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Abstract

Background: The circadian clock regulates plant metabolic functions and is an important component in plant
health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are
shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass
spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line
(OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to
determine how cycling dynamics affected the microbial community. Microbial communities associated with
Brachypodium distachyon (BD21) were also evaluated.

Results: Significantly different bacterial community structures (P = 0.031) were observed in the rhizosphere of
wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with
abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae,
exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in
the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in
Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely
more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere
showed a significant variation between dark and light cycles.

Conclusions: The results of this study suggest that the rhizosphere bacterial community is regulated, to some
extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and
productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal
dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that
previous studies done without relevance to time of day may need to be reevaluated with regard to the impact of
diurnal cycles on the rhizosphere microbial community.
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Background
The plant rhizosphere contains a complex microbial
community that directly impacts plant growth, health,
and development [1]. The rhizosphere bacterial commu-
nity composition is predominantly determined by the
soil community, and associated environmental factors
(e.g., climate), but is also influenced to some extent by
plant host genotype [2, 3]. Relative to bulk soil, a “rhizo-
sphere effect” results in a plant-root-associated microbial
community that is more numerous and shows greater
metabolic activity that is shaped by exudation of carbon
and other metabolites from the plant root [4]. Thus, mu-
tations in genes related to plant nutrient metabolism
may in turn influence the rhizosphere microbial commu-
nity, with implications for plant growth and health [5].
Furthermore, manipulation of host-associated microbial
communities is receiving increasing attention as a bio-
logical mechanism to improve plant growth and stress
resistance [6].
Important to the determination of what constitutes a

beneficial microbial community is the characterization
of how diverse soil bacteria interact with host plant spe-
cies [7]. The rhizosphere effect that exerts some control
on the rhizosphere community composition is mediated
by metabolic exchange between the roots and soil [4].
The partitioning of nutrients to the roots and their
exchange with the soil environment is controlled by the
response of plants to environmental signals, such as light
and temperature [8]. These responses are modulated by
a plant’s innate ability to estimate time within an ap-
proximately 24-h period and synchronize biological
events via the circadian clock [8]. The importance of
light in shaping the outcome of host-microbe interac-
tions is becoming increasingly evident. Recent studies
show that the intestinal microbiota of humans [9] and
mice [10, 11] undergo diurnal oscillations under the
control of host feeding time and diet, and silencing of a
host’s molecular clock genes causes gut dysbiosis [12].
The circadian clock is an important regulator of

numerous basic plant functions including central carbon
metabolism [13], gene expression, stomatal function, and
the timing component of photoperiodism, which regu-
lates seasonal reproduction [14, 15]. The clock is also
subject to extensive natural variation both within and
between species, and this is reported to influence plant
fitness and performance [16–20]. As a result, the
circadian clock is considered a key regulator of plant
physiology and adaptation to different geographic envi-
ronments, enabling an organism to anticipate periodic
environmental changes and adapt its physiological and
developmental states accordingly [8, 21]. Indeed, the life
cycles of pathogens are closely associated with diurnally
regulated host plant metabolism, and the circadian clock
has been suggested to contribute to enhanced plant

fitness by balancing innate immune responses with
cellular metabolism [22, 23].
In Arabidopsis, the circadian clock consists of a series

of intertwined feedback loops, regulated both trans-
criptionally and post-transcriptionally, through post-
translational modification and protein turnover [8]. This
mechanism appears to be conserved across plant species
[24]. The circadian clock has been found to influence a
variety of metabolic functions in the plant including
chlorophyll biosynthesis, transport photosystems, starch
synthesis and degradation, and nitrogen and sulfur
assimilation [25]. The concentrations of metabolites in-
cluding nitrate, glutamate, glutamine, and sucrose have
also been shown to alter clock timing [26, 27]. However,
due to differences in methodology, these results are
sometimes inconsistent across studies, highlighting a
need to consider photoperiod duration and the time of
sample collection when describing results [25].
While the circadian clock machinery and associated

metabolic and physiological responses have been well
characterized, especially in Arabidopsis [28], little is
known about how the rhizosphere bacterial community
responds to host circadian cycling. Here, we examine the
rhizosphere community dynamics of Arabidopsis thaliana
in natural soil using next-generation sequencing (NGS) of
the 16S rRNA gene. Soil organic matter (SOM) compos-
ition in the rhizosphere was also characterized by high-
resolution mass spectrometry, 21T Fourier transform ion
cyclotron resonance mass spectrometry (FTICR-MS), to
help elucidate microbial metabolism.
In this study, we assessed cycling dynamics: (1) among

biological replicates of A. thaliana sampled during dark
and light periods to determine whether microbial com-
munity composition changed due to a diel cycle associ-
ated with exposure to light; (2) over a 72-h period
utilizing an acyclic Arabidopsis line in which the cca1
gene is ectopically over-expressed [29] to determine
differences in rhizosphere communities between the
wild-type and mutant genotypes; and (3) of rhizosphere
communities of a second species, Brachypodium dis-
tachyon, to determine if this cycling phenomenon is
conserved among physiologically diverse plant species.
While current hypotheses suggest that microbial popula-
tions in the rhizosphere are relatively static [2, 3], our
results suggest that the rhizosphere microbial commu-
nity is surprisingly dynamic, responding to both biotic
and abiotic factors, including the circadian clock.

Results
16S rRNA characterization of AM and PM rhizosphere
communities
Sequencing of the V5–V6 hypervariable regions of the
16S rRNA gene from DNA obtained from dark (AM,
1 h before light exposure) and light (PM, 1 h before
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dark) wild-type (Col-0) rhizosphere and fallow soil sam-
ples produced a mean Good’s coverage of 94.2 ± 2.3%
(mean ± standard deviation), following rarefaction to
20,000 reads per sample with OTU binning at 97% simi-
larity. While differences in alpha diversity, measured as
Shannon diversity and abundance-based coverage esti-
mate (ACE) of richness, did not significantly differ be-
tween dark and light samples (9 h between time points)
for a given host environment (Table 1), Shannon diver-
sity was significantly greater in rhizosphere samples
versus fallow soil (P = 0.001). Samples had similar taxo-
nomic compositions and were predominantly comprised
of members of the Proteobacteria, Actinobacteria, and
Acidobacteria (Additional file 1: Figure S1). Soil commu-
nities harbored greater relative abundances of the Acti-
nobacteria and Acidobacteria than were observed in the
rhizosphere. Communities in both the rhizosphere and
fallow soil consisted of a large number (265 to 274) of
families present at relatively low abundances (Additional
file 1: Figure S2). Rhizosphere communities contained
approximately 10 more families at low abundance than
those of fallow soil. Planctomycetaceae was the most
abundant family in both environments at both time
points (Additional file 1: Figure S2), and about a quarter
of the community (23.3 ± 2.3% and 28.5 ± 4.7% of
sequence reads in rhizosphere and soil samples, respect-
ively) could not be classified to a family.
Principal coordinate analysis of Bray-Curtis distances

revealed significant separation (AMOVA, Fs = 1.28, P =
0.003) of dark (AM) communities from those character-
ized from light (PM) samples in the Arabidopsis rhizo-
sphere (Additional file 1: Figure S3). Thus, while alpha
diversity (species richness and evenness within a single
sample) did not differ, community composition chan-
ged significantly between samples collected during dark
and light conditions in the rhizosphere. In contrast,
separation was not significant in fallow soil (Fs = 1.48,
P = 0.076). Similarly, phylogenetic differences in com-
munity composition (phylobetadiversity, described
further in the “Methods” section), assessed using
unweighted UniFrac distances, showed significant dif-
ferences (P = 0.031) between the dark and light

communities in the rhizosphere, but not in soil alone
(P = 0.217), suggesting changes in the soil were evolu-
tionary driven.
Community compositions (beta diversity) between

dark and light samples were significantly different in
both environments (P = 0.018 and 0.031, for rhizosphere
and soil communities, respectively), as evaluated by ana-
lysis of similarity (ANOSIM), but as stated above, phylo-
betadiversity did not differ in fallow soil. Among
rhizosphere samples, <10% of the community showed
variation in the relative abundances of operational taxo-
nomic units (OTUs) between sampling times, with a
significantly lower abundance of Acidobacteria Gp 6,
and greater relative abundances of Burkholderiales and
Myxococcales, among other orders (Fig. 1) between dark
and light time points. The soil community showed
greater variability between light and dark time points
(13.3–17.5% of the community), with the most dynamic
shifts observed within orders of the Acidobacteria
(Fig. 1). Taken together, these results suggest that while
beta diversity changed in both the rhizosphere and
fallow soil between dark and light samples, only rhizo-
sphere communities, and not those in soil, showed a sig-
nificant change in phylobetadiversity, despite a greater
percentage of community variation in soil.

SOM characterization of AM and PM rhizosphere organic
matter
The SOM composition was significantly different in the
water fraction of rhizosphere samples between the dark
(AM) and light (PM) samples (Fig. 2). Approximately
two-fold formula-assigned compounds were more abun-
dant among light samples compared to dark samples.
Ordination of chemical compounds by principal compo-
nents analysis (PCA, Additional file 1: Figure S4, Panel
A and Figure S5, Panel A) revealed that dark and the
light samples were mainly separated along PC1, whereas
the different biological and technical replicates within
each cluster were separated along PC2.
The organic compounds responsible for such separ-

ation were extracted from the loading plots and plotted
on a van Krevelen diagram (Additional file 1: Figure S4,

Table 1 Coverage and alpha diversity (mean ± standard deviation) among AM and PM rhizosphere samples based on 16S rRNA
gene sequencing

Host environment Time Number Coverage (%) Sobs
a Shannonb ACE

Wild-type AM (dark) 10 94.5 ± 3.3 3120 ± 887 7.18 ± 0.22A 4771 ± 2620

PM (light) 9 93.4 ± 1.9 3543 ± 587 7.29 ± 0.14A 4995 ± 1150

Fallow soil AM (dark) 10 95.2 ± 1.9 2823 ± 536 6.89 ± 0.30B 4072 ± 1558

PM (light) 10 93.5 ± 1.4 3290 ± 344 7.07 ± 0.11A,B 5272 ± 1335

P value 0.001 0.486

Values sharing the same capital letter subscripts did not differ significantly by Tukey's post-hoc test (P < 0.05)
aSobs: number of OTUs observed
bIndices sharing the same superscript did not differ significantly by Tukey’s post hoc test (P > 0.05)
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Panel B and Figure S5, Panel B). The majority of the
compounds present in the light samples had high
oxygen/carbon (O/C) ratios that fell in the aromatic-like,
lignin-like, and tannin-like region of the van Krevelen
diagram and represent potential alkaloids, ketones,
terpenoids, flavonoids, organic acids, and condensed
tannins. Additionally, the majority of these compounds
included heteroatoms such as S, N, and P. On the
contrary, compounds with low O/C and high hydrogen/
carbon (H/C) ratios dominated the dark samples and
mainly fit in the lipid-like and unsaturated H/C region
of the van Krevelen diagrams. The majority of these
compounds contained only C, H, and O. The increase in

the abundance of lipid-like compounds in the dark sam-
ples compared to the light samples was significant and
primarily drove the separation between the dark and
light in methanol extracts (Additional file 1: Figure S5).
The average mass-to-charge ratio (m/z) range of the

compounds identified in AM samples was lower than
that in the PM samples, where the PM samples appeared
to have significantly higher m/z values. Similarly, organic
compounds in the PM samples had significantly higher
nominal oxidation state of carbon (NOSC) values.
Expressing the average oxidation state of all carbons in
one formula, NOSC provides information on the biogeo-
chemical reactivity of a compound. An increase in the

Fig. 1 Order-level classification and relative abundances of OTUs that differed significantly between time points. More specific taxonomic
classifications were not performed due to a large number of unclassified sequences found at family level. Significance was evaluated by using the
Kruskal-Wallis test (P < 0.05). Analyses were performed separately for rhizosphere and fallow soil communities

Fig. 2 Relative abundances of different organic compounds identified by 21T FT-ICR-MS. The volcano plot was obtained by plotting the log2 fold
change on the x-axis and –log10(P) on the y-axis. Compounds that changed twofold or more with a P value <0.05 are indicated in pink
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NOSC values during the day is therefore consistent with
increased oxidation and the production of soluble com-
pounds that are available for microbial metabolism.

Diurnal cycling of bacterial communities in the
Arabidopsis rhizosphere
To further investigate potential cycling dynamics, ba-
cterial communities were characterized every 6 h over a
72-h period from the rhizosphere of wild-type (Col-0)
Arabidopsis, the rhizosphere of an acyclic line (OX34),
and fallow soil. Samples were collected during dark
conditions (1 am), 2 h before light (7 am), during light
exposure (1 pm), and 1 h after dark (7 pm). Alpha diver-
sity among samples from the wild-type rhizosphere, by
both Shannon and ACE indices, was significantly greater
(P = 0.018 and 0.024) during dark periods (1 am and 7
am samples), compared to when samples were exposed
to light or shortly thereafter (1 pm and 7 pm samples)
(Table 2). This apparent discrepancy from the earlier
AM/PM experiment may reflect greater statistical power
in this experiment due to a greater number of samples
collected (9–10 compared to 17 in dark and light
groups) or slight differences in the times when samples
were collected relative to the photoperiod. Differences in
alpha diversity between light and dark exposures were
not significant among communities in the OX34 rhizo-
sphere (P ≥ 0.813). In soil alone, differences in the Shan-
non index were also not significant (P = 0.091). In
contrast, ACE richness was significantly greater among
dark samples (P < 0.0001), which may reflect greater
variation in soil over a longer time periods compared to
single-time point AM/PM samples. Differences in ACE
index at individual time points were also observed for
wild-type rhizosphere and fallow soil (Table 2).

Similar to the AM/PM experiment, bacterial commu-
nities among rhizosphere and soil samples were primar-
ily comprised of members of the phyla Proteobacteria,
Bacteroidetes, Acidobacteria, and Actinobacteria (Fig. 3
and Additional file 1: S6). Differences in beta diversity
among host environments were significant by ANOSIM
(P < 0.001), with most of the variation attributable to
OTU-level shifts in relative abundance within the same
predominant families in all environments (Additional
file 1: Figure S7).
Increasing the duration of sampling revealed that bac-

terial communities collected from the wild-type rhizo-
sphere (Fig. 3) appeared to show cycling in the relative
abundances of phyla that corresponded to the 9-h
photoperiod. Cycling patterns were generally character-
ized by increases in the Proteobacteria, except for the
Betaproteobacteria, the Actinobacteria, and the Firmi-
cutes, and decreases in the relative abundance of Acido-
bacteria and Bacteroidetes during light exposure. In
contrast, less apparent diel variation was observed in
the rhizosphere microbial communities obtained from
the acyclic OX34 mutant (Additional file 1: Figure S6,
Panel A).
Cycling dynamics among the rhizosphere genotypes

and fallow soil were further statistically interrogated
using the Jonckheere-Terpstra-Kendall (JTK) algo-
rithm [30], with OTUs assigned to families. By this
analysis, a significantly greater proportion of the com-
munity (P < 0.0001) exhibited cycling dynamics in the
wild-type rhizosphere (13.2 ± 1.1%), compared to that
obtained from the OX34 mutant rhizosphere (3.6 ± 0.7%)
or fallow soil (1.3 ± 0.7%). Burkholderiaceae, Rhodospiril-
laceae, Planctomycetaceae, and Gaiellaceae were among
the most abundant cycling families identified. Similarly,

Table 2 Coverage and alpha diversity (mean ± standard deviation) among microbiota from the rhizosphere of wild-type and OX34
mutant Arabidopsis plants and fallow soil samples

Host environment Time Na Coverage (%) Sobs Shannonb ACE

Wild-type 1 am 6 96.4 ± 1.5 2656 ± 429 6.72 ± 0.15A 3420 ± 957A,B

7 am 11 95.0 ± 1.0 3035 ± 230 6.83 ± 0.08A 4455 ± 1195A

1 pm 8 97.5 ± 1.4 2278 ± 553 6.67 ± 0.21A 2714 ± 916B

7 pm 9 97.2 ± 2.0 2372 ± 579 6.62 ± 0.22A 3185 ± 1990A,B

OX34 mutant 1 am 8 93.7 ± 1.1 3317 ± 308 6.87 ± 0.14A 5915 ± 1489A

7 am 11 93.9 ± 1.2 3340 ± 327 6.89 ± 0.14A 5695 ± 1573A

1 pm 9 93.7 ± 1.1 3357 ± 287 6.87 ± 0.11A 6020 ± 1348A

7 pm 9 94.2 ± 1.8 3246 ± 388 6.87 ± 0.09A 5562 ± 2489A

Fallow soil 1 am 7 94.3 ± 1.8 3081 ± 483 6.82 ± 0.14A 5699 ± 2183A,B

7 am 5 92.6 ± 0.9 3533 ± 218 6.93 ± 0.12A 7673 ± 1391A

1 pm 6 96.3 ± 2.1 2540 ± 730 6.72 ± 0.20A 3449 ± 1354B

7 pm 6 96.2 ± 1.3 2747 ± 328 6.82 ± 0.14A 3571 ± 769B

aN refers to the total numbers of samples (replicates) collected at the time point over a 3-day period. Three samplings each were performed in triplicate at 1 am,
1 pm, and 7 pm, and four samplings were performed at 7 am. Samples that could not be rarefied to 22,380 sequences were removed from the dataset
bTimes sharing the same superscript did not differ significantly by post hoc test for a given host environment (P > 0.05)
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the Kruskal-Wallis test indicated that OTUs that var-
ied between light and dark periods, without determin-
ation of cycling dynamics, accounted for up to 9.5%,
on average, of the community in the wild-type rhizo-
sphere (Fig. 4), and these OTUs were classified to
several families found to exhibit cycling dynamics by
the JTK algorithm. The microbial community in the
OX34 rhizosphere and fallow soil showed greater
amounts of variability independent of cycling by
Kruskal-Wallis test, with ~25% of the community
varying in the mutant rhizosphere and 30–35% vary-
ing in soil alone. Thus, the key feature between the
wild type, OX34, and soil was that, although some
variability was seen in each sample type, the wild type

showed a greater statistically significant cycling effect,
encompassing a greater proportion of the community.
As described in detail in Additional file 1, a similar ex-

periment was performed in which significant (P < 0.05)
diurnal cycling of the rhizosphere bacterial community
associated with B. distachyon was also observed. In
contrast to Arabidopsis, there was no significant differ-
ence in alpha diversity between light and dark periods
(P = 0.658). However, 3.5% of the community showed
significant (P < 0.05) cycling dynamics using the JTK
algorithm, the most abundant of which was Gaiellaceae.
In contrast, only 0.2% of the community, on average, in
fallow soil showed significant cycling dynamics. Similar
to Arabidopsis, a similar percentage of the community

Fig. 3 Distribution of phyla and Proteobacteria classes in rhizosphere samples from wild-type Arabidopsis plants. Percent relative abundance refers
to cumulative abundance and 42 less abundant taxa that are not shown

Fig. 4 Family-level classification of OTUs that differed significantly among light and dark periods. Significance was evaluated by Kruskal-Wallis test
(P < 0.05). Analyses were performed separately for each genotype in the Arabidopsis rhizosphere and fallow soil
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(<12%) also varied between light and dark periods by
Kruskal-Wallis test.

Cycling of inferred functional genes
Changes in potential metabolic functions as a result of
taxonomic cycling were assessed using PICRUSt [31] to
infer abundances of functional genes. Twelve inferred
tier 3 KEGG orthology (KO) categories differed between
time points among dark (AM) and light (PM) wild-type
Arabidopsis rhizosphere samples, predominantly within
the broader category of metabolism (Fig. 5). Generally,
only one or two taxa were found to contribute at high
abundances to these functional categories, particularly
members of the families Nitrospiraceae and Comamona-
daceae (Additional file 1: Table S1). In contrast, no func-
tional categories differed between dark and light time
points in fallow soil.
The JTK algorithm showed that 23 tier 3 KO func-

tional categories had significant cycling among wild-type
Arabidopsis rhizosphere bacterial communities through-
out the 72-h experiment (inferred abundances supplied
in Additional file 1: Table S2). Functional predictions
were assigned within the broader category of metabolism
(Additional file 1: Figure S8), with genes encoding
functions associated with carbohydrate metabolism show-
ing the greatest abundances 1 h before exposure to light
(7 am). Due to the high diversity of taxa associated with
carbohydrate metabolism among Col-O samples, taxo-
nomic affiliations of OTUs associated with these fluctua-
tions could not be definitively determined. In contrast, the
lowest abundances were observed in the middle of the
dark period (1 am). Cycling of “ether lipid metabolism”
(ko00565), “glycosphingolipid biosynthesis - lacto and

neolacto series” (ko00564), and “neuroactive ligand-
receptor interaction” (ko04080) were also identified using
the JTK algorithm in the OX34 rhizosphere, albeit at low
abundance. No significant cycling of functional genes in
fallow soil could be identified using the JTK algorithm.

Discussion
Results of this study showed that rhizosphere microbiota
composition and predicted function varied according to
a diel cycle and differed between the acyclic OX34 line
and wild-type plants. Approximately 10% of the bacterial
community in the wild-type Arabidopsis rhizosphere,
determined by the JTK, exhibited diel cycling that was
not seen in the acyclic Arabidopsis line. This strongly
suggests that there is a relationship between changes in
plant metabolism and bacterial community composition.
Similar to previous studies [2, 3], the same predominant
phyla were observed in rhizosphere and soil samples,
and the relatively high percentage of taxonomically un-
classified OTUs is also similar to previous findings [2].
Notably, many families previously found to be associated
with root communities, for which the plant would likely
select [2] (e.g., Flavobacteriaceae, Rhizobiaceae, Coma-
monadaceae, and Oxalobacteraceae), were differentially
abundant between light and dark periods or showed
significant cycling dynamics. This suggests that these
potentially selected taxa are responding to host circadian-
induced changes or may be contributing to them.
Species showing cyclical variation in abundances may

also serve as pioneer microorganisms colonizing newly
emerging root tissue. Root growth and elongation is
controlled by the circadian clock in Arabidopsis, with
faster growth reported under light and during longer

Fig. 5 Tier 3 KO inferred functional annotations that differed by LEfSe analysis. Inferred functions differed between bacterial communities from
wild-type Arabidopsis rhizosphere samples harvested in AM and PM time points
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light conditions [32]. Similarly, previously reported root-
associated taxa, including members of the Actinomycet-
ales, Burkholderiales, and Flavobacteriales [2, 33],
among others, were observed to increase in abundance
during light periods. Furthermore, variation in beta diver-
sity was reduced during light conditions (demonstrated by
closer clustering, shown in Additional file 1: Figure S3),
which may indicate a selective pressure exerted by the
root community to promote a community composition
that facilitates plant growth. While this suggestion cannot
be definitively concluded from the data presented here,
follow-up studies using fluorescent in situ hybridization
may help elucidate the dynamics of the root microbiota as
they relate to regions of greater root growth (root tips).
Plant carbon partitioning may directly influence mi-

crobial associations, and this partitioning also shows diel
fluctuations and is regulated by the circadian clock [34].
This likely defines a “metabolic dawn,” where sugar from
photosynthesis may feed back to the clock to set its
rhythm on a daily basis [35]. Soluble sugars [36], as well
as genes associated with starch synthesis, chloroplast
biosynthesis, and photosystems [25, 34], peak at or
approximately 4 h after dawn, presumably to allow
maximal production of sugars during the light period, a
fraction of which are released to soil [37]. These results
are consistent with SOM composition derived from
high-resolution mass spectra that indicated an increase
in labile compounds such as sugars during the light period.
In contrast, genes regulating transport, breakdown, and
storage of sugars, glycolysis, and the pentose phosphate
pathway reach their maximum toward dusk to maximize
the mobilization of starch and maintain carbon homeostasis
[34]. Interestingly, among the rhizosphere bacterial com-
munity, genes involved in glycolysis and the pentose phos-
phate pathway were similarly inferred to show cycling
dynamics (Additional file 1: Figure S8) in opposite phase to
that previously observed in Arabidopsis [25, 34]. Thus, one
attractive hypothesis is that the plant and rhizosphere com-
munities are communicating to serve complementary func-
tions, mediated in large part by circadian cycling.
A very small percentage of the rhizosphere bacterial

community showed cycling dynamics in fallow soil
samples. Both photosynthetic and non-photosynthetic
bacteria have previously been shown to exhibit their
own circadian rhythms, entrained by environmental
conditions [38–40]. Thus, this fluctuation may represent
independent cycling of these bacteria or changes in
water potential due to plant transpiration.
The magnitude of community variation determined by

Kruskal-Wallis test, unrelated to cycling dynamics, varied
considerably between wild-type and mutant rhizosphere
samples and fallow soil. Mutant rhizosphere and soil com-
munities showed greater variation, independent of cycling,
than wild-type rhizosphere communities, yet a smaller

proportion of the community showed significant cycling
dynamics by the JTK algorithm, suggesting that variation
in mutant rhizosphere and soil samples is likely stochastic,
rather than cyclical. Furthermore, while the composition
of dark and light communities in fallow soil was signifi-
cantly different, phylogenetic structure of the community
was not significantly altered, although it was in wild-type
rhizosphere samples. This result suggests that shifts in the
wild-type rhizosphere are more likely to be directed rather
than as a result of stochastic variation, resulting in a
phylogenetic restructuring of the community. Lower vari-
ation between light and dark sampling points in both
wild-type and mutant rhizosphere samples may also likely
reflect moderation of the community by rhizosphere
effects [4]. Fewer cycling taxa were observed in the rhi-
zosphere community of Brachypodium, relative to Arabi-
dopsis, although a significantly greater percentage of the
rhizosphere community showed cycling dynamics
relative to fallow soil. Differences between Arabidopsis
and Brachypodium cycling communities are not surprising
since species-specific microbial assemblages are deter-
mined based on the nature of root exudates and plant-
microbe signaling molecules [2, 4]. Thus, difference in
assemblage may, in large part, help explain differences
in cycling dynamics observed between species.
It is also important to note that functional genes re-

ported here were inferred from taxonomic data [31].
Nevertheless, the taxa associated with diurnal cycling in
this study are among those previously found to be
selected for in Arabidopsis root communities [2, 3, 33]
and the functional genes inferred corresponded reason-
ably well to previously reported gene expression data for
Arabidopsis [34]. This further supports the contention
that there is a true rhizosphere cycling dynamic that is
important to the health and growth of the plant.
It is likely that there is two-way communication be-

tween the plant and its microbiota and that the rhizo-
sphere microbial community influences circadian rhythm,
gene expression, and metabolic functioning of the host
plant. Microbial regulation of host genes has been ob-
served in rhizobial-legume interactions and in the
Euprymna scolopes squid, in which Vibrio fischeri bio-
luminescence regulates expression of a host crypto-
chrome [41]. Similarly, the gut microbiota regulates
rhythmic signaling pathways in intestinal epithelial cells
that coordinate glucocorticoid production in the intes-
tine [42], and the bacterial community is responsible
for normal clock functioning in the liver and hypothal-
amus in mice [9]. Several groups have begun investigat-
ing how rhizosphere and endophytic communities
might be used to improve plant biomass and stress
resistance [6], and future studies in Arabidopsis are
necessary to understand how the microbiota influences
host plant circadian functioning and productivity.
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Conclusions
The extent of change of the rhizosphere microbiota over
a 24-h period equals or exceeds those previously attrib-
uted to factors such as plant genotype [43–45]. While
current hypotheses suggest that microbial populations in
the rhizosphere are relatively static and primarily related
to soil communities [2, 3, 33], our work suggests other-
wise. The rhizosphere microbial community indeed ap-
pears to be very dynamic in time, responding to both
biotic and abiotic factors. This additional complexity
may shape a better understanding of plant-microbe in-
teractions and how rhizosphere dynamics may affect
plant productivity in a changing environment. Perhaps,
more importantly, our results highlight that temporal
factors including light exposure, in addition to other
sources of experimental error, should be considered in
the interpretation of data from future studies, since in
several previous studies, the time of sampling is either
not noted or not well controlled. Expanding upon the
scope of the present work, which was conducted using
an annual dicot, to include perennial plants and most
particularly bioenergy grasses, will allow us to consider
new possibilities of plant-microbial interactions.

Methods
Rhizosphere sample harvesting
Rhizosphere soil samples were obtained as previously
described [46] after plants had grown in soil for 5 weeks.
Three experiments were conducted: (1) a biological
replicate experiment in which A. thaliana or fallow soil
(n = 10 for each) was collected 1 h prior to light expos-
ure (AM) and 1 h prior to turning off the lights (PM),
with a 9-h photoperiod (9 am–6 pm); (2) a 72-h cycling
experiment in which wild-type Arabidopsis, the acc1-
ox34 (OX34) acyclic mutant strain of Arabidopsis
[47], or fallow soil was grown with a 9-h light period
(9 am–6 pm) and harvested in triplicate every 6 h (7 am,
1 pm, 7 pm, and 1 am) for 72 h; and (3) a 72-h B. distach-
yon BD21 experiment that employed the same sampling
regime as experiment 2, except using Brachypodium and
fallow soil with a 12-h light period (8 am–8 pm). A 9-h
photoperiod was used for Arabidopsis experiments to
avoid flowering prior to sample collection, while a 12-h
photoperiod was used for the Brachypodium experiment
to allow optimal growth.
For the AM/PM experiment, 10 replicates were har-

vested 1 h prior to light exposure (AM) and 1 h prior to
turning off the lights (PM). Each replicate contained
rhizosphere soil from 25 plants (fallow soil replicates
were collected from 10 individual pots containing only
soil located in the same growth chamber with plants).
For the 72-h cycling experiments of Arabidopsis or Bra-
chypodium, three replicates were collected for each time
point and each replicate was collected from ≥30 plants.

Loose soil was manually removed from the roots by
shaking with sterile gloves. Roots were placed in a clean
and sterile 50-ml tube containing 22.5 ml of ice-cold
extraction buffer (0.1% sodium pyrophosphate, pH 7.0,
and 0.1% Tween 20) and 2.5 ml of RNA stop solution
(5% water-saturated phenol, pH 4.3, in 95% ethanol).
Tubes were vortexed at maximum speed for 20 s, which
released most of the rhizosphere soil from the roots and
turned the water turbid. The turbid solution was trans-
ferred onto a petri dish, and sterile forceps were used to
remove broken plant parts followed by filtering the mix-
ture through a Miracloth strainer into a new 50-ml tube.
The turbid filtrate was centrifuged for 15 min at 3200×g
to form a pellet containing fine sediment and microor-
ganisms. Most of the supernatant was removed and the
loose pellets were resuspended and transferred to 2-ml
microfuge tubes. The tubes were centrifuged at
10,000×g for 5 min to form tight pellets, from which
all supernatant was removed. The final rhizosphere
pellets were flash-frozen in liquid nitrogen and stored
at −80 °C until used.

SOM extraction and characterization
Two different solvents with different polarities in the
order of (1) water-H2O and (2) methanol-CH3OH were
used to sequentially extract organic matter (OM) from
the rhizosphere soil, as described previously [48]. Briefly,
samples were prepared by adding 0.6 ml of solvent to
50 mg soil and shaking for 2 h at room temperature
followed by mixing at 800 rpm on an Eppendorf
Thermomixer (Eppendorf, Hauppauge, NY, USA) in
2 ml capped glass vials. Samples were removed from the
shaker and centrifuged for 16 min at 3500 rpm, and the
supernatant was removed. The soil residue was dried
with nitrogen gas and the second solvent was added and
processed in the same way. The extracts were then
injected directly into the 21T Agilent FTICR mass spec-
trometer (magnet from Agilent Technologies, Oxford,
England; spectrometer built at the Environmental Mo-
lecular Sciences Laboratory (EMSL)) using a Hamilton
250 μl glass syringe (Hamilton Company, Reno, Nevada,
USA) at a flow rate of 0.5 μl min−1. The H2O extracts
were diluted in MeOH at a ratio of 1:2 to improve elec-
trospray ionization (ESI) efficiency.
Mass spectrometry was performed by the EMSL. Sam-

ples were introduced directly to a 21T FTICR mass spec-
trometer (Thermo Scientific, San Jose, CA, USA) outfitted
with a custom ESI interface. Electrospray emitters were
custom made using 360 μm outer diameter × 50 μm inner
diameter, chemically etched, fused silica, as described pre-
viously [49]. The ion transfer tube temperature and spray
voltage were 300 °C and 3.0 kV, respectively. Mass spectra
(AGC 3 × 106) were collected from 240 to 1200 m/z with
a mass measurement accuracy of less than 500 ppb. Four
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hundred individual scans were averaged for each sample
and internally calibrated using organic matter homologous
series separated by 14 Da (–CH2 groups). Chemical for-
mulas were assigned using in-house software based on the
compound identification algorithm (CIA), described by
Kujawinski and Behn [50] and modified by Minor et al.
[51]. Chemical formulas were assigned based on the fol-
lowing criteria: S/N >2, and mass measurement error
<0.5 ppm, taking into consideration the presence of C, H,
O, N, S, and P and excluding other elements.
To interpret the large data set, the chemical character

of thousands of data points for each sample spectrum
were evaluated on van Krevelen diagrams generated
from the complex mass spectra obtained by ESI FTICR
MS [52]. Van Krevelen diagrams provide a means to
visualize and compare the average properties of OM and
enable identification of the major biochemical classes
(i.e., lipids, proteins, lignin, carbohydrates, and con-
densed aromatics) of compounds present in samples.
Compounds were assigned on the van Krevelen diagram
on the basis of their molar H/C ratios (y-axis) and molar
O/C ratios (x-axis). The stoichiometry of each assigned
formula was used to calculate nominal oxidation state of
carbon (NOSC) for each compound [53]. NOSC of indi-
vidual compounds present in each sample was averaged
to give the NOSC of soluble organic matter in that sam-
ple. In addition, MetaboAnalyst 3.0 [54] was used to
generate volcano and principal component analysis
(PCA) plots. We only considered compounds with
assigned molecular formulae because we wanted to
extract information with respect to SOM chemical char-
acteristics. Additionally, only peaks that were present in
more than 50% of the replicates were included in such
analysis, and the ICR-MS data were both normalized (by
median) and scaled (pareto scaling) to emphasize the
importance of the compounds with smaller relative
intensities using MetaboAnalyst.

DNA extraction and sequencing
DNA was extracted from 200 to 300 mg rhizosphere or soil
samples using the PowerSoil® DNA Isolation Kit (MoBio
Laboratories, Inc, Carlsbad, CA, USA) according to the
manufacturer’s instructions. The V5 +V6 regions of the
16S rRNA gene were amplified using the barcoded
BSF784/1064R primer set [55, 56] with a negative (sterile
water) control by the University of Minnesota Genomics
Center (UMGC, Minneapolis, MN, USA). Amplicons were
gel purified, pooled in equal amounts, and paired-end se-
quenced at a read length of 300 nt on the Illumina MiSeq
platform (Illumina, Inc., San Diego, CA, USA) by UMGC.

Bioinformatics
All sequence processing was done using mothur ver.
1.34.0 [57]. Sequences were trimmed to the first 150 nt

to remove low-quality regions at the ends of reads, and
reads were paired-end joined using fastq-join software
[58]. Joined reads were trimmed to maintain an average
quality score of at least 35 over a sliding 50 nt window,
and sequences with more than two mismatches from
primer sequences, >8 nt homopolymers, and those with
ambiguous bases were removed. High-quality reads were
aligned against the SILVA database ver. 119 [59] and
subjected to a 2% pre-cluster step to remove probable
sequence errors [60]. Chimeric sequences were identified
and removed using UCHIME software [61]. Samples
were rarefied to 20,000, 22,380, and 33,685 sequence
reads, with respect to experiments 1, 2, and 3, respect-
ively, by random subsample for further comparison and
analysis [62].
Operational taxonomic units were assigned at 97%

identity using the furthest-neighbor algorithm and taxo-
nomic assignments were performed against ver. 14 of
the Ribosomal Database Project [63]. For functional
predictions, taxonomic classification was performed
against the GreenGenes database ver. 13.5 [64]. Func-
tional inferences within the Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthology were made
using PICRUSt (phylogenetic investigation of commu-
nities by reconstruction of unobserved states) software
[31], with normalization to 16S rRNA gene copy
number.

Statistical analyses
Statistical analyses of diversity, community composition
(beta diversity), phylogenetic structures (phylobetadiver-
sity), and ordination were performed using mothur.
Alpha diversity was calculated using the Shannon and
abundance-based coverage (ACE) indices. Differences in
beta diversity were evaluated using analysis of similarity
(ANOSIM) [65], phylobetadiversity was analyzed using
unweighted Unifrac distances [66], and cluster analysis
was performed using analysis of molecular variance
(AMOVA) [67] using Bray-Curtis dissimilarity matrices
[68]. In this study, we used the terminology of Graham
and Fine [69] to define beta diversity as a change in the
species composition between samples while phylobetadi-
versity referred to a change in phylogenetic relatedness
of communities.
Ordination of samples was performed via principal

coordinate analysis. To determine which members of the
community exhibited significant cycling in relative abun-
dance during light and dark cycles, community compos-
ition was evaluated at the family level using the JTK
algorithm [30] in R ver. 3.2.2 [70]. Zeit geber time 0 was
defined as the first sample collected at 7 am. Differences
in functional inferences were evaluated using LEfSe
[71], which employs consecutive Kruskal-Wallis and
Wilcoxon rank-abundance tests and then utilizes linear
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discriminant analysis (LDA) to estimate effect sizes of
features. Differences in OTUs were evaluated by
Kruskal-Wallis test [72]. Other statistical analyses
were performed using XLSTAT ver. 2015.01.0 (Addin-
soft, Belmont, MA). All statistics were performed at
α = 0.05.

Additional file

Additional file 1: Table S1. Taxonomic classification of OTUs
predominantly associated with tier 3 KO inferred functional annotations
that differed between bacterial communities from wild-type Arabidopsis
rhizosphere samples harvested in dark (AM) and light (PM) time points
(Fig. 5). Functions for which contributing taxa could not be determined
are not shown. Table S2. Functional annotations of inferred genes that
show significant cycling in abundance in wild-type Arabidopsis rhizosphere
communities. Functional categories are arranged by KEGG orthology tiers,
with each tier increasing in specificity. Table S3. Alpha diversity indices for
Brachypodium distachyon BD21 experiment samples. Figure S1 Distribution
of abundant phyla among AM and PM samples in the rhizosphere of
wild-type Arabidopsis and fallow soil. Figure S2. Distribution of abundant
families among AM and PM samples in the rhizosphere of wild-type
Arabidopsis and fallow soil. Figure S3. Principal coordinate analysis of
Bray-Curtis dissimilarities among AM and PM bacterial communities
characterized by 16S rRNA sequencing in A) the rhizosphere of Arabidopsis
(r2 = 0.689) and B) fallow soil (r2 = 0.876). Points represent individual samples.
Figure S4. PCA plot of the relative abundance of the different organic
compounds identified in each sample by water extraction (A) and van
Krevelen diagram of elemental H/C (hydrogen-to-carbon) vs O/C
(oxygen-to-carbon) ratios of the organic compounds extracted from
the loading plot of the PCA plot (B). Figure S5. 3D PCA plot of the
relative abundance of the different compounds extracted by MeOH
(A) and van Krevelen diagram of elemental H/C (hydrogen-to-carbon)
vs O/C (oxygen-to-carbon) ratios of the organic compounds extracted
from the loading plot of the PCA plot (B)). Figure S6. Distributions
of phyla in (A) Arabidopsis OX34 mutant rhizosphere and (B) fallow
soil samples, omitting less abundant phyla. Percent abundances are
cumulative. Sequence data from later time points for soil could not
be obtained, and less abundant taxa are not shown. Figure S7.
Family-level classification of OTUs that differed significantly among
Arabidopsis rhizosphere genotypes and soil groups by Kruskal-Wallis
test (P < 0.05). Figure S8. Inferred carbohydrate metabolism genes
that showed significant cycling (P < 0.05) in abundance among
wild-type Arabidopsis rhizosphere bacterial communities by the JTK
algorithm. Figure S9. Distribution of phyla among samples from (A)
the Brachypodium rhizosphere and (B) fallow soil. Forty-one less abundant
phyla are not shown. Figure S10. Family-level classification of OTUs that
differed significantly among light and dark periods by Kruskal-Wallis test
(P < 0.05) in the Brachypodium rhizosphere. (DOCX 980 kb).
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