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Abstract

Since initial reports regarding the impact of motion artifact on measures of functional connectivity, 

there has been a proliferation of participant-level confound regression methods to limit its impact. 

However, many of the most commonly used techniques have not been systematically evaluated 

using a broad range of outcome measures. Here, we provide a systematic evaluation of 14 

participant-level confound regression methods in 393 young adults. Specifically, we compare 

methods according to four benchmarks, including the residual relationship between motion and 

connectivity, distance-dependent effects of motion on connectivity, network identifiability, and 

additional degrees of freedom lost in confound regression. Our results delineate two clear trade-
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offs among methods. First, methods that include global signal regression minimize the relationship 

between connectivity and motion, but unmask distance-dependent artifact. In contrast, censoring 

methods mitigate both motion artifact and distance-dependence, but use additional degrees of 

freedom. Importantly, less effective de-noising methods are also unable to identify modular 

network structure in the connectome. Taken together, these results emphasize the heterogeneous 

efficacy of proposed methods, and suggest that different confound regression strategies may be 

appropriate in the context of specific scientific goals.
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Introduction

Resting-state (intrinsic) functional connectivity (rsfc-MRI) has evolved to become one of the 

most common brain imaging modalities (Craddock et al., 2013; Fox and Raichle, 2007; 

Power et al., 2014b; Smith et al., 2013; Van Dijk et al., 2010), and has been critical for 

understanding fundamental properties of brain organization (Damoiseaux et al., 2006; Fox et 

al., 2005; Power et al., 2011; Yeo et al., 2011), brain development over the lifespan (Di-

Martino et al., 2014; Dosenbach et al., 2011; Fair et al., 2008), and abnormalities associated 

with diverse clinical conditions (Baker et al., 2014; Buckner et al., 2008; Fair et al., 2010). 

rsfc-MRI has numerous advantages, including ease of acquisition and suitability for a wide 

and expanding array of analysis techniques. However, despite knowledge that in-scanner 

motion can influence measures of activation from task-related fMRI (Friston et al., 1996), 

the impact of in-scanner motion on measures of functional connectivity was not explored for 

16 years after its initial discovery (Biswal et al., 1995). However, since the near-

simultaneous publication of three independent reports in early 2012 (Van Dijk et al., 2012; 

Power et al., 2012; Satterthwaite et al., 2012), it has been increasingly recognized that 

motion can have a large impact on rsfc-MRI measurements, and can systematically bias 

inference. This bias is particularly problematic in developmental or clinical populations 

where motion is correlated with the independent variable of interest (age, diagnosis) 

(Satterthwaite et al., 2012; Fair et al., 2012), and has resulted in the reevaluation of 

numerous published findings.

In response to this challenge, there has been a recent proliferation of participant-level 

confound regression and censoring methods aimed at mitigating the impact of motion on 

functional connectivity (Yan et al., 2013a; Power et al., 2015). These methods can be 

broadly grouped into several categories. First, high-parameter confound regression strategies 

use expansions of realignment parameters or tissue-compartment signals, often including 

derivative and quadratic regressors (Friston et al., 1996; Satterthwaite et al., 2013; Yan et al., 

2013a). Second, principal component analysis (PCA) based methods (CompCor; Behzadi et 

al. (2007); Muschelli et al. (2014)) find the primary directions of variation within high-noise 

areas defined by anatomy (e.g., aCompCor) or temporal variance (tCompCor). Third, whole-

brain independent component analysis (ICA; Beckmann et al. (2005)) of single-subject time 

series has increasingly been used for de-noising, with noise components selected either by a 
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trained classifier (ICA-FIX; Griffanti et al. (2014); Salimi-Khorshidi et al. (2014)) or using a 
priori heuristics (ICA-AROMA; Pruim et al. (2015b,a)). Fourth, temporal censoring 

techniques identify and remove (or de-weight) specific volumes contaminated by motion 

artifact, often followed by interpolation. These techniques include scrubbing (Power et al., 

2012, 2014a, 2015), spike regression (Satterthwaite et al., 2013), and de-spiking (Jo et al., 

2013; Patel et al., 2014). Censoring techniques have been reported to attenuate motion 

artifact, but at the cost of a shorter time series and variably reduced degrees of freedom. 

Fifth, one recent report emphasized the relative merits of spatially-tailored confound 

regression using local white matter signals (wm-Local; Jo et al. (2013)). Finally, the 

inclusion of global signal regression (GSR) (Macey et al., 2004) in confound regression 

models remains a source of controversy (Fox et al., 2009; Murphy et al., 2009; Chai et al., 

2012; Saad et al., 2012; Yan et al., 2013b; Murphy and Fox, in press). While several studies 

have suggested its utility in de-noising (Fox et al., 2009; Power et al., 2015; Satterthwaite et 

al., 2013; Yan et al., 2013a), other studies have emphasized the risk of removing a valuable 

signal (Yang et al., 2014; Hahamy et al., 2014), potentially biasing group differences (Gotts 

et al., 2013; Saad et al., 2012), or exacerbating distance-dependent motion artifact. Distance-

dependent artifact (Power et al., 2012; Satterthwaite et al., 2012) manifests as increased 

connectivity in short-range connections, and reduced connectivity in long-range connections, 

which has the potential to impact measures of network topology (Yan et al., 2013b).

Substantial additional work has moved beyond use of realignment parameters and timeseries 

signal as regressors. Specifically, recent work has suggested that techniques such as MotSim 

may potentially track more signal variance related to motion (Patriat et al., 2017). 

Furthermore, while initial work suggested that voxel-wise motion regressors were not 

advantageous, work by Spisák et al. (2014) suggests that such information can be 

successfully utilized. Additionally, recent work has evaluated the impact of motion on 

timeseries smoothness (Scheinost et al., 2014), and suggested that uniform smoothing may 

ameliorate artifact. Finally, recent work has proposed geometric techniques for correcting 

motion artifact (e.g., median angle correction) (He and Liu, 2012) and investigated 

prospective correction techniques (Faraji-Dana et al., 2016).

This recent proliferation of de-noising techniques has prompted excitement but also sowed 

confusion. Unsurprisingly, new de-noising pipelines have often tended to emphasize 

outcome measures that suggest their relative superiority. As a result, investigators often 

anecdotally report substantial uncertainty regarding which pipeline should be used. Such 

uncertainty has been exacerbated by the lack of common outcome measures used across 

studies, which has hampered direct comparison among pipelines. While one review paper 

has summarized recent developments in this rapidly-evolving sub-field (Power et al., 2015), 

systematic evaluation of de-noising pipelines according to a range of benchmarks remains 

lacking.

Several prior papers have compared some of these confound regression strategies on selected 

benchmark measures. For example, Yan and colleagues evaluated a range of de-noising 

strategies based on realignment parameters (e.g., 6P, 12P, 24P), scrubbing, and GSR (Yan et 

al., 2013c). Subsequently, Pruim et al. (2015a) compared ICA-AROMA to the 24-parameter 

model, scrubbing, and aCompCor, among other techniques. Building on such work, Burgess 
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et al. (2016) examined the relative added value of mean grayordinate time series regression, 

which is similar to GSR, as an addition to ICA-based de-noising (ICA-FIX). However, prior 

work has not directly evaluated several of the most commonly implemented de-noising 

methods, such as 36-parameter confound regression + censoring, using a broad range of 

benchmark measures.

Accordingly, in this report we compare 14 of the most commonly used confound regression 

strategies in a large (N = 393) dataset of adolescents and young adults. Pipelines evaluated 

include standard techniques, high-parameter confound regression, PCA-based techniques 

such as aCompCor and tCompcor, ICA-based approaches such as ICA-AROMA, spatially-

tailored local white matter regression, and three different censoring techniques (spike 

regression, de-spiking, and scrubbing); GSR is included in many pipelines as well. It should 

be emphasized that this is not a comprehensive evaluation of all artifact-control strategies in 

use, and that models evaluated were limited to a subset of those commonly used at present. 

Critically, we compare these pipelines according to four intuitive benchmarks, including the 

residual relationship between functional connectivity and subject motion, the degree of 

distance-dependent artifact, the identifiability of network structure after de-noising, and the 

loss of temporal degrees of freedom. As described below, results underscore the relative 

strengths and weaknesses among these methods, and reveal clear trade-offs among 

commonly used confound regression approaches.

Materials and methods

Participants and data acquisition

The task-free BOLD data used in this study (N = 393) were drawn from the Philadelphia 

Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014, 2016) on the basis of age, 

health, and data quality. Participants' ages ranged from 8 to 22 years. All participants 

selected for evaluation were ages 8–22, were free from medical conditions that could impact 

brain function (Merikangas et al., 2010), lacked gross structural brain abnormalities (Gur et 

al., 2013), were not taking psychotropic medication at the time of the scan, and had high 

quality imaging data free of gross motion. In total, N = 84 (44 females) participants were not 

included in this sample due to gross motion, defined as a mean relative RMS (root mean 

squared) displacement > 0:2mm, or > 20 volumes with framewise relative RMS 

displacement > 0:25mm. The exclusion of participants with gross in-scanner motion allowed 

us to evaluate the utility of confound regression strategies for the mitigation of artifact due to 

micro-movements.

Structural and functional subject data were acquired on a 3T Siemens Tim Trio scanner with 

a 32-channel head coil (Erlangen, Germany), as previously described (Satterthwaite et al., 

2014, 2016). High-resolution structural images were acquired in order to facilitate alignment 

of individual subject images into a common space. Structural images were acquired using a 

magnetization-prepared, rapid-acquisition gradient-echo (MPRAGE) T1-weighted sequence 

(TR = 1810ms; TE = 3:51ms; FoV = 180 × 240mm; resolution 1mm isotropic). 

Approximately 6 minutes of task-free functional data were acquired for each subject using a 

blood oxygen level-dependent (BOLD-weighted) sequence (TR = 3000ms; TE = 32ms; FoV 

= 192 × 192mm; resolution 3mm isotropic; 124 spatial volumes). Prior to scanning, in order 
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to acclimate subjects to the MRI environment and to help subjects learn to remain still 

during the actual scanning session, a mock scanning session was conducted using a decom-

missioned MRI scanner and head coil. Mock scanning was accompanied by acoustic 

recordings of the noise produced by gradient coils for each scanning pulse sequence. During 

these sessions, feedback regarding head movement was provided using the MoTrack motion 

tracking system (Psychology Software Tools, Inc, Sharpsburg, PA). Motion feedback was 

only given during the mock scanning session. In order to further minimize motion, prior to 

data acquisition subjects' heads were stabilized in the head coil using one foam pad over 

each ear and a third over the top of the head. During the resting-state scan, a fixation cross 

was displayed as images were acquired. Subjects were instructed to stay awake, keep their 

eyes open, fixate on the displayed crosshair, and remain still.

Structural image processing

A study-specific template was generated from a sample of 120 PNC subjects balanced 

across sex, race, and age bins using the build Template Parallel procedure in ANTs (Avants 

et al., 2011a). Study-specific tissue priors were created using a multi-atlas segmentation 

procedure (Wang et al., 2014). Next, each subject's high-resolution structural image was 

processed using the ANTs Cortical Thickness Pipeline (Tustison et al., 2014). Following 

bias field correction (Tustison et al., 2010), each structural image was diffeomorphically 

registered to the study-specific PNC template using the top-performing SyN deformation 

(Klein et al., 2009). Study-specific tissue priors were used to guide brain extraction and 

segmentation of the subject's structural image (Avants et al., 2011b).

BOLD time series processing

Task-free functional images were processed using the XCP Engine (Ciric et al., In 

Preparation), which was configured to support the 14 pipelines evaluated in this study (see 

Figure 1). Each pipeline was based on de-noising strategies previously described in the 

neuroimaging literature. A number of preprocessing procedures were included across all de-

noising pipelines. Common elements of preprocessing included (1) correction for distortions 

induced by magnetic field inhomogeneities using FSL's FUGUE utility, (2) removal of the 4 

initial volumes of each acquisition, (3) realignment of all volumes to a selected reference 

volume using MCFLIRT (Jenkinson et al., 2002), (4) demeaning and removal of any linear 

or quadratic trends, (5) co-registration of functional data to the high-resolution structural 

image using boundary-based registration (Greve and Fischl, 2009), and (6) temporal filtering 

using a first-order Butterworth filter with a passband between 0.01 and 0.08 Hz. We did not 

apply slice timing correction during preprocessing, as recent data suggest that the 

interpolation that occurs may artificially reduce motion estimates (Power et al., under 

review). These preliminary processing stages were then followed by the confound regression 

procedures described below. In order to prevent frequency-dependent mismatch during 

confound regression (Hallquist et al., 2013), all regressors were band-pass filtered to retain 

the same frequency range as the data. As in our prior work (Satterthwaite et al., 2012, 2013), 

the primary summary metric of subject motion used was the mean relative RMS (root-mean-

squared) displacement calculated during time series realignment using MCFLIRT.
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Overview of confound regression strategies

The primary objective of the current study was to evaluate the performance of common de-

noising strategies. We selected 14 de-noising models, labelled 1–14 below, for evaluation 

(Figure 1). Models 1–5 used nuisance parameters derived from 6 movement estimates and 3 

physiological time series, as well as their temporal derivatives and quadratic expansions.

• Model 1. (2P) Used only the 2 physiological time series: mean signal in WM and 

mean signal in CSF, and functioned as a base model for comparison to other 

more complex confound regression models.

• Model 2. (6P) Used only the 6 motion estimates derived from MCFLIRT 

realignment as explanatory variables.

• Model 3. (9P) Combined the 6 motion estimates and 2 physiological time series 

with global signal regression. This model has been widely applied to functional 

connectivity studies (Fox et al., 2005, 2009).

• Model 4. (24P) Expansion of model 2 that includes 6 motion parameters, 6 

temporal derivatives, 6 quadratic terms, and 6 quadratic expansions of the 

derivatives of motion estimates for a total 24 regressors (Friston et al., 1996).

• Model 5. (36P) Similar expansion of model 3: 9 regressors, their derivatives, 

quadratic terms, and squares of derivatives (Satterthwaite et al., 2013).

Models 6–8 further expanded upon this maximal 36P strategy by incorporating censoring 

approaches.

• Model 6. (36P+despike) Included 36 regressors as well as despiking (Cox, 

1996).

• Model 7. (36P+spkreg) Included 36 regressors as well as spike regression, as in 

Satterthwaite et al. (2013).

• Model 8. (36P+scrub) Included 36 regressors as well as motion scrubbing, as in 

Power et al. (2014a).

Models 9 and 10 adapted variants of the PCA-based CompCor approach.

• Model 9. (aCompCor) Used 5 principal components each from the WM and 

CSF, in addition to motion estimates and their temporal derivatives (Muschelli et 

al., 2014).

• Model 10. (tCompCor) Used 6 principal components from high-variance voxels 

(Behzadi et al., 2007).

Models 11 and 12 comparatively evaluated the efficacy of local and global-mean tissue-class 

regressors.

• Model 11. (wmLocal) Used a voxelwise, localised WM regressor in addition to 

motion estimates and their temporal derivatives and despiking (Jo et al., 2013).
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• Model 12. (wmMean) Identical to model 11 except that it used the mean signal 

across the WM instead of a voxelwise, localised WM regressor (Jo et al., 2013). 

Models 13 and 14 evaluated subhect-specific ICA de-noising.

• Model 13. (ICA-AROMA) Used a recently developed ICA-based procedure for 

removal of motion-related variance from BOLD data, together with mean WM 

and CSF regressors (Pruim et al., 2015a,b).

• Model 14. (AROMA+GSR) Combined ICA-AROMA as implemented in model 

13 with global signal regression, in a procedure somewhat analogous to Burgess 

et al. (2016).

We explicitly limited our scope to models that did not require training a classifier, and did 

not evaluate confound regression strategies that require extensive parameter optimization 

(Salimi-Khorshidi et al., 2014; Griffanti et al., 2014; Patel et al., 2014). Furthermore, in 

order to constrain the parameter space, we did not examine unpublished combinations of de-

noising approaches.

Confound regression using realignment parameters

Time series of six realignment parameters (three translational and three rotational) for each 

subject were returned by MCFLIRT as part of time series realignment (motion correction). 

Additionally, the temporal derivative, quadratic terms, and quadratic of the temporal 

derivative of each of the realignment parameters were calculated, yielding 24 realignment 

regressors in total. The original six realignment parameters were included in confound 

regression models 2 and 3. Models 9 and 11 included 12 realignment regressors – the 6 

realignment parameters and their temporal derivatives – while the full set of 24 expanded 

realignment regressors were included as part of confound regression models 4–8.

Global signal regression

The mean global signal was computed by averaging across all voxelwise time series located 

within a subject-specific mask covering the entire brain. The global signal was included in 

model 3, while the expanded models 5–8 included 4 global signal regressors: the global 

signal, its derivative, its square, and the derivative of its square.

Tissue class regressors

Mean white matter (WM) and cerebrospinal fluid (CSF) signals were computed by 

averaging within masks derived from the segmentation of each subject's structural image; 

these masks were eroded using AFNI's 3dmask tool (Cox, 1996) to prevent inclusion of gray 

matter signal via partial-volume effects. The WM mask was eroded at the 2-voxel level, 

while the CSF mask was eroded at the 1-voxel level. More liberal erosion often resulted in 

empty masks in our data. Temporal derivatives, quadratic terms, and squares of the 

derivative were computed as above. Two tissue class regressors (WM and CSF) were 

included in models 3 and 12, whereas their expansions (8 regressors) were included in 

models 4–8.
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Local white matter regression

Model 11 used a local WM regressor (Jo et al., 2013). This was computed in AFNI using 

3dLocalstat (Cox, 1996). Unlike the regressors described above, which were voxel-invariant, 

the value of the local WM regressor was computed separately at each voxel. For each voxel, 

a sphere of radius 45mm was first centered on that voxel; this sphere defined that voxel's 

local neighborhood. Next, this spherical neighborhood was intersected with an eroded WM 

mask to produce a local WM mask, which included only the fraction of the WM that was 

also in the voxel's neighborhood. The mean signal within this new local WM mask was then 

used to model the local WM signal at the voxel (Jo et al., 2013). This process was repeated 

at every voxel in order to generate the local WM regressor. This local WM regressor was 

included in model 11 along with realignment parameters and their derivatives (12 total); this 

model also included voxelwise de-spiking. In order to evaluate the efficacy of this local 

regressor in comparison with a more typical mean tissue regressor, model 12 was identical to 

model 11 with a mean WM regressor substituting for the local WM regressor.

CompCor

Principal component analysis (PCA) can be used to model noise in BOLD time series 

(Behzadi et al., 2007; Muschelli et al., 2014). Broadly, the use of PCA-derived regressors to 

model noise is called component-based correction (CompCor). Numerous variants of 

CompCor have been developed; here, our focus will be on anatomical CompCor 

(aCompCor, model 9) and temporal CompCor (tCompCor, model 10). In aCompCor, a PCA 

is performed within an anatomically defined tissue class of interest. We extracted 5 

components for WM and CSF each, yielding 10 compcor components (Muschelli et al., 

2014). As part of model 9, as in Muschelli et al. (2014), these 10 aCompCor components 

were combined with 12 re-alignment parameters (raw and temporal derivative). In 

tCompCor, the temporal variance of the BOLD signal is first computed at each voxel. 

Subsequently, a mask is generated from high-variance voxels, and principal components are 

extracted from the time series at these voxels. In confound regression model 10, tCompcor 

was implemented using ANTs, with 6 tCompCor components used as confound regressors 

for each participant.

ICA-AROMA

ICA-AROMA (automatic removal of motion artifact) is a recently-introduced, widely-used 

method for de-noising using single-subject ICA (Pruim et al., 2015a,b); we evaluated ICA-

AROMA in confound regression models 13 and 14. In contrast to other ICA based methods 

(e.g., ICA-FIX: Salimi-Khorshidi et al. (2014)), it does not require dataset-specific training 

data. The input to ICA-AROMA is a voxelwise time series that has been smoothed at 6mm 

FWHM using a Gaussian kernel. After decomposing this time series using FSL's MELODIC 

(with model order estimated using the Laplace approximation) (Beckmann et al., 2005), 

ICA-AROMA uses four features to determine whether each component corresponds to 

signal or noise. The first 2 features are spatial characteristics of the signal source: (1) the 

fraction of the source that falls within a CSF compartment and (2) the fraction of the source 

that falls along the edge or periphery of the brain. The remaining features are derived from 

the time series of the source: (3) its maximal robust correlation with time series derived from 
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realignment parameters and (4) its high-frequency spectral content. ICA-AROMA includes 

two de-noising steps. The first de-noising step occurs immediately after classification. All 

component time series (signal and noise) are included as predictors in the linear model, and 

the residual BOLD time series is obtained via partial regression of only the noise time series. 

A second confound regression step occurs after temporal filtering, wherein mean signals 

from WM and CSF (models 13 and 14) and the global signal (model 14 only) were 

regressed from the data.

Temporal censoring: de-spiking, spike regression, and scrubbing

In addition to regression of nuisance time series, a number of ‘temporal censoring' 

approaches were used to identify motion-contaminated volumes in the BOLD time series 

and reduce their impact on further analysis. These approaches included despiking, spike 

regression, and scrubbing. Despiking is a procedure that identifies outliers in the intensity of 

each voxel's detrended BOLD time series and then interpolates over these outliers. 

Despiking was implemented in AFNI using the 3dDespike utility (Cox, 1996) as part of 

confound regression model 6.

Unlike despiking, which identifies outliers on a voxel-wise basis, spike regression and 

scrubbing censor complete volumes based on metrics of subject movement defined a priori. 
For spike regression, as in Satterthwaite et al. (2013), volumes were flagged for spike 

regression if their volume-to-volume RMS displacement exceeded 0.25mm. Next, as part of 

confound regression model 7, k ‘spike' regressors were included as predictor variables in the 

de-noising model, where k equalled the number of volumes flagged (Satterthwaite et al., 

2013). For each flagged time point, a unit impulse function that had a value of 1 at that time 

point and 0 elsewhere was included as a spike regressor.

For scrubbing, the framewise displacement (FD) (Power et al., 2012) was computed at each 

time point as the sum of the absolute values of the derivatives of translational and rotational 

motion estimates. If framewise displacement (FD) at any point in time exceeded 0.2mm, 

then that time point was flagged for scrubbing. It should be noted that the conversion of FD 

to RMS displacement is approximately 2:1, and thus the published criterion for scrubbing 

has a lower threshold for flagging high-motion volumes than does spike regression. 

Scrubbing of BOLD data was performed iteratively (Power et al., 2014a) as part of confound 

regression model 8. At any stage where a linear model was applied to the data (for instance, 

during detrending procedures), high-motion epochs were temporally masked out of the 

model so as not to influence fit. During temporal filtering, a frequency transform was used to 

generate surrogate data with the same phase and spectral characteristics as the unflagged 

data. This surrogate data was used to interpolate over flagged epochs prior to application of 

the filter. During confound regression, flagged timepoints were excised from the time series 

so as not to contribute to the model fit. For scrubbing (but not spike regression) if fewer than 

five contiguous volumes had unscrubbed data, these volumes were scrubbed and interpolated 

as well.
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Overview of outcome measures

We evaluated each de-noising pipeline according to four benchmarks. Residual QC-FC 
correlations and distance-dependence provided a metric of each pipeline's efficacy, while 

loss of temporal DOF provided an estimate of each pipeline's efficiency. Finally, the 

modularity quality provided an estimate of network identifiability after de-noising.

Relationship between mean relative RMS displacement and functional connectivity (QC-FC 
correlations)

In order to estimate the residual relationship between subject movement and connectivity 

after de-noising, we computed QC-FC correlations (quality control / functional connectivity) 

(Power et al., 2015; Satterthwaite et al., 2012, 2013; Power et al., 2012). While other metrics 

have been used in prior reports, including FD-DVARS correlations, we favor QC-FC as the 

most useful metric of interest as it directly quantifies the relationship between motion and 

the primary outcome of interest (rather than two quality metrics, as in FD-DVARS). For an 

extended discussion of the rationale for this measure, see Power et al. (2015).

We evaluated QC-FC relationships within two commonly-used whole-brain networks, the 

first consisting of spherical nodes distributed across the brain (Power et al., 2011) and the 

second comprising an areal parcellation of the cerebral cortex (Gordon et al., 2016). For 

each network, the mean time series for each node was calculated from the denoised residual 

data, and the pairwise Pearson correlation coefficient between node time series was used as 

the network edge weight (Biswal et al., 1995). For each edge, we then computed the 

correlation between the weight of that edge and the mean relative RMS motion. To eliminate 

the potential influence of demographic factors, QC-FC relationships were calculated as 

partial correlations that accounted for participant age and sex. We thus obtained, for each de-

noising pipeline, a distribution of QC-FC correlations. This distribution was used to obtain 

two measures of the pipeline's ability to mitigate motion artifact, including: 1) the number of 

edges significantly related to motion, which was computed after using the false discovery 

rate (FDR; Benjamini and Hochberg (1995)) to account for multiple comparisons; and 2) the 

median absolute value of all QC-FC correlations. All graphs were generated using ggplot2 in 

R version 3.2.3 (Wickham, 2009); brain renderings were prepared in BrainNet Viewer (Xia 

et al., 2013).

Distance-dependent effects of motion

Early work on motion artifact demonstrated that in-scanner motion can bias connectivity 

estimates between two nodes in a manner that is related to the distance between those nodes 

(Satterthwaite et al., 2012; Power et al., 2012). Under certain processing conditions, subject 

movement enhances short-distance connections while reducing long-distance connections. 

To determine the residual distance-dependence of subject movement, we first used the center 

of mass of each node to obtain a distance matrix D where entry Dij indicates the Euclidean 

distance between the centers of mass of nodes i and j. We then obtained the correlation 

between the distance separating each pair of nodes and the QC-FC correlation of the edge 

connecting those nodes; this correlation served as an estimate of the distance-dependence of 

motion artifact.
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Network modularity

Including additional regressors in a confound model has the potential to remove real signal 

in addition to motion-related noise. In order to evaluate this possibility, we computed 

modularity quality (Q), an explicit quantification of the degree to which there are structured 

sub-networks in a given network, in this case the de-noised connectome. Prior work has 

demonstrated a relationship between Q and subject motion (Satterthwaite et al., 2012) that is 

mitigated by participant-level de-noising approaches (Satterthwaite et al., 2013). If confound 

regression and censoring were removing real signal in addition to motion-related noise, we 

expect that Q would decline. To determine Q, community detection was performed on each 

subject's de-noised network using the Louvain heuristic (Blondel et al., 2008), which 

partitions the connectome into sub-networks in a manner that maximizes the value of Q. As 

functional connectomes included positive and negative weights, we used a version of the 

Louvain algorithm that accommodates signed data (Rubinov and Sporns, 2010), and did not 

threshold connectivity matrices. Because this approach to community detection is 

degenerate, a consensus partition was obtained over 100 Louvain optimizations 

(Lancichinetti and Fortunato, 2012). Finally, the modularity quality of the resultant 

consensus partition was estimated according to an established null model (Girvan and 

Newman, 2002); the mean of Q values across subjects provided an estimate of the sub-

network definition still present in the connectome after de-noising. Furthermore, we also 

assessed whether (and to what extent) Q was correlated with motion; to do this, we 

computed the Pearson correlation coefficient between subjects' Q values and their motion 

estimates. These relationships were computed as partial correlations that accounted for 

participant age and sex.

Additional degrees of freedom lost in confound regression

Confound regressors and censoring both reduce the temporal degrees of freedom (DOF) in 

data. This loss in temporal DOF may introduce bias if it is variable across subjects. While 

removal of temporal DOF reduces the number of observations that sample the connectome, 

the current analysis is not biased by the concatenation of temporally discontinuous time 

series (i.e., after censoring) because the current analysis (1) uses a time-invariant measure of 

connectivity that is not dependent on any temporal autocorrelation structure (i.e., Pearson 

correlation) and (2) applies any procedures that are dependent upon temporal autocorrelation 

structure (e.g., temporal filtering) prior to concatenation. De-noising strategies ideally limit 

the loss of temporal DOF, for instance by including fewer, more efficacious regressors. In 

the present study, we assessed the number of temporal DOF lost in each confound regression 

approach.

As in previous work (Pruim et al., 2015a), we assumed that each time series regressed out 

and each volume excised from the data constituted a single temporal DOF. Consequently, the 

loss of temporal DOF was estimated as the sum of the number of regressors in each 

confound model and the number of volumes flagged for excision under that model. It should 

be emphasized that the values thus obtained are imperfect estimates. First, because 

functional MR time series typically exhibit temporal autocorrelation, the actual loss in DOF 

will be less than the estimated loss in DOF. Accordingly, censoring adjacent volumes does 

not remove the same number of DOF as does censoring volumes separated in time. 
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Furthermore, a temporal bandpass filter was uniformly applied to all data prior to confound 

regression; this filtering procedure would itself have removed additional temporal DOF and 

elevated the autocorrelation of the data. Because this filter was uniform across all de-noising 

strategies, it was not considered when estimating the loss of additional temporal DOF in 

each model.

Results

Heterogeneity in confound regression performance

Confound regression strategies typically remove some, but not all, of the artifactual variance 

that head motion introduces into the BOLD signal. The motion-related artifact that survives 

de-noising can be quantified to provide a metric of pipeline performance. Here, our primary 

benchmark of confound regression efficacy was the residual relationship between brain 

connectivity and subject motion, or the QC-FC correlation. We measured QC-FC 
correlations using two metrics: the percentage of network connections where a significant 

relationship with motion was present (Figure 2), and the absolute median correlation (AMC) 

between connection strength and head movement across all connections (Figure 3).

No preprocessing strategy was completely effective in abolishing the relationship between 

head movement and connectivity. However, different approaches exhibited widely varying 

degrees of efficacy. The top four confound regression strategies included 36 parameters, 

comprising an expansion of GSR, tissue-specific regressors (WM, CSF), and realignment 

parameters. Beyond this base 36-parameter model, all censoring techniques provided 

provided some additional benefit, reducing the number of edges that were significantly 

related to motion to less than 7%. Convergent results were present across both QC-FC 
measures (% edges, AMC) and networks (Power, Gordon) that were evaluated. The top-

performing method, GSR+spike regression, yielded < 1% of edges that were significantly 

related to motion.

In contrast, many pipelines performed relatively poorly, leaving a majority of network edges 

with a residual relationship with motion. Specifically, 89% of edges were impacted by 

motion when the least effective method was used (6 realignment parameters). The 

commonly used 24-parameter expansion of realignment parameters originally suggested by 

Friston et al. (1996) did not provide much of an improvement (88% edges). Similarly, the 

local WM regressor model (77% edges) and tCompCor 70% edges) also resulted in 

substantial residual QC-FC correlations. In fact, these methods performed worse than a basic 

2-parameter model composed of mean WM and CSF signals (44% edges). Notably, a local 

WM signal (77% edges) did not provide any benefit over the mean WM signal (39% edges) 

according to QC-FC metrics, and in fact performed considerably worse. Finally, several 

methods demonstrated intermediate performance, with 1–20% of edges impacted by motion. 

This middle group included methods as disparate as aCompCor (13% edges), ICA-AROMA 

(28% edges), ICA-AROMA with GSR (10% edges), and the classic 9-parameter confound 

regression model which included GSR (13% edges).
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Variability in distance-dependent motion artifact after confound regression

Our second benchmark quantified the distance-dependent motion artifact that was present in 

data processed by each pipeline (Figure 4). We observed that distance-dependence was 

present even under conditions where artifact magnitude was attenuated. For example, though 

the 36-parameter model was among the most effective in attenuating QC-FC relationships, 

its application revealed strongly distance-dependent artifact. Examination of graphs that plot 

QC-FC by Euclidean distance (see Figure 4C) revealed that this is due to effective mitigation 

of motion artifact for long-range but not short-range connections.

Distance-dependence was highly prominent in models that included GSR, but did not 

include censoring (e.g., 9-parameter and 36-parameter models). However, despite the lack of 

global signal in the aCompCor and tCompcor models, data returned from both of these 

component-based approaches revealed substantial distance-dependent artifact. Notably, 

inclusion of censoring consistently reduced distance-dependence, although scrubbing was 

more effective than spike regression or voxelwise despiking.

The top performing method according to this benchmark was ICA-AROMA, which 

completely abolished any distance-dependence of residual motion artifact. In other words, 

the motion artifact that was still present in the data after ICA-AROMA impacted all 

connections in a manner that was not dependent on the spatial separation between nodes. 

Augmenting ICA-AROMA with GSR decreased QC-FC correlations but exposed distance-

dependent artifact, suggesting that ICA-AROMA did not completely remove long-distance 

motion artifact.

There was similar lack of distance-dependence in the wmLocal model, although as noted 

above this model did not provide effective de-noising according to QC-FC benchmarks. Use 

of a local tissue regressor revealed less distance-dependent artifact than did the whole-tissue 

regressor.

Confound regression strategies mitigate the impact of motion on network modularity

We next evaluated the degree to which de-noising strategies impacted sub-network 

identifiability, which was operationalized as the network modularity quality (Q; Figure 5). 

First and most notably, the 4 models that exhibited the poorest performance according to 

QC-FC measures (6P, 24P, wmLocal, and tCompCor) also suffered from an inability to 

identify structured functional sub-networks of the brain. This suggests that motion artifact 

impedes network identifiability. Second, the 36-parameter models did not uniformly out-

perform lower order models. However, addition of any of the three censoring techniques 

evaluated (scrubbing, spike regression, or despiking) provided an improvement over and 

above the 36-parameter base model. Third, both AROMA and aCompCor performed well, at 

levels similar to that observed for 36-parameter models with censoring. However, addition of 

GSR to AROMA did not improve the observed Q value. Fourth and finally, the top-

performing model was in fact the 9P model, which had a higher mean Q value than all 36-

parameter models and ICA-AROMA.

To ascertain whether network identifiability was systematically impacted by motion, we also 

evaluated the correlation between modularity quality and motion for each de-noising 
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approach. In general, 36-parameter models and ICA-based models most effectively 

decoupled modular structure from subject motion, while models with high residual QC-FC 
correlations likewise left high correlations between motion and modularity (Figure 6). 

Notably, the 9P model that displayed the highest mean Q value nonetheless retained a 

substantial relationship with motion, as expected from the edgewise QC-FC analyses. 

Furthermore, addition of GSR to AROMA successfully reduced the relationship between 

motion and modularity.

Effective preprocessing strategies use many additional degrees of freedom

Perhaps unsurprisingly, the preprocessing strategies that consistently reduced both QC-FC 
correlations and distance-dependence were also among the costliest in terms of loss of 

temporal degrees of freedom (Figure 7). By definition, the 36-parameter models included a 

high fixed number of regressors. Furthermore, models that additionally included censoring 

resulted in a substantial additional loss of data that varied across subjects. (Because the 36P

+despike model censors data in a spatially adaptive manner, the DOF loss varied by voxel. 

Because of this spatial variability, the DOF loss is not explicitly estimated for this model.) 

ICA-AROMA also had a variable loss of DOF, but of a lower magnitude than censoring or 

high-parameter confound regression.

Discussion

In response to rapid evolution of confound regression strategies available for the mitigation 

of motion artifact, in this report we evaluated 14 commonly used pipelines. Results indicate 

that there is substantial heterogeneity in the performance of these confound regression 

techniques across all measures evaluated. The context, implications, and limitations of these 

findings are discussed below.

Confound regression techniques have substantial performance variability

We evaluated confound regression strategies according to four intuitive benchmarks that 

were selected to capture different domains of effectiveness. These included QC-FC 
associations, distance-dependence of motion artifact, modularity quality and its association 

with motion, and additional degrees of freedom lost in confound regression. Across each 

benchmark, there was a striking heterogeneity in pipeline performance. While no model 

completely abolished motion-related variance, 36-parameter models with censoring 

(Satterthwaite et al., 2013; Power et al., 2014a) performed well across a range of 

benchmarks, as did ICA-AROMA with GSR.

Notably, in terms of limiting QC-FC relationships, the top six confound regression 

approaches all included GSR. This effect was consistent in both networks we evaluated. The 

effectiveness of GSR is most likely due to the nature of motion artifact itself: in-scanner 

head motion tends to induce widespread reductions in signal intensity across the entire brain 

parenchyma (see Satterthwaite et al. (2013), Figure 4). As discussed in detail elsewhere 

(Power et al., 2016) this effect is highly reproducible across datasets, and is effectively 

captured by time series regression of the global signal.
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For studies of individual difference where motion may be a substantial confounding factor, 

our results clearly support the use of models that utilize GSR. Across nearly every 

benchmark, models without GSR underperformed relative to similar models that included 

GSR. Whereas QC-FC correlations were relatively zero-centered for the case of GSR-based 

models, most models that omitted GSR – but particularly those that included realignment 

parameters alone – exhibited distributions that were shifted strongly to the right. 

Furthermore, augmentation of GSR-based models using either scrubbing or ICA-AROMA 

yielded better performance than RP-based models across all benchmarks. Thus, while our 

results cannot advocate for any single model in all scenarios, they suggest that (1) GSR is 

likely to be the single most effcacious strategy for de-noising and (2) RP-based models are 

comparably in-effective at de-noising. These results are convergent with recent data 

regarding the role of motion and physiological artifact in global signal (Power et al., 2016).

Beyond GSR, a second strategy that clearly minimizes QC-FC relationships is temporal 

censoring. We evaluated three censoring variants, including scrubbing, spike regression, and 

de-spiking. Compared to spike regression and de-spiking, scrubbing appears to be more 

effective in removing distance-dependent artifact in this dataset. This is most likely due to 

the explicit tension between data quality and data quantity: because of the lower threshold 

for scrubbing than spike regression (due to differences in FD vs. RMS measures of motion; 

see Figure 9C in Yan et al. (2013a)), more low-quality data was excised during scrubbing. 

Furthermore, scrubbing includes a criterion to not leave isolated epochs (< 5 volumes) of un-

scrubbed data. Consequently, this leads to clear differences in the additional degrees of 

freedom lost by each method. In contrast to spike regression and scrubbing, which eliminate 

high motion volumes completely, time series de-spiking identifies and interpolates large 

changes in signal intensity on a voxelwise basis (Cox, 1996). This allows for spatial 

adaptivity (see Patel et al. (2014)) but also renders quantification of data loss and 

comparisons with volume-based censoring techniques more difficult.

Loss of temporal degrees of freedom should be interpreted with caution because temporal 

DOF may correspond in part or in whole to artifactual sources rather than signal of interest. 

For example, although removal of volumes contaminated by motion via censoring results in 

reduced temporal DOF, it improves network identification relative to the same model 

without any censoring. This can be explained by considering that the temporal DOF in each 

time series can be either primarily signal or primarily noise DOF; the DOF that censoring 

removes are primarily noise, and their removal thus increases the overall signal-to-noise 

ratio of the time series.

Another DOF-related concern about motion censoring is the potential for variable loss of 

temporal DOF to bias group-level analyses. One proposed solution involves excising a 

uniform number of volumes from all subject time series, regardless of the number of 

motion-contaminated frames. However, if motion results in more noise DOF, then the 

number of useful signal DOF is variable from the start. The extent to which each de-noising 

strategy removes temporal DOF (through either confound regression or volume excision) 

should thus not be considered in isolation, but in concert with the ability of that strategy to 

identify meaningful signal in the data, for instance as evidenced by the network 

identifiability benchmark.
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Critically, while both GSR and censoring appeared effective in minimizing QC-FC 
relationships, they exhibited opposite effects on distance-dependence. While censoring 

techniques appear to consistently reduce the presence of distance-dependence, GSR is 

associated with increased distance-dependence. Thus, commonly used models that include 

GSR (9-parameter, 36-parameter) have among the greatest distance-dependence of the 

models we evaluated. However, it should be emphasized that the distance-dependence 

associated with GSR is not the result of worsening associations with motion in certain 

connections. Rather, the distance-dependence seen with GSR stems from differential de-

noising efficacy, whereby motion artifact is more effectively minimized for long-distance 

connections than for short-range connections. Certain models such as the local WM 

regression approach (Jo et al., 2013) thus have minimal distance-dependence, but this is a 

consequence of lack of efficacy across all distances. In contrast, ICA-AROMA (Pruim et al., 

2015b,a) reduced motion to a moderate degree over all connection distances, resulting in 

almost no distance-dependence. However, while clearly an improvement over some other 

methods, data processed using ICA-AROMA was noisier than other methods which 

included GSR or censoring, and resulting networks contained a substantial number of edges 

impacted by motion. As suggested by the work of Burgess et al. (2016), adding GSR to 

ICA-AROMA mitigates QC-FC relationships, but as expected exacerbates distance-

dependence.

Somewhat to our surprise, benchmark results for aCompCor (Behzadi et al., 2007; Muschelli 

et al., 2014) were most similar to models that included GSR. Alone among models where 

GSR was not included, aCompCor both was relatively effective in the mitigation of residual 

motion (13% of edges impacted) and also exhibited substantial distance-dependence (e.g., r 
= −0:26). This suggests that while aCompCor does not explicitly include GSR, the practical 

results of its application are in fact quite similar.

Generally, the models that performed poorly in terms of residual QC-FC correlations also 

did not perform well in terms of ability to identify structured subnetworks in the 

connectome. This suggests that the removal of noise by more effective methods also 

unmasks structure. Although censoring substantially reduced the temporal degrees of 

freedom in the time series, it improved network identifiability in relation to the 36-parameter 

model alone, suggesting the possibility that the lost temporal degrees of freedom were 

largely contaminated and did not contain useful information regarding network topology.

Somewhat to our surprise, the very simple two-parameter model (WM, CSF) outperformed 

commonly used models based on re-alignment parameters alone (e.g., 6-parameter, 24-

parameter), suggesting that the relative values of tissue signal regressors and realignment 

parameters are not equal. This is likely because the WM and CSF regressors capture, to 

varying extents, the global signal changes that are strongly associated with motion (Power et 

al., 2016).

Trade-offs of confound regression approaches: implications for investigators

The current results emphasize two clear trade-offs in the choice of confound regression 

strategy. First, pipelines that include global signal regression tend to be more effective at 

minimizing QC-FC relationships, but at the cost of some increase in distance-dependence. 
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As noted above, for minimizing QC-FC relationships, nearly all of the top strategies (except 

aCompCor) included GSR. Conversely, the two techniques that had the most substantial 

distance-dependence (the 9-regressor and 36-regressor methods) both included GSR. 

Second, censoring techniques provide a clear benefit in reducing QC-FC relationships and 

additionally tend to attenuate distance-dependence. However, by definition, removing 

contaminated volumes results in less data and loss of degrees of freedom.

These trade-offs suggest that a single confound regression strategy is unlikely to be optimal 

for every study. For example, in studies of network organization, network identifiability may 

be of primary interest. Somewhat to our surprise, the classic 9P model displayed the highest 

network modularity, and thus remains a good choice for many such studies. However, the 

presence of anti-correlations, altered degree distribution (Yan et al., 2013b), and distance-

dependent impact of motion that occurs with GSR-based models (including 9P) may make 

models without GSR more appealing for certain studies of network organization. In these 

cases, ICA-AROMA appears to be an excellent choice, as it has high network identifiability 

and low distance dependence.

In contrast, for studies of group or individual differences, minimizing QC-FC relationships 

is likely to be of paramount importance so as to limit the possibility that inference is driven 

by artifactual signals. This concern is particularly relevant for studies of brain development 

or clinical sub-groups where motion is systematically related to the subject-level variable of 

interest (e.g., age, disease status). For such studies, models that include GSR tend to perform 

best, including 36P+censoring models and ICA-AROMA + GSR. Our results accord with 

Burgess et al. (2016) and suggest that ICA-based de-noising alone without GSR does not 

provide maximal control of motion artifact. Co-varying for motion at the group level is 

unlikely to be a panacea for such studies when inadequate subject-level time series de-

noising is employed, as prior work (Power et al., 2014a) has suggested that motion effects at 

the group level may potentially both be nonlinear and vary across sub-samples in a manner 

that is difficult to predict. However, aggressive volume censoring may be problematic in 

datasets with relatively brief acquisitions. In datasets where long time series are acquired, 

such as multi-band acquisitions (Feinberg et al., 2010) and intensive acquisitions of single 

subjects (Laumann et al., 2015), loss of temporal degrees of freedom is less likely to be a 

major concern. The 36-parameter models without volume censoring offer uniformity, as 

does randomly or systematically censoring additional volumes until all subjects retain 

approximately the same degrees of freedom.

Limitations

Several limitations of the current approach should be noted. One of the principal challenges 

in evaluating the performance of de-noising approaches is the lack of a noise-free ground 

truth. Our primary benchmark of confound regression performance assumes that mitigation 

of the relationship between QC (participant motion) and FC (i.e., the imaging measurement) 

is desirable. To the degree that in-scanner motion itself represents a biologically informative 

phenotype, this approach will mistake signal for noise. Indeed, prior data suggests that this 

may sometimes be the case. For example, Zeng et al. (2014) found specific changes in 

connectivity for participants who had generally high levels of motion, even on scans where 
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motion was low. However, without multiple scans to allow such careful dissociation, most 

studies are incapable of disambiguating the large confounding effects of motion on 

connectivity. Second, in place of QC-FC relationships, one could focus on alternative 

benchmarks such as test-retest reliability (Zuo et al., 2014). Reliability is certainly of 

interest, but to the degree that motion tends to be highly correlated within individuals across 

scanning sessions, there is a substantial potential for the presence of consistent motion 

artifact across sessions to artificially inflate reliability, and diminish the biological relevance 

of observed results. A third and related concern is that certain de-noising methods could 

conceivably both minimize QC-FC relationships and even enhance reliability by 

aggressively removing both signal and noise, but in the process diminish sensitivity to 

meaningful individual differences. Indeed, one prior study demonstrated the association 

between canonical resting state networks and randomly generated confound parameters 

(Bright and Murphy, 2015). This concern is somewhat mitigated by prior work, which 

suggests that higher-order confound regressors improve the confound regression model fit 

(Yan et al., 2013a; Satterthwaite et al., 2013), while random regressors do not (see Figure 8 

in Satterthwaite et al. (2013)). Furthermore, our results suggest that sub-network modularity 

is actually improved by effective de-noising. Fourth, while our evaluation included many of 

the most commonly used techniques, other approaches which require substantial training or 

parameter selection (i.e., ICA-FIX (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014), 

wavelet de-spiking (Patel et al., 2014)) may be valuable and merit further consideration. 

Fifth, it is unknown whether the present results generalize to other datasets, which may have 

different acquisition parameters including much longer timeseries (Laumann et al., 2016) 

and multiband acquisition (Feinberg et al., 2010). In particular, the relatively short (6 min) 

scan time used in the current study is a potential limitation; replication of results in longer 

acquisitions would enhance confidence in the generalizability of the present results. 

However, the similar findings reported by Burgess et al. (2016)), which used the longer, 

multi-band time series data from the Human Connectome Project, suggest convergence with 

the present results. Furthermore, it is possible that the structure of motion artifact is 

population-dependent. In the present study, we examined the efficacy of de-noising 

strategies in a sample of young adults and adolescents. Consequently, the conclusions that 

we present here may not necessarily generalize to other populations, underscoring the 

importance of evaluating and reporting the residual confounding effects of motion in all 

studies of functional connectivity. While the current study was conducted in a combined 

sample of adolescents and young adults, it did not explore the extent to which the efficacy of 

each denoising strategy was age- or population dependent, which merits additional 

investigation in the future. Sixth and finally, it should be noted that while improvements in 

image acquisition (including multi-echo techniques) may not salvage existing motion-

contaminated data, it is likely that they will change the methodological landscape of 

connectivity research moving forward (Kundu et al., 2012, 2013; Bright and Murphy, 2013).

Conclusions

Taken together, the present results underline the performance heterogeneity of recently-

introduced, commonly-used confound regression methods. In selecting among these 

methods, investigators should be aware of the relative strengths and weaknesses of each 

approach, and understand how processing strategy may impact inference. Clearly, the 
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relative merit of each approach will vary by research question and study design. Perhaps 

most importantly, as has been emphasized in nearly every other study of motion artifact, the 

choice of confound regression strategy is often dwarfed in importance by the need to 

transparently report and evaluate the impact of motion in each dataset. At a minimum, this 

includes reporting the relationship between motion artifact and not only subject phenotypes 

(e.g., group, age, symptom or cognitive score) but also the functional connectivity measures 

being considered. In the context of such data, the distinction between observed results and 

the impact of motion artifact can be understood. Such transparency bolsters confidence in 

reported findings, but also will likely tend to emphasize the remaining challenges for de-

noising going forward. Especially when considered in the context of the the rapid evolution 

of available techniques since 2012, there is no doubt that innovations in post-processing 

confound regression strategies will continue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the 14 de-noising models evaluated in the present study
For each of the 14 models indexed at left, the table details what processing procedures and 

confound regressors were included in the model. De-noising models were selected from the 

functional connectivity literature and represented a range of strategies.
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Figure 2. Number of edges significantly related to motion after de-noising
Successful de-noising strategies reduced the relationship between connectivity and motion. 

The number of edges (network connections) for which this relationship persists provides 

evidence of a pipeline's efficacy. A, The percentage of edges significantly related to motion 

in a 264-node network defined by Power et al. (2011). Fewer significant edges is indicative 

of better performance. B, The percentage of edges significantly related to motion in a 

second, 333-node network defined by Gordon et al. (2016). C, Renderings of significant 

edges with QC-FC correlations of at least 0.2 for each de-noising strategy, ranked according 

to efficacy. Strategies that include regression of the mean global signal are framed in blue 

and consistently ranked as the best performers.
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Figure 3. Residual QC-FC correlations after de-noising
The absolute median QC-FC correlation is another measure of the relationship between 

connectivity and motion. A, The absolute median correlation between functional 

connectivity and motion in a 264-node network defined by Power et al. (2011). A lower 

absolute median correlation indicates better performance. B, The absolute median 

correlation between functional connectivity and motion in a second, 333-node network 

defined by Gordon et al. (2016). C, Distributions of all edgewise QC-FC correlations after 

each de-noising strategy, ranked according to efficacy. Results largely recapitulated those 

reported in Figure 2, with GSR-based approaches (blue frame) collectively exhibiting the 

best performance. Whereas approaches that included more regressors generally yielded a 

narrower distribution, those approaches that included GSR tended to shift the distribution's 

center toward 0.
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Figure 4. Distance-dependence of motion artifact after de-noising
The magnitude of motion artifact varies with the Euclidean distance separating a pair of 

nodes, with closer nodes generally exhibiting greater impact of motion on connectivity. A, 
The residual distance-dependence of motion artifact in a 264-node network defined by 

Power et al. (2011) following confound regression. B, The residual distance-dependence of 

motion artifact in a second, 333-node network defined by Gordon et al. (2016). C, Density 

plots indicating the relationship between the Euclidean distance separating each pair of 

nodes (x-axis) and the QC-FC correlation of the edge connecting those nodes (y-axis). The 

overall trend lines for each de-noising strategy, from which distance-dependence is 

computed, are indicated in red. For each plot, the ordinate is rescaled to the data; thus, the 

ordinate does not reflect the width of the distribution of QC-FC correlations. (The same data 

is plotted to a common ordinate in Supplemental Figure 1.) The best performing models 

either excised high-motion volumes (36-parameter + scrubbing) or used more localized 
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regressors (ICA-AROMA and wmLocal). In general, approaches that made use of GSR 

without censoring resulted in substantial distance-dependence. This effect was driven by 

differential efficacy of de-noising, with effective de-noising for long range connections but 

not short-range connections.
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Figure 5. Identifiability of network structure after de-noising
Although de-noising approaches remove motion artifact from BOLD time series, it is 

possible that they also remove signal of interest. We quantified the retention of signal of 

interest as the modularity quality of the de-noised connectome. A, The modularity quality in 

a 264-node network defined by Power et al. (2011) following confound regression. B, The 

modularity quality in a second, 333-node network defined by Gordon et al. (2016). ICA-, 

GSR-, and tissue class-based models performed relatively well, while models that included 

realignment parameters alone did not remove enough noise to accurately identify network 

structure.
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Figure 6. Correlation between subject motion and modularity quality
Motion affects network modularity to varying degrees for different de-noising approaches. 

We quantified the retention of signal of interest as the modularity quality of the de-noised 

connectome. A, The correlation between subject motion and modularity quality in a 264-

node network defined by Power et al. (2011) following confound regression. B, The 

correlation between subject motion and modularity quality in a second, 333-node network 

defined by Gordon et al. (2016). In general, GSR- and ICA-based methods most effectively 

decoupled network structure from artifact.
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Figure 7. Estimated loss of temporal degrees of freedom for each pipeline evaluated
Bars indicate mean number of additional regressors per confound model; error bars indicate 

standard deviation for models where the number of confound regressors varies by subject. 

High-parameter models and framewise censoring performed well overall on other 

benchmarks, but were also costliest in terms of temporal degrees of freedom. Despite this 

cost, augmenting a high-parameter model with censoring improved signal detection (see 

Figure 5), suggesting that the lost degrees of freedom corresponded largely to noise. 

Because the 36P+despike model censors data in a spatially adaptive manner, the DOF loss in 

this case varied by voxel, and is not displayed.
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