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Abstract

BACKGROUND—Diabetes, obesity, and overweight are prevalent pregnancy complications that 

predispose offspring to neurodevelopmental disorders, including autism, attention-deficit/

hyperactivity disorder, and schizophrenia. Although male individuals are three to four times more 

likely than female individuals to develop these disorders, the mechanisms driving the sex 

specificity of disease vulnerability remain unclear. Because defective placental insulin receptor 

(InsR) signaling is a hallmark of pregnancy metabolic dysfunction, we hypothesized that it may be 

an important contributor and novel mechanistic link to sex-specific neurodevelopmental changes 

underlying disease risk.

METHODS—We used Cre/loxP transgenic mice to conditionally target InsRs in fetally derived 

placental trophoblasts. Adult offspring were evaluated for effects of placental trophoblast-specific 

InsR deficiency on stress sensitivity, cognitive function, sensorimotor gating, and prefrontal 

cortical transcriptional reprogramming. To evaluate molecular mechanisms driving sex-specific 

outcomes, we assessed genome-wide expression profiles in the placenta and fetal brain.

RESULTS—Male, but not female, mice with placental trophoblast-specific InsR deficiency 

showed a significantly increased hypothalamic-pituitary-adrenal axis stress response and impaired 

sensorimotor gating, phenotypic effects that were associated with dysregulated nucleotide 

metabolic processes in the male prefrontal cortex. Within the placenta, InsR deficiency elicited 

changes in gene expression, predominantly in male mice, reflecting potential shifts in vasculature, 

amino acid transport, serotonin homeostasis, and mitochondrial function. These placental 

disruptions were associated with altered gene expression profiles in the male fetal brain and 

suggested delayed cortical development.

CONCLUSIONS—Together, these data demonstrate the novel role of placental InsRs in sex-

specific neurodevelopment and reveal a potential mechanism for neurodevelopmental disorder risk 

in pregnancies complicated by maternal metabolic disorders, including diabetes and obesity.
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Diabetes, obesity, and overweight during pregnancy are prevalent risk factors for offspring 

neurodevelopmental disorders, including autism, attention-deficit/hyperactivity disorder 

(ADHD), and schizophrenia (1–8). Such pregnancy complications confer significant risk to 

offspring in the United States in particular, where one-third of reproductive-aged women are 

obese and more than 9% of pregnancies are affected by gestational diabetes (9–11). Male 

offspring are especially at risk because they are more vulnerable to prenatal insults than 

female offspring and are three and four times more likely to develop ADHD and autism, 

respectively (12,13). Animal models have identified fetal sex as a key determinant of 

lifelong outcomes; however, the molecular mechanisms mediating such sex-specific 

programming remain unclear (14–18). Impaired insulin action is common to these maternal 

metabolic conditions, where reduced insulin production is a hallmark of type 1 diabetes 

mellitus and impaired cellular responses to insulin are characteristic of type 2 diabetes, 

gestational diabetes, and obesity. Insulin dysfunction has been demonstrated in placental 

tissue from pregnancies complicated by diabetes, preeclampsia, intrauterine growth 

restriction, and inflammation (19–27). Critically, then, placental insulin signaling may serve 

as a novel mediator of neurodevelopmental programming by maternal adversity contributing 

to disease risk.

Throughout pregnancy, the placenta is important for fetal support because it delivers 

nutrients and growth factors, maintains a protective barrier, and initiates adaptive responses 

to intrauterine status signals (28–31). Insulin dynamically regulates placental function across 

gestation, promoting placental growth, angiogenesis, metabolism, and hormone secretion, 

especially during early pregnancy (32–34). Perturbation of these processes can elicit distinct 

responses in male and female individuals that can influence neurodevelopment throughout 

the entire course of gestation and may therefore underlie the sex-biased outcomes reported 

in animal studies (35). These unique strategies are likely mediated, in part, by X- and Y-

linked gene expression by the fetally derived trophoblasts comprising the majority of the 

placenta (36,37).

To determine a novel mechanistic link between placental trophoblast-specific insulin 

receptor (InsR) dysfunction and sex-biased neurodevelopmental programming, we used the 

Cre/loxP system to conditionally ablate the InsR gene in fetally derived placental 

trophoblasts (38). Male and female mice were evaluated during adulthood for effects of 

placental trophoblast-specific InsR deficiency (pKO) on stress sensitivity, cognitive function, 

sensorimotor gating, and prefrontal cortical reprogramming, critical end points related to 

neurodevelopmental disorders. We hypothesized that sex differences in placental response to 

InsR deficiency would promote greater deficits in male individuals than in female 

individuals. To evaluate potential molecular mechanisms driving sex-specific programming, 

we assessed genome-wide expression profiles in the placenta and corresponding fetal brain.
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METHODS AND MATERIALS

Animals and Conditional InsR Deletion

Placental trophoblast-specific Cre recombinase–expressing mice (CYP19-Cre+; 129S1/

SvlmJ background) (38) were bred with floxed InsR mice (Insrtm1Khn/J; C57BL/6J 

background), and their double heterozygous female (CYP19-Cre+; Insrflox/wt) and Insrflox/wt 

male offspring were subsequently crossed to generate placental-specific InsR knockout 

[(pKO) CYP19-Cre+; Insrflox/flox] and control [(pWT) CYP19-Cre−; Insrflox/wt] littermates. 

Noon on the day of copulation plug detection denoted embryonic day (E) 0.5. Dams were 

either dissected at E12.5 or E17.5 or allowed to give birth. Mice were weaned into same-sex 

and same-genotype cages of 2 or 3 on postnatal day (P) 28, weighed every 4 weeks 

thereafter, and tested beginning at 8 weeks of age. In all experiments, no more than 2 

littermates were included in each group (detailed in Supplemental Table S1). Mice were 

maintained on a 12-hour light/dark cycle (lights on at 07:00) with ad libitum food access 

(Purina Rodent Chow, Purina Mills, Gray Summit, MO); 28.1% protein, 59.8% 

carbohydrate, and 12.1% fat) and water. All animal procedures were conducted in agreement 

with the Guide for the Care and Use of Laboratory Animals in accordance with National 

Institutes of Health guidelines and were approved by the University of Pennsylvania 

Institutional Animal Care and Use Committee.

Embryonic Dissection

Timed pregnant dams were deeply anesthetized with isoflurane on E12.5 or E17.5, and 

conceptuses were isolated from the uterine wall as described previously (39). Intrauterine 

position, observed resorptions, and tissue wet weights were recorded. Placentas were 

hemisected in the transverse plane, flash frozen in liquid nitrogen, and stored at −80°C until 

RNA and protein extraction. Fetal brain, liver, and hindlimb were also isolated, flash frozen, 

and stored. All dissections were completed between 10:00 and 14:00. Embryonic tissue was 

retained for determination of sex by Jarid1 genotyping as described previously (39).

Metabolic and Behavioral Phenotyping

One cohort (n = 9–14/group) underwent light–dark exploration, hypothalamic-pituitary-

adrenal (HPA) axis assessment, prepulse inhibition (PPI) of acoustic startle, and glucose 

tolerance test protocols separated by an intertest interval of ≥ 7 days. Brains were harvested 

from this cohort 2 weeks after the glucose tolerance test. A second cohort (n = 8–10/group) 

was assessed for spatial learning in the Barnes maze and auditory fear conditioning. Testing 

was initiated at 8 weeks of age. Protocols are detailed in the Supplement.

Cytochrome C Oxidase Activity—Test-naïve mice (n = 7–8/group) were killed by 

cervical dislocation at 12 weeks of age, whole brains were collected on dry ice, and 

prefrontal cortex (PFC) micropunches were isolated using a 1.0-mm Harris Uni-Core tissue 

puncher (Ted Pella, Redding, CA) as described previously (39) and stored at −80°C until 

assay. Punches were incubated for 5 minutes in 50 μL of 25 mM potassium phosphate buffer 

and 2 μL of 10% lauryl maltoside and then centrifuged at 14,000 rpm for 10 minutes at 4°C. 

Supernatant was moved to a new tube. Then, 10 μL was added to a cuvette containing 0.5 

mL of potassium phosphate buffer and 25 μL of reduced cytochrome C. Optical density was 
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measured for 1 minute, and rate of cytochrome C oxidation was calculated using Cary Win 

kinetics software (Agilent Technologies, Santa Clara, CA) and normalized to total protein 

determined by Pierce BCA assay (Thermo Fisher Scientific, Waltham, MA).

Quantitative Real-Time Polymerase Chain Reaction—Total RNA was reverse 

transcribed to complementary DNA (cDNA) using the High Capacity cDNA Reverse 

Transcriptase Kit (Applied Biosystems, Waltham, MA). Gene expression was determined by 

TaqMan Gene Expression Assays for the target gene using the 7500 Fast Real-Time PCR 

System (Applied Biosystems). Raw threshold cycle (Ct) values for each sample were 

normalized to Actb and analyzed using the comparative Ct method (40).

Western Blot—Following Trizol–chloroform isolation of E12.5 placenta RNA, protein 

was extracted, quantified, separated by gel electrophoresis, transferred, and probed for InsR 

as detailed in the Supplement.

Affymetrix Microarray—Total RNA was extracted from placental hemisections and PFC 

micropunches as described previously (39) and was sent to the University of Pennsylvania 

Path BioResource Molecular Profiling Core for Affymetrix GeneChip Mouse Gene 2.0 ST 

analysis.

Fetal Brain RNA-Seq—Illumina single-end messenger RNA (mRNA)-Seq libraries were 

prepared from 1 μg of E12.5 whole-brain RNA using the TruSeq Stranded mRNA Sample 

Preparation Kit (Illumina, San Diego, CA) according to the manufacturer’s protocol. 

Adaptors containing unique nucleotide indexes were ligated to purified double-stranded 

cDNA and amplified for 10 cycles. Libraries were diluted to 1.8 pM and sequenced on the 

Illumina NextSeq 500 system. On average, 41 million reads were obtained per library. Raw 

data were aligned to the Mus musculus (GRCm38) reference genome with Rsubread (41). 

Counts were normalized to library size prior to differential expression analysis.

Statistics

All analyses were conducted by an investigator blinded to genotype. Phenotypic assessments 

of adult physiology and behavior were analyzed by two-way analysis of variance or 

multivariate analysis of variance for sex and genotype, with repeated measures where 

appropriate using JMP11 Pro software (SAS, Cary, NC). Where basal sex differences were 

detected, genotype effects were subsequently analyzed within sex. Main effects and 

interactions were further analyzed by Fisher’s protected least significant difference test. 

Values greater than 2 standard deviations from the group mean were removed from analysis. 

Significance was set at p < .05. Robust multi-array–normalized microarray data were 

analyzed by gene set enrichment analysis (GSEA; Broad Institute, Cambridge, MA) for 

changes in c2_CP, c5_BP, and c3 gene sets from the Molecular Signature Database 

(MsigDB, v4.0, Broad Institute) using 1000 gene set permutations and stringent significance 

criteria (normalized enrichment score > 1.8, false discovery rate [FDR] < 0.05) (42,43). 

Normalized RNA-Seq count data were assessed for differential expression using the DESeq 

package in R Bioconductor (44). Genes with FDR < 0.05 and p < .05 were considered 

differentially expressed. Functional annotation clustering of differentially expressed genes 
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was performed using Database for Annotation, Visualization, and Integrated Discovery 

tools, where clusters with enrichment scores > 1.3 and FDR < 0.05 were considered 

significant (45). Heat maps were generated in R using gplots.

RESULTS

Placental Trophoblast-Specific InsR Deletion Preserves Viability, Growth, and Metabolic 
Function

Effective InsR targeting was confirmed by quantitative reverse transcription polymerase 

chain reaction (Figure 1A) and Western blot (Supplemental Figure S1A) on E12.5, after full 

differentiation of the placenta, in pKO conceptuses and their littermate controls (36). InsR 

mRNA was significantly reduced in male and female pKO placentas at a magnitude 

expected based on the presence of maternal decidua and endothelial cells. InsR expression 

remained unaltered in the fetal and adult brain (Supplemental Figure S1B, C) and in insulin-

responsive liver and skeletal muscle samples at E17.5 (Figure 1B, C). Placental InsR 

deletion did not affect viability with the observed genotypes, χ2(5, N = 151) = 3.26, p = .66, 

and sex ratio, χ2(1, N = 151) = 0.06, p = .81, not differing from expected Mendelian 

inheritance ratios.

To confirm that neurodevelopmental outcomes were not attributable to gross metabolic 

effects of placental-specific InsR deletion, we assessed preparturition tissue weights, 

postnatal growth, and glucose tolerance. Consistent with the limited effects of global InsR 

knockout on prenatal growth (46), there were no effects of genotype on E17.5 placenta or 

fetus weights (Figure 1D, E). At weaning, we detected a main effect of genotype on nose–

rump length, where post hoc tests revealed nonsignificant increases in body length of pKO 

male and female mice of 2.4% and 3.5%, respectively (Figure 1F). However, there were no 

differences in body weight across the lifespan or rate of glucose clearance in pKO mice 

(Figure 1G–J).

Placental InsR Deficiency Recapitulates Sex-Biased Endophenotypes of 
Neurodevelopmental Dsorders

Adult pKO mice and their littermate controls were compared in translatable outcome 

measures of stress sensitivity, sensorimotor gating, and cognition, functional domains 

affected in sex-biased disorders, including autism, ADHD, and schizophrenia (47–49). In the 

HPA stress axis assessment, acute restraint increased plasma corticosterone in all groups 

(time: F3,41 = 264.07, p < .0001) and to a greater extent in females as expected (sex: F1,43 = 

114.47, p < .0001; sex × time: F3,41 = 24.78, p < .0001). Subsequent within-sex analyses 

revealed significantly increased corticosterone responses to restraint in pKO male mice 

(Figure 2A) but no genotype effects in female mice (Figure 2B). In our assessment of 

sensorimotor gating, placental InsR deficiency induced sex-specific impairment of PPI. 

Despite normal baseline startle reflexivity, the ability of a weak prepulse to reduce or “gate” 

the response to a subsequent startling stimulus was profoundly disrupted at all prepulse 

intensities in pKO male mice (Figure 2C) yet remained intact in pKO female mice (Figure 

2D).
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The phenotypic effects of placental InsR deficiency in male mice were highly specific, with 

pKO male and female mice exhibiting intact spatial memory acquisition and reversal 

learning in the Barnes maze (Figure 2E, F), normal auditory fear conditioning (Figure 2G, 

H), and similar avoidance of stress-provoking stimuli in the light–dark exploration test 

(Figure 2I). Furthermore, no differences in locomotor activity were detected (Figure 2J).

Long-Term PFC Reprogramming in Male Mice With Placental Trophoblast-Specific InsR 
Deficiency

The PFC modulates both HPA axis activity and PPI in rodents, and its sex-specific 

susceptibility to early life challenge has been well established (50–55). To identify PFC 

changes contributing to phenotypic effects in these mice, PFC gene expression profiles were 

determined by genome-wide microarray. GSEA of the PFC transcriptome identified two 

gene sets differentially expressed in pKO versus pWT male mice and no altered gene sets in 

female mice (Table 1). In pKO male mice, gene sets for nucleotide metabolic processes were 

increased relative to pWT (Figure 3A, B). Analysis of the leading-edge subset, defined as 

the gene set members accounting for the enrichment, showed upregulation of genes related 

to nucleotide synthesis, DNA repair, metabotropic glutamate receptor signaling, and 

mitochondrial activity in pKO male mice (Figure 3C). To directly assess mitochondrial 

function, we measured cytochrome C oxidase (CCO) activity in the PFC of test-naïve adults 

(Figure 3D). Whereas we detected lower CCO activity in pKO males, the effects of genotype 

and sex did not reach statistical significance.

InsR Deficiency Induces a Transcriptional Response Predominantly in Male Placentas

To identify mechanisms driving sex-specific reprogramming, we evaluated gene expression 

profiles in late-gestation (E17.5) placentas by genome-wide microarray and GSEA. InsR 

deficiency suppressed 26 gene sets in male placentas and 1 gene set in female placentas 

(Figure 4A). No gene sets were significantly upregulated in pKO placentas (Table 2). The 

maximally repressed gene set in male mice, Reactome_Lipoprotein_Metabolism, was the 

only gene set affected in pKO female mice (Supplemental Tables S2 and S3). Furthermore, 

placental cholesterol transport and triglyceride metabolic genes comprised the leading-edge 

subset and were suppressed by InsR deletion in both sexes (Supplemental Figure S2A–C). 

Consistent with these transcriptional effects, levels of cholesteryl esters and triglycerides in 

the E17.5 brain were similarly altered in pKO male and female mice (Supplemental Figure 

S2D–G).

In male placentas, InsR deficiency suppressed 25 additional gene sets involving lipid 

homeostasis, vascular function, steroid hormone metabolism, insulin-like growth factor 

activity, mitochondrial function, and amino acid transport/metabolism (Figure 4A and 

Supplemental Table S2). The transcription factor, hepatocyte nuclear factor 1, was identified 

as a candidate regulator together with HNF3B, as 92% of affected gene sets contained 

suppressed hepatocyte nuclear factor 1 targets. Based on the pleotropic influence of the 

placental vasculature, we further examined the male-specific altered vascular profile. 

Leading-edge analysis revealed that a subset of coagulation genes accounted for the cluster’s 

suppression (Figure 4B, C). InsR deficiency promoted an anticoagulant profile in male 

placentas, including decreased fibrinogen, thrombin, von Willebrand factor, kinogen 1, and 
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factor X expression (Figure 4C). Furthermore, vasoregulators were among the top 20 GSEA-

ranked genes, including decreased fibrinogen, heparin cofactor 1, monoamine oxidase B, 

and the rate-limiting serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1) 

(Figure 4D).

The Y-linked H3K4me3 Demethylase, KDM5D, Predicts Serotonergic Gene Expression in 
Male InsR-Deficient Placentas

We hypothesized that this anticoagulant profile may be related to intrauterine levels of 

serotonin (5–hydroxytryptamine), a potent vasoconstrictor and essential regulator of fetal 

neurodevelopment, particularly during midgestation (56–58). As such, we next assessed for 

sex-specific effects of InsR deficiency on serotonin-related gene expression in E12.5 

placenta hemisections (Figure 4E). Consistent with E17.5, InsR deficiency decreased 

expression of TPH1 at E12.5 in male mice only. Expression of the serotonin reuptake 

transporter (SLC6A4/SERT) was also reduced in pKO male mice. No differences in 

monoamine oxidase A expression were observed. To elucidate molecular mechanisms 

mediating male-specific placental serotonergic effects, we examined the relationship 

between the expression of TPH1 and sex chromosome–linked placental epigenetic 

regulators, including the H3K4me3 demethylases, KDM5C (X linked) and KDM5D (Y 

linked), and the H3K27me3 demethylases, UTX and UTY. We detected a significant positive 

correlation between placental TPH1 and KDM5D expression in male mice, thereby 

identifying this Y-linked histone demethylase as a candidate epigenetic mediator (Figure 

4F). No correlations were detected for KDM5C, UTX, or UTY (data not shown).

We next assessed levels of biogenic amines in the remaining placenta hemisections by liquid 

chromatography/mass spectrometry. Although we detected an interaction between genotype 

and sex on placental serotonin levels (interaction F1,20 = 4.54, p = .046, post hoc tests did 

not reach significance (Supplemental Figure S3A). No differences were detected in levels of 

5-hydroxyindoleacetic acid, the major metabolite of serotonin (Supplemental Figure S3B). 

Whereas we observed sex differences in dopamine and norepinephrine levels, no genotype 

effects were detected (Supplemental Figure S3C, D).

Sex-Specific Changes in the Fetal Brain Transcriptome in Response to Placental InsR 
Deficiency

Next, we used RNA-Seq to determine whether placental serotonergic changes at E12.5 were 

associated with dysregulated neurodevelopment in pKO male mice, as predicted based on 

the involvement of serotonin in fetal brain cell proliferation, migration, and wiring (58,59). 

In total, 27 and 32 genes were significantly differentially expressed in the E12.5 brain of 

male and female pKO mice, respectively (Supplemental Table S4). Notably, 13 genes were 

affected by InsR deficiency in both sexes, including a subset of homeobox transcription 

factors involved in brainstem dorsal–ventral patterning. Gene ontology analysis of the genes 

significantly dysregulated by InsR deficiency using Database for Annotation, Visualization, 

and Integrated Discovery tools revealed an overrepresentation of genes mediating 

cytoskeletal dynamics and motility only in pKO males (Figure 4G). The remaining gene 

ontology terms were similarly affected in male and female mice (Figure 4H) and reflected 

changes in dorsal–ventral patterning and embryonic morphogenesis.
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DISCUSSION

Diabetes, obesity, and overweight are prevalent pregnancy complications that predispose 

offspring to male-biased neurodevelopmental disorders, including ADHD, autism, and 

schizophrenia (1–8). Whereas the mechanisms leading to sex differences in disease risk 

remain unidentified, defective placental insulin signaling is common to these pregnancy 

complications and has been implicated in adverse fetal outcomes, especially in male 

individuals (19–28). We hypothesized that impaired insulin signaling in the placenta, the 

critical and sex-specific maternal–fetal intermediary, is a mechanistic link between maternal 

metabolic dysfunction and male-biased neurodevelopmental reprogramming. In the current 

study, to demonstrate the precise role of placental InsRs, end points related to 

neurodevelopmental disorders were evaluated in mice with placental trophoblast-specific 

InsR deletion and subsequent programmatic mediators were identified.

Excitingly, and consistent with our hypothesis, pKO produced endophenotypes of 

neurodevelopmental disorders in male mice but not in female mice. Importantly, our initial 

analyses confirmed that behavioral outcomes were independent of potential confounds 

related to offspring growth or metabolic dysfunction given that we found no changes in 

placental weight, fetal weight, longitudinal growth, or glucose tolerance with pKO. Impaired 

prenatal growth was not expected in the current study because insulin-like growth factor 

receptors have been shown to maintain placental and fetal growth in total InsR knockout 

mice (46). The sex specificity of these findings is remarkable and highlights the novel 

importance of placental function in neurodevelopmental programming. In examination of 

programmed stress reactivity in these mice, adult pKO male mice exhibited an increased 

HPA stress axis response, a common feature underlying neurodevelopmental and affective 

disorders (60–63). Adult pKO male mice also exhibited impaired sensorimotor gating (PPI), 

recapitulating abnormalities characteristic of neurodevelopmental disorders, including 

autism, ADHD, and schizophrenia. Such outcomes have significant translational value 

because both HPA axis stress reactivity and PPI are reproducible across species, including in 

humans, where the regulatory circuits are broadly conserved (51,55,64).

These neural stress circuits converge in the PFC, a critical regulator of both neuroendocrine 

stress responses and PPI and a brain region with known sensitivity to prenatal adversity that 

is disrupted in neurodevelopmental disorders (50–54,65). Therefore, we performed GSEA of 

the adult PFC transcriptome to identify molecular pathways dysregulated by pKO and 

associated with the male-specific phenotype. Placental trophoblast-specific InsR deletion 

resulted in programming of PFC gene expression in male mice but not in female mice. 

Whereas no differentially expressed gene sets were detected in female mice, gene sets for 

nucleotide metabolic processes, including nucleotide synthesis, nuclear and mitochondrial 

DNA repair, and cellular energy homeostasis, were increased in the PFC of pKO male mice. 

Surprisingly, we also observed increased expression of the immunomodulatory 

neuropeptides, adrenomedullin and urocortin 2, likely by local immune cells within the PFC 

(66–68). Together, these changes suggest an ongoing response to injury, oxidative stress, 

and/or mitochondrial dysfunction in the PFC of pKO male mice (69). Because our 

assessment of mitochondrial CCO activity in a separate test-naïve cohort did not reach 

statistical significance, the transcriptomic profile in behavior-tested pKO male mice may 
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reflect an exacerbated state and a programmed susceptibility of the PFC to environmental 

stressors. Such outcomes are consistent with the observed mitochondrial insufficiency in 

fetal cells of diabetic pregnancies, which may then be worsened by stress, especially in the 

PFC, as has been implicated in the pathogenesis of schizophrenia and autism (70–76).

Placental trophoblasts are fetally derived, express the fetal genetic sex, and exhibit basal sex 

differences; therefore, we hypothesized that InsR deficiency elicited distinct patterns in male 

and female placentas and, in turn, orchestrated divergent fetal developmental trajectories 

(30,35). To identify sex-specific placental responses, we leveraged GSEA to compare 

expression of key molecular pathways in the late-gestation placenta. Strikingly, and 

consistent with the observed phenotypic outcomes, the majority of placental differences 

occurred again only in male mice. Only male pKO placentas exhibited an anticoagulant 

profile and repression of genes mediating amino acid metabolism and transport, steroid 

hormone synthesis, insulin-like growth factor activity, and mitochondrial function. In 

agreement with our results, sex differences in placental responses to intrauterine challenges 

in humans, including maternal diabetes and overnutrition, have been well established 

(28,29,35,77). InsR deficiency disrupted placental lipoprotein metabolism and cholesterol 

transfer similarly in male and female mice, recapitulating findings reported in human and rat 

diabetic placentas, yet likely having limited neural impact due to fetal de novo lipid 

synthesis at this gestational stage (19,78–82).

In examining the molecular pathways in the male placenta uniquely positioned to promote 

neurodevelopmental changes, regulation of serotonin production stood out as particularly 

important based on its known involvement in neurodevelopmental programming (58). In 

male mice, InsR deficiency suppressed genes involved in placental synthesis and clearance 

of serotonin, a potent vasoconstrictor implicated in the etiology of gestational diabetes (83). 

Similar serotonergic alterations in diabetic placentas have been directly attributed to 

impaired insulin signaling and undoubtedly affect neurogenesis, migration, and 

synaptogenesis as well as uteroplacental blood flow (20,56–58,83). Given the critical role of 

placenta-derived serotonin in forebrain development prior to E14.5, we assessed the effect of 

InsR deficiency on serotonergic gene expression and monoamine levels in the E12.5 

placenta (84). Similar to our findings in late gestation, InsR deficiency suppressed TPH1 and 

SERT expression in male mice but not in female mice on E12.5; however, our assessment of 

serotonin levels did not reach statistical significance and was limited by the presence of 

maternally derived decidual and blood serotonin. To identify molecular mechanisms driving 

the male specificity of these findings, we evaluated expression of X- and Y-linked histone 

demethylases, epigenetic machinery capable of programming longterm changes in gene 

expression in a sex-dependent manner (85,86). In this examination, we identified the Y-

linked histone demethylase, KDM5D, as a potential epigenetic mediator based on its 

positive correlation with TPH1 expression. Given that KDM5D demethylates lysine 4 of 

histone H3, thereby removing an activating histone mark, KDM5D activity may underlie 

repressed placental TPH1 in pKO male mice.

We predicted that these sex-specific placental responses to InsR would result in divergent 

neurodevelopmental trajectories in the developing fetal brain. Specifically, based on the 

known involvement of placental-derived serotonin in fetal brain development, we predicted 
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changes related to cell migration, proliferation, and/or wiring in the pKO male brain (58). 

Therefore, we determined gene expression profiles in the E12.5 brain corresponding to the 

same placental time point examined above. Whereas a subset of genes involved in hindbrain 

dorsal–ventral patterning was altered by pKO in both sexes, only the pKO male mice 

exhibited reduced expression of genes modulating cytoskeletal dynamics and cell motility. 

These processes are required for normal neuronal proliferation, migration, and axon 

targeting during this gestational stage (87–89). Thus, these findings may reflect delayed or 

disrupted cortical development specifically in pKO male mice. In line with this, neonates 

born to diabetic humans and rodents exhibit markers of delayed brain and dendritic 

maturation (3,90). These data suggest a potential mechanism by which placental trophoblast-

specific InsR deletion leads to long-term programmatic effects specifically in male mice.

The current study aimed to delineate the specific role of InsR in placental trophoblasts, the 

cell population known to exhibit insulin resistance in human diabetic placental tissue (21). 

Effects on InsR outside of trophoblast cells were not detected at E12.5, at E17.5, or in the 

adult brain; however, the potential impact at additional time points has not been examined. 

In addition, placental and fetal brain samples were composed of heterogeneous cell types, 

and therefore potential cell-type or region-specific effects of InsR deficiency may be 

undetected in the embryonic analyses presented here.

CONCLUSIONS

These studies demonstrate that perturbation of InsRs specifically in placental trophoblasts, a 

known consequence of maternal metabolic conditions that increases neurodevelopmental 

disorder risk, is sufficient to disrupt stress sensitivity and prefrontal cortical development in 

male mice but not in female mice. These findings provide compelling evidence for the 

critical involvement of placental InsRs in sex-specific neurodevelopment and have important 

implications for pregnancies complicated by diabetes and obesity.
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Figure 1. 
Placental-specific insulin receptor (InsR) targeting preserves growth and metabolic function. 

(A–C) Effective InsR targeting in fetally derived placental trophoblasts was confirmed by 

quantitative reverse transcription polymerase chain reaction in placental trophoblast-specific 

InsR deficiency (pKO) conceptuses and their littermate controls (pWT). (A) As expected, in 

the fully differentiated embryonic day (E) 12.5 placenta (n = 4/group), InsR messenger RNA 

(mRNA) was significantly reduced in pKO male and female mice, genotype: F1,11 = 47.21, p 
< .0001. Male mice had higher InsR expression in the placenta at this gestational stage, sex: 

F1,11 = 27.64, p = .0003; however, the effect of sex did not interact with genotype, 

interaction: F1,11 = 0.38, p = .55. (B, C) Confirming tissue-specific InsR targeting, InsR 

mRNA remained unaltered in fetal insulin-responsive tissues, including liver, genotype: 

F1,16 = 0.54, p = .47, interaction: F1,16 = 2.056, p = .17, and skeletal muscle, genotype: F1,14 
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= 2.11, p = .17, interaction: F1,14 = 0.34, p = .57, at E17.5 (n = 5/group). (D, E) No 

differences in preparturition placenta weights, genotype: F1,34 = 0.012, p = .91, interaction: 

F1,34 = 1.42, p = .24, and fetus weights, genotype: F1,34 = 0.30, p = .59, interaction: F1,4 = 

0.27, p = .61, were detected at E17.5 (n = 7–12 litters/group, weights averaged within litter). 

(F) In pKO mice (n = 8–10/group), there was a main effect of genotype on body length at 

weaning, F1,30 = 4.83, p = .036; however, no within-sex differences were detected by 

Fisher’s protected least significant difference test. (G, H) Analysis of body weight in these 

mice at 4, 8, 12, and 16 weeks of age indicated no impact of placental InsR deletion on 

growth across the lifespan of male mice, genotype: F1,16 = 0.27, p = .61, genotype × age: 

F3,48 = 0.32, p = .81, or female mice, genotype: F1,10 = 2.81, p = .12, genotype × age: F3,30 

= 0.80, p = .50. (I, J) As further confirmation that metabolic processes were intact, pKO 

male and female mice showed no differences in their rate of glucose clearance as fasted 

adults, genotype: F1,42 = 0.057, p = .81, genotype × sex: F1,42 = 1.60, p = .21, genotype × 

sex × time: F4,39 = 1.69, p = .17. Values are mean ± SEM. *p < .05.
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Figure 2. 
Placental insulin receptor (InsR) deficiency recapitulates male-specific endophenotypes of 

neurodevelopmental disorders. (A, B) Time course and area under the curve (AUC) analyses 

of corticosterone responses to a 15-minute restraint (shaded region) depict male-specific 

effects of placental InsR deletion on hypothalamic-pituitary-adrenal (HPA) axis 

responsiveness. (A) In adult male mice, total corticosterone over 120 minutes was 

significantly elevated in placental trophoblast-specific InsR deficiency (pKO) mice relative 

to controls (pWT), AUC: t21 = 2.22, p = .037. The effect of pKO manifested as a significant 

increase in peak corticosterone secretion at 30 minutes, t21 = 2.75, p = .0073, although 

multivariate analysis of variance detected only a trending effect of pKO across time, 

genotype: F1,21 = 4.09, p = .055, genotype × time: F3,19 = 2.22, p = .12. (B) In female mice, 

pKO had no impact on corticosterone secretion, genotype: F1,22 = 0.43, p = .52, genotype × 

time: F3,20 = 0.18, p = .91, AUC: t22 = 0.96, p = .35. (C, D) Placental InsR deficiency also 

elicited a male-specific impairment of prepulse inhibition (PPI), genotype × sex: F1,36 = 
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4.15, p = .049, without affecting baseline acoustic startle responses to 120 dB, genotype: 

F1,36 = 0.19, p = .66, genotype × sex: F1,36 = 0.45, p = .51. (C) In adult male mice, PPI was 

reduced in pKO mice relative to pWT mice overall (p = .018) and at all prepulse intensities 

(+4 dB: p = .0005; +8 dB: p = .0001; +16 dB: p < .0001). (D) In contrast, there was no effect 

of genotype on PPI in female mice overall (p = .73) or at any prepulse intensity (+4 dB: p = .

91; +8 dB: p = .60; +16 dB: p = .23). (E–J) Behavioral effects of placental InsR deficiency 

in adult male mice were selective, with pKO having no impact on cognitive or locomotor 

measures. (E, F) Spatial memory acquisition (trials 1–6) and reversal learning (trials 1–9) in 

the Barnes maze were unaltered in pKO adult male mice (E) and female mice (F). Latency 

to find the target escape box improved across the 6 acquisition trials in all groups, F5,30 = 

19.094, p < .0001, and there were no effects of sex, F1,34 = 0.004, p = .98, or genotype, F1,34 

= 1.14, p = .29, trial × sex × genotype: F5,30 = 0.99, p = .44. Similarly, reversal latency 

(target rotated 180°) improved across trials, F2,33 = 6.14, p = .0054, and no effects of sex, 

F1,34 = 0.66, p = .42, or genotype, F1,34 = 0.32, p = .58, genotype × sex F2,33 = 0.14, p = .87, 

were detected. (G, H) Acquisition of auditory fear conditioning, depicted as percentage 

freezing to the tone (conditioned stimulus), increased similarly in all groups in response to 

three tone–shock pairings, trial × sex × genotype: F2,23 = 0.37, p = .69, and no main effect of 

genotype was observed, F1,24 = 1.57, p = .22. (I, J) In the light–dark box exploration test, 

there were no genotype effects on the amount of time spent in the light zone of the 

apparatus, genotype: F1,48 = 0.43, p = .52, genotype × sex: F1,48 = 0.00014, p = .99, or the 

number of light–dark zone transitions, genotype: F1,48 = 0.12, p = .73. Whereas we observed 

a trending interaction between the effects of sex and genotype on transitions, F1, 48 = 3.12, p 
= .084, no pairwise differences were detected (male pWT vs. pKO: p = .16; female pWT vs. 

pKO: p = .30). Values are mean ± SEM. HPA, PPI, and light/dark cohort: n = 9–14/group. 

Barnes maze and fear conditioning cohort: n = 8–10/group. *p < .05.
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Figure 3. 
Long-term prefrontal cortex (PFC) programming in male mice with placental insulin 

receptor (InsR) deficiency points to a disruption in cellular metabolic processes. (A, B) Gene 

set enrichment analysis (GSEA) of the adult PFC transcriptome in placental trophoblast-

specific InsR deficiency (pKO) vs. control (pWT) male mice (n = 6/group) identified two 

significantly enriched gene sets in the pKO group, indicating programming of PFC 

nucleotide/nucleoside metabolic processes. Plots depict gene set enrichment score, 

normalized enrichment score (NES), distribution of set members across the GSEA-ranked 

gene list, and genes comprising the leading-edge subset (boxes). (C) Leading-edge analysis 

revealed an upregulation of genes involved in nucleotide synthesis, DNA repair, 

metabotropic glutamate receptor signaling, and mitochondrial activity in the PFC of adult 

pKO male mice. The heat map depicts expression of the leading-edge subset in the adult 

PFC, where blue indicates lower and red indicates higher average relative gene expression 

across groups. (D) Cytochrome C oxidase (CCO) activity in the PFC of experiment-naïve 

adults. As would be predicted from the GSEA results, a trending decrease in CCO activity 

was detected in pKO male mice (a priori t test, pWT vs. pKO male mice: t13 = 1.94, p = .

075); however, these results did not reach statistical significance, interaction: F1,2 = 2.61, p 
= .12, genotype: F1,27 = 2.20, p = .15, sex: F1,27 = 0.039, p = .85. n = 7–8/group. FDR, false 

discovery rate.
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Figure 4. 
Insulin receptor (InsR) deficiency elicits sex-specific transcriptional responses in the 

placenta and fetal brain. (A–C) Gene set enrichment analysis of embryonic day (E) 17.5 

placenta transcriptome identified key pathways dysregulated by InsR deletion (n = 6/group). 

(A) Bubble plot of gene sets (circles) significantly downregulated in male (top) and female 

(bottom) placental trophoblast-specific InsR deficiency (pKO) placentas relative to controls 

(pWT), where color intensity indicates the normalized enrichment score (NES) and diameter 

indicates gene set size. Differentially expressed gene sets (NES > 1.8, false discovery rate 

[FDR] < 0.05) were clustered by gene member overlap and ordered by NES. Whereas InsR 

deletion suppressed lipoprotein metabolism genes in both sexes, 25 additional gene sets 

were downregulated only in male pKO placentas. Clustering illustrated marked suppression 

Bronson et al. Page 21

Biol Psychiatry. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of genes mediating (1) lipid homeostasis, (2) vascular function, (3) steroid hormone 

metabolism, (4) insulin-like growth factor (IGF) activity, (5) mitochondrial function, and (6) 

amino acid transport in pKO male mice. Gene set enrichment analysis (GSEA) also 

identified hepatocyte nuclear factor 1 (HNF1) as a candidate regulator in male mice, with the 

majority of gene sets containing HNF1 targets (* = not HNF1 target). Differentially 

expressed gene sets are detailed in Supplemental Table S2. (B) Plot showing the overlap of 

the leading-edge genes from each differentially expressed gene set in the vascular cluster. 

Expression of a common subset of coagulation cascade genes was suppressed in pKO male 

placentas. (C) A heat map of genes comprising the coagulation subset, where blue indicates 

lower and red indicates higher average relative expression across groups. InsR deletion 

decreased expression of procoagulant genes in male mice. (D) A heat map of the top 20 

GSEA-ranked genes correlated with InsR deletion in male E17.5 placentas. Cyan circles 

indicate vasoregulators, including the rate-limiting serotonin synthesizing enzyme 

tryptophan hydroxylase 1 (TPH1, arrow). (E) Consistent with E17.5, TPH1 messenger RNA 

was suppressed by InsR knockout by E12.5 in male placentas (a priori t test, pWT vs. pKO 

male mice: t9 = 3.0, p = .015) but not in female mice (t10 = 0.63, p = .54), although the 

interaction between genotype and sex did not reach statistical significance, F1,19 = 2.75, p = .

11. The serotonin reuptake transporter (SLC6A4) was similarly decreased in male tissue (a 

priori t test, pWT vs. pKO male mice: t9 = 3.25, p = .0087) but not in female mice (t10 = 

0.71, p = .49), whereas no genotype by sex interaction was detected, F1,20 = 2.61, p = .12. 

Conversely, placental expression of monoamine oxidase A (MAOA) in male mice was not 

significantly affected by InsR deficiency (a priori t test, pWT vs. pKO male mice: t9 = 1.87, 

p = .095). (F) Expression of the Y-linked histone demethylase KDM5D was positively 

correlated with TPH1 in male E12.5 placentas (R2 9 = .55, p = .009). (G–H) Because 

placenta-derived serotonin is critical for fetal neurodevelopment, we assessed the E12.5 

brain transcriptome for sex-specific effects of pKO. Functional annotation clustering of 

differentially expressed genes suggested disruption of motility and cytoskeletal dynamics 

only in pKO male mice (G), whereas the remaining effects of pKO were detected in both 

male and female mice (H). AMI, acute myocardial infarction; DAVID, Database for 

Annotation, Visualization, and Integrated Discovery; HNF3B, hepatocyte nuclear factor 3 

beta; UPA, urokinase-type plasminogen activator; UPAR, UPA receptor.
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