2.7.10), 

protein-serine/threonine kinases (EC 2.7.11), and dual-specificity kinases (EC 2.7.12). 

Structures that featured short peptides or that were part of the SVMGen training set were 

discarded. In addition, small molecules that did not bind within the conserved ATP binding 

site were discarded. A set of 1000 potentially redundant binding poses was generated for 

each structure by iterating over a series of 50 runs generating 20 poses each in AutoDock 

Vina.3 In these runs, exhaustiveness was set to 16, the energy range to 10, and the number of 

modes to 20. The root-mean-squared deviation (RMSD) of heavy atoms in the ligand 

between each of the 1000 binding poses was determined to form a distance matrix between 

each pose. These distances were hierarchically clustered to 20 clusters using average 

linkage. The pose corresponding to the cluster center was used as the representative structure 

for each cluster and was retained for docking and rescoring.
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Homology Modeling

Kinases for homology modeling were retrieved from two sources: DUD-E14 and SARfari.35 

All 26 targets from the kinase subset of DUD-E were collected and mapped to their 

respective UniProt entries in UniProtKB. Kinases from SARfari were selected based on the 

number of known inhibitors with activity (IC50, Kd, or Ki) of 1 μM or better. Those with 

available human crystal structures or that were present in DUD-E were discarded. The top 

20 kinases were used to generate the SARfari kinase set. The FASTA sequence of the 

protein kinase domain was retrieved from UniProt and used as the initial query template for 

homology modeling in Prime.30

Two strategies were used to select the template for constructing the homology models. The 

first strategy uses the highest scoring crystal structure of a different kinase from the BLAST 

search as the template for the subsequent modeling. The second strategy identifies a 

template with low sequence identity, i.e. between 20 and 50%. The ClustalW36 alignment 

method was used to calculate the alignment between the query and template. The homology 

models were built using knowledge-based models. In this approach, insertions and gaps are 

added using segments from existing structures. All other parameters were kept to default 

values during the modeling process. Following the modeling process, hydrogen atoms on the 

protein were removed and reintroduced using the Protein Preparation Wizard tool in the 

Schrödinger package. In addition, bond orders were assigned, disulfide bonds were created, 

and missing side chains were added.

For each of the DUD-E kinases, the structures of compounds and matched decoys were 

retrieved from DUD-E. For each of the selected SARfari kinases, bioactivity data for kinase 

inhibitors was retrieved and filtered for human biochemical data reporting activities in IC50, 

Kd, or Ki. SMILES strings for compounds with inhibition at 1 μM or better were collected. 

Selected compounds were prepared using Canvas. For each of the SARfari kinases, 

compounds were clustered using Tanimoto similarity and the Leader-Follower algorithm. 

Only compounds representing cluster centers were used to generate decoys for each kinase 

using the DUD-E webserver.

Statistical analysis

Values are expressed as mean ± 95% confidence intervals, unless otherwise specified. 

ANOVA and t-test analyses were performed in R.37 Correlation analysis and ROC analyses 

was performed using the SciPy38 and scikit-learn39 packages in Python, respectively.

RESULTS

Enrichment Power using Crystal Structures in the Validation Set

We first assess the ability of SVMGen and GlideScore to distinguish between known 

inhibitors and decoys from the DUD-E validation set. Performance of a scoring function can 

be evaluated with ROC plots.40 A ROC curve is constructed by ranking the docked 

complexes, selecting a set of compounds starting from the highest scoring compounds, and 

counting the number of active compounds. In a ROC plot, the farther away the curve is from 

the diagonal, the better the performance of the scoring function. The area under the ROC 
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curve, which we refer to as ROC-AUC, can also be used as a representation of the 

performance of the scoring function. A perfect scoring function will result in an area under 

the curve of 1, while a random classification will have an ROC-AUC of 0.5.

A commonly used validation set is DUD-E, which provides a set of actives and decoys for a 

large number of proteins. One limitation of validation sets like DUD-E is that the binding 

mode of most actives has not been solved by crystallography. Considering that molecular 

docking often does not lead to correct binding poses, it is often challenging to evaluate 

enrichment performance of the rank-ordering method. This is due to inherent 

approximations in the method. First, molecular docking is often carried out on a fixed 

structure of the target. However, molecular recognition is a dynamic process that leads to 

conformational changes in both receptor and small molecule.41–43 Second, the scoring 

methods that are used to drive the docking process do not capture the complexity of the 

intermolecular interaction between small molecule and receptor. Third, it is often the case 

that water molecules play a role in the binding process, while most docking methods ignore 

explicit solvent molecules.44 Finally, while the algorithms that are used to drive the 

molecular process have become very sophisticated, they often can get trapped in local 

minima that correspond to binding poses that are different than the true binding pose of the 

small molecule. Collectively, these factors can often lead to binding poses that may not be 

accurate.

To overcome this challenge, we resorted to creating a validation set that consists strictly of 

active compounds whose structure was solved by X-ray crystallography. We confined our 

analysis to protein kinases, a family of 518 proteins that have been the focus on intense drug 

discovery efforts considering their role in normal and pathological processes. The large 

number of kinase small-molecule inhibitors along with the substantial number of three-

dimensional structures makes this family of proteins ideal for developing and testing 

computational methods. First, we identified a set of 940 co-crystallized inhibitors across 26 

unique kinase targets from the PDBbind general set that bind to the conserved ATP binding 

pocket of kinases. A set of 50 decoys was generated for each inhibitor using DUD-E’s Web 

server. The decoys were docked against the kinase binding pocket with either AutoDock 

Vina or GlideSP to compare the two methods. The binding poses from each docking method 

were rescored using either GlideScore or SVMGen. The ability of each scoring method to 

distinguish between the known inhibitor and the decoys was assessed using ROC-AUC 

(Table 1). To calculate the ROC-AUC for each kinase, we pooled together all corresponding 

n actives and 50 × n decoys for that kinase. GlideScore re-scoring of GlideSP- and Vina-

docked poses achieved mean ROC-AUCs of 0.88 ± 0.02 and 0.89 ± 0.02, respectively. 

SVMGen re-scored Vina and GlideScore poses led to ROC-AUCs of 0.82 ± 0.04 and 0.83 

± 0.04, respectively. Poses scored with GlideScore performed slightly better overall than 

those scored with SVMGen for both GlideSP docked (paired t-test, p = 0.01) and Vina 

docked (paired t-test, p = 0.01) methods. Despite this, both scoring methods are 

complementary in their performance. There are several examples where SVMGen performs 

better than GlideScore such as for BRAF, EGFR, and SRC. There are also examples where 

GlideScore performs better than SVMGen, such as for CHEK1, CHEK2, and MAP2K1.
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It is worth noting that generally, studies that evaluate enrichment power of scoring methods 

dock compounds to multiple crystal structures of the target protein, a process that is known 

as cross-docking. We did not perform cross-docking to ensure that the active set used in the 

training did not include any docked poses but rather consisted strictly of crystal structures. It 

is possible that the lack of cross-docking may have resulted in higher ROC-AUC values for 

both SVMGen and GlideScore.

Binding Pose Sensitivity

We next explored how SVMGen and GlideScore enrichment performance is affected by 

binding pose accuracy. Generally, it is desirable that a scoring function assigns the most 

favorable scores to compounds with a correct binding pose. To explore whether this is the 

case for GlideScore and SVMGen, we investigated how their scores change as the accuracy 

binding mode of a small molecule becomes progressively worse. Binding mode accuracy is 

measured using the root-mean-squared deviation (RMSD) of compounds to the crystal 

structure. We make use of the same set of actives and decoys that we used to evaluate 

enrichment performance above shown in Table 1. To produce binding poses with a range of 

pose accuracy, we re-docked all actives from Table 1 to their corresponding target 50 times 

using AutoDock Vina. For each run, we collected 20 unique binding poses for each active 

resulting in in 50 × 20 = 1000 poses. The RMSD between each of the 1000 poses was used 

to hierarchically cluster the poses into 20 clusters. A representative member of each cluster 

was selected and the RMSD to the crystal pose was determined and scored with both 

SVMGen and GlideScore.

We first explored the effect of pose accuracy on enrichment power. For each of the 26 

kinases in Table 1, we divided the binding poses collected above into 6 different bins based 

on their RMSD to the crystal structure: 0–2, 2–4, 4–6, 6–8, 8–10, and greater than 10 Å. The 

enrichment performance across the 26 kinases was calculated for each bin (Fig. 1). For the 

poses scored with GlideScore (Fig. 1A and 1C), the mean ROC-AUC for near native pose 

(RMSD < 2 Å) was 0.92 ± 0.04 in Glide and 0.93 ± 0.04 in Vina, which was higher than the 

0.88 ± 0.02 and 0.89 ± 0.02 that was obtained for the set of actives with binding poses from 

crystal structure. Enrichment became progressively worse for the subsequent sets as 

evidenced by a decrease of the ROC-AUC from 0.92 (Glide, RMSD < 2 Å) and 0.93 (Vina, 

RMSD < 2 Å) to 0.31 ± 0.06 (Glide and Vina, RMSD > 10 Å). For SVMGen (Fig. 1B and 

1D), the mean ROC-AUC for the bin of actives with 0–2 Å RMSDs was 0.79 ± 0.05 and 

0.80 ± 0.04 for Glide and Vina, respectively. Like GlideScore, the mean ROC-AUC 

decreased with increasing RMSD to 0.61 ± 0.07 and 0.63 ± 0.06. The decrease in 

performance for SVMGen was not as substantial as that observed for GlideScore. These 

results show that both SVMGen and GlideScore are sensitive to the accuracy of the binding 

pose, but GlideScore shows greater sensitivity.

Next, we explored how binding pose accuracy affects SVMGen and GlideScore rank-

ordering by binding affinity. To that end, we used the crystal structure of 123 small-molecule 

kinase inhibitors bound to their target from the refined set of PDBBind. We generated 20 

clustered poses for each of the 123 inhibitors using a similar approach described above. We 

then determined whether there was any correlation between the binding pose accuracy as 
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measured by RMSD and SVMGen and GlideScore scores. We used three measures of 

correlation: Pearson’s r, Spearman’s ρ, and Kendall’s τ. For poses that were scored with 

GlideScore (Fig. 2A), there is a positive correlation between RMSD and score (r = 0.57, ρ = 

0.53, τ = 0.37). Similar but weaker correlation is observed between SVMGen scores and 

RMSDs as illustrated in Fig. 2B (r = 0.30, ρ = 0.31, τ = 0.21). It is worth noting that the 

scores in Fig. 2 are not absolute scores provided by each scoring function, but rather the 

difference in the scores of the crystal pose and the randomly docked pose.

The funnel-like behavior observed in Fig. 2 is expected for a scoring function that can 

differentiate between a correct versus incorrect binding pose. An increase in the difference 

in score between the crystal poses and randomly docked poses versus RMSD indicates that a 

scoring function is favoring more accurate binding modes. A positive correlation indicates 

that as less accurate binding poses are sampled, a more accurate scoring function assigns 

these poses a worse score than the native crystal pose, and the difference in score between 

the crystal pose and docked pose increases. The lower correlations of SVMGen indicates the 

scoring function does not perform as well as GlideScore for high quality binding poses. 

However, SVMGen is less sensitive than GlideScore for non-native poses, which may be an 

advantage in virtual screening campaigns where docked structures may not be native-like.

We further explored how these correlations may change with binding affinity of the 

compounds. The co-crystallized compounds were binned by their experimental binding 

affinities. For GlideScore, compounds with −pKd or −pKi values between 6–8 or 8–10, show 

stronger correlation between score and RMSD (6–8: r = 0.63, ρ = 0.59, τ = 0.42; 8–10: r = 

0.64, ρ = 0.58, τ = 0.42). For SVMGen, compounds that fall in the 6–8 range exhibit the 

highest correlations (r = 0.35, ρ = 0.37, τ = 0.25). Interestingly, there are docked poses that 

score better than the crystal structure pose in both scoring methods. In GlideScore, most of 

these structures are concentrated to those with RMSD that are less than 2 Å of the crystal 

pose as well as poses with RMSDs greater than 2 Å with binding affinities (−pKd or −pKi) 

in the 4–6 and 6–8 range. In SVMGen, 17% of the generated poses scored better than the 

crystal pose compared to 4% in GlideScore.

Exploring the Effect of Target Structure Accuracy on Enrichment Using Homology Models

Despite the exponentially growing list of crystal structures at the PDB, the structure of the 

majority of proteins has yet to be solved. For many of these proteins, homology modeling 

can be used to predict a three-dimensional structure using the structure of other proteins with 

high sequence identity as a template. Homology models can potentially be used in virtual 

screening efforts to identify small-molecule inhibitors or activators of the target. This has 

been successfully done on several occasions.45–49 However, considering that homology 

models can generally reproduce the overall fold but lack accuracy in the position of 

sidechains, we wondered whether reasonable enrichment could be achieved with these 

models using either SVMGen or GlideScore. To explore this question, we resort again to 

protein kinases, considering the wealth of structural information. Although a large number 

of crystal structures exist, more than half of the 518 protein kinases do not have a crystal 

structure of the protein kinase domain.21 For those whose structure has not been solved, the 
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conserved nature of the protein kinase domain makes it possible to explore the effect of 

model quality on enrichment.

Here, we generate two sets of homology models for kinases with known inhibitors using 

different approaches for selecting the template. The first approach uses the template with the 

highest sequence identity of a different kinase or a non-human structure. For example, 

although many crystal structures are available for ABL1, the template that was selected was 

from ABL2, a closely related protein in the same family. Similarly, for PLK1, the crystal 

structure comes from a PLK1 homolog in zebrafish. The second approach uses a randomly 

selected template with a sequence identity between 20 and 50%. The first set of kinases were 

selected from DUD-E (Table 2), which features 26 kinases with existing crystal structures. 

Among these kinases, nearly half belong to the tyrosine kinase subfamily. The second set of 

kinases were selected from SARfari, a database of known kinase inhibitors and their targets. 

We selected kinases whose kinase domain was not solved by X-ray crystallography, were 

not in the DUD-E dataset, and had a large number of small-molecule inhibitors (Table 3). In 

total, 20 kinases were selected with the majority belonging to the AGC serine/threonine 

family.

Homology models were constructed using the Prime workflow in the Schrödinger package. 

Only the sequence of the protein kinase domain was used to identify a suitable template. The 

high and low identity homology models from the DUD-E set used templates from a variety 

of kinases (Table 4). Among the respective models that were constructed using the two 

strategies, there is a significant difference between the RMSDs of the high identity and low 

identity models (paired t-test, p = 5.1×10−7). Similarly, the RMSD of the heavy atoms within 

8 Å of the ATP binding pocket center is significantly different (paired t-test, p = 1.3×10−4). 

In some targets, members of the same subfamily are used for both the high and low identity 

models. For example, the MAPK1, MAPK10, and MAPK14 models all use members of the 

MAPK family as templates for homology models, but they have 30 to 40% difference in 

sequence identity. Similarly, we built high and low identity models for the SARfari kinases 

(Table 5). In some instances, the sequence identity of the best available structure does not 

differ much from the template used in the low identity model. For example, the templates 

used in the PRKD1 and PRKD3 models only have sequence identities of 38 and 39% 

compared to the 35 and 34% identities of their low identity models.

We assessed the performance of the rank-ordering methods in enriching chemical libraries 

docked to the DUD-E set of homology models for 26 kinases. Both actives and matched 

decoys were docked to their corresponding models using either Vina or Glide and scored 

using SVMGen (Fig. 3A) and GlideScore (Fig. 3B). For the DUD-E kinases, the mean 

ROC-AUCs for SVMGen were 0.77 ± 0.05, 0.72 ± 0.05, and 0.70 ± 0.05 for crystal, high 

identity homology models, and low identity homology models, respectively (Table 6). In 

Glide docked poses, GlideScore resulted in mean ROC-AUCs of 0.67 ± 0.03, 0.62 ± 0.03, 

and 0.60 ± 0.03 for crystal, high homology, and low homology structures. Vina docked 

poses that were scored with GlideScore resulted in ROC-AUCs of 0.73 ± 0.03, 0.65 ± 0.04, 

and 0.62 ± 0.03. For the GlideScore scored models, the Vina docked poses resulted in 

significantly higher enrichment than the Glide docked poses in both the crystal structures 

(ANOVA, p = 0.002) and high identity model (ANOVA, p = 0.02), but not in the low identity 
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models (ANOVA, p = 0.35). The average scores of the SVMGen poses were higher than 

their GlideScore counterparts (ANOVA, p = 5.4×10−11). Similarly, the quality of the kinase 

structure significantly impacts the overall enrichment (ANOVA, p = 1.7×10−7), with the 

native crystal structure resulting in better rank-ordering both the high and low identities 

models. Similar to the enrichment of the PDBBind dataset, SVMGen excels at specific 

targets such as AKT1, MAPK14, and EGFR, while GlideScore does better in kinases such 

as MAPK1, MAP2K1, and PLK1.

For the SARfari set of kinases, we docked both active compounds and matched decoys to 

each model using Glide and Vina and rescored using GlideScore and SVMGen (Table 7). In 

the structures that were generated using Glide, the high and low identity models of the 

SVMGen scored poses had ROC-AUCs of 0.68 ± 0.07 and 0.63 ± 0.05, respectively. This 

shows that the quality of the structure has generally no impact on performance (paired t-test, 

p = 0.35). For GlideScore, the ROC-AUCs were 0.70 ± 0.05 and 0.63 ± 0.03, with slightly 

better enrichment for the high quality models (paired t-test, p = 0.02). Similarly in the Vina 

docked structures, the SVMGen ROC-AUCs were 0.75 ± 0.06 and 0.72 ± 0.04 and the 

GlideScore ROC-AUCs were 0.61 ± 0.06 and 0.59 ± 0.06. Interestingly, SVMGen showed 

significantly better performance with compounds docked with Vina than with Glide 

(ANOVA, p = 2.5×10−4). Similarly, high identity models performed better overall than low 

identity models (ANOVA, p = 0.01). In some cases, the low identity model outperformed its 

high identity model counterpart, such as, for example, for MAP3K8, PDGFRB, and PRKD1.

Early Enrichment

The AUC under the ROC curve is a measure of the fraction of actives discovered over the 

fraction of inactives. However, only the top targets are further evaluated in virtual screening. 

One measure to evaluate early enrichment is ROC enrichment, which can be defined at any 

point on the ROC curve.50 At a given false positive rate, it is the fraction of discovered 

actives divided by the fraction of discovered inactives. Table 8 lists the mean ROC 

enrichment at various false positive rates in both the DUD-E and SARfari datasets. At a 

0.5% false positive rate (FPR), SVMGen performs better or similarly to GlideScore at 

identifying actives compounds among inactives. Only in the Glide docked SARfari kinases 

does GlideScore perform better than SVMGen at each FPR. This general trend is similarly 

reflected in the overall ROC-AUCs of each combination of docking and scoring methods.

DISCUSSION

Recently, we introduced an approach for rank-ordering protein-compound structures in 

virtual screening.12 The method known as SVMSP used a combination of machine learning 

and statistical pair potentials to develop a model for rank-ordering protein-compound 

structures. The results were promising, such that enrichment compared well with other well-

established methods such as Glide. However, SVMSP is a target-specific approach and a 

model must be developed for individual targets. Here, we report a general approach 

(SVMGen) using the same strategy as SVMSP except that the negative set consists of a 

collection of randomly selected compounds docked to a diverse set of protein structures. We 

use SVMGen and GlideScore to explore the sensitivity of these scoring methods to the 
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quality of binding pose or the three-dimensional structure of the target used during virtual 

screening. We find that SVMGen is sensitive to the quality of the binding pose as evidenced 

by progressively poorer enrichments with decreasing quality (high RMSDs) of the active 

compounds. GlideScore was more sensitive, showing a more substantial decrease in 

performance with increasing RMSDs. The fact that GlideScore is more sensitive may be 

attributed to the fact that the scoring function was developed strictly with crystal structures 

of protein-compound complexes, while SVMGen uses both crystal structures (positive set) 

as well as docked structures (negative set) to represent the negative set used in the training. 

GlideScore is expected to therefore perform better in situations where the test set contains 

high-quality docked poses. SVMGen may not perform as well as GlideScore with the 

highest quality structures, but its lower sensitivity to the quality of binding pose may 

actually be an asset in virtual screening campaigns where the docking pose of active 

compounds are not always highly accurate.

In addition to the binding pose, we investigated how the quality of the target structure affects 

enrichment using both SVMGen and GlideScore. Just like in the above studies, we focused 

our attention on protein kinases. Nearly half of the kinases in the human kinome do not 

possess a crystal structure. The use of homology models for these kinases could not only 

help in identifying novel inhibitors, but could also be used to predict the selectivity of 

compounds considering that most kinase inhibitors fail due to off-target effects. We selected 

targets from two datasets: DUD-E and SARfari. Targets from DUD-E featured kinase targets 

with solved structures, while targets from SARfari consisted of kinases with no crystal 

structure. Consistent with the above studies evaluating the effects of binding pose, we find 

that model quality has significant impact on enrichment. For both SVMGen and GlideScore, 

enrichment was better for high sequence identify homology models compared with 

homology models obtained with low sequence identity templates. These results are 

consistent with our studies evaluating the effect of binding mode accuracy on enrichment. 

The lower sensitivity for SVMGen may be useful in screening campaigns that use homology 

models, which will likely result in a larger number of less accurate binding poses for actives.
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Figure 1. Enrichment power versus binding pose accuracy across 26 kinase targets
A set of 20 unique binding poses was generated for 940 co-crystallized inhibitors across 26 

kinase targets in PDBBind’s general set. The RMSD to the native crystal pose was used to 

separate the binding poses into the following bins: <2, 2–4, 4–6, 6–8, and >10 Å. ROC-AUC 

performance are shown in a box-and-whisker plot for each of the docking method and 

scoring function combinations: (A) Glide/GlideScore; (B) Glide/SVMGen; (C) Vina/

GlideScore; (D) Vina/SVMGen.
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Figure 2. Binding pose accuracy versus deviation in predicted scores
A set of 20 unique binding poses was generated for 123 co-crystallized kinase inhibitors 

from PDBBind’s refined set. For each pose, the difference between the crystal and docked 

scores was plotted against the RMSD between the docked and crystal poses. Compounds 

were binned based on their experimental binding affinities into ranges of 2–4, 4–6, 6–8, 8–

10, and 10+. Pearson, Spearman, and Kendall correlations were calculated overall and for 

each bin for (A) GlideScore and (B) SVMGen.
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Figure 3. Enrichment of structures generated through homology modeling
Box-and-whisker plots of ROC-AUC scores for different quality homology models docked 

using Glide and Vina, and scored using GlideScore and SVMGen for kinases from (A) 

DUD-E and (B) SARfari.
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Table 1

Enrichment of Select Kinase Targets in PDBBind’s General Set

Kinase

GlideSP Vina

GlideScore SVMGen GlideScore SVMGen

AURKA 0.90 0.81 0.90 0.82

BRAF 0.84 0.96 0.84 0.96

CDK2 0.90 0.78 0.91 0.82

CDPK1 0.98 0.98 0.99 0.99

CHEK1 0.91 0.73 0.94 0.79

CHEK2 0.86 0.62 0.90 0.64

CSNK2A1 0.97 0.88 0.98 0.91

EGFR 0.81 0.95 0.78 0.97

GSK3B 0.89 0.82 0.91 0.83

ITK 0.78 0.75 0.77 0.74

JAK2 0.84 0.81 0.86 0.83

KDR 0.93 0.91 0.93 0.91

LCK 0.92 0.92 0.92 0.91

MAP2K1 0.85 0.60 0.89 0.61

MAPK10 0.82 0.84 0.82 0.85

MAPK14 0.81 0.70 0.82 0.69

MET 0.92 0.76 0.92 0.76

NEK2 0.92 0.83 0.93 0.77

PDPK1 0.89 0.80 0.91 0.83

PIM1 0.88 0.63 0.91 0.68

PLK1 0.92 0.96 0.90 0.96

PRKACA 0.93 0.77 0.95 0.80

PTK2 0.91 0.90 0.91 0.90

SRC 0.77 0.92 0.74 0.90

SYK 0.89 0.77 0.91 0.77

TTK 0.93 0.86 0.93 0.86

Mean 0.88 0.82 0.89 0.83

95% CI 0.02 0.04 0.02 0.04
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